安徽省淮北市第一中学2017-2018学年高一上学期第三次月考数学试卷 (word版含答案)

合集下载

北京市2023-2024学年高一上学期12月月考试题 数学含解析

北京市2023-2024学年高一上学期12月月考试题 数学含解析

2023-2024学年度第一学期北京高一数学12月月考试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分1.已知集合{}2,A x x k k ==∈Z ,{}33B x x =-<<,那么A B = ()A.{}1,1- B.{}2,0-C.{}2,0,2- D.{}2,1,0,1--2.方程组22205x y x y +=⎧⎨+=⎩的解集是()A.()(){}1,2,1,2--B.()(){}1,2,1,2--C.()(){}2,1,2,1-- D.()(){}2,1,2,1--3.命题“x ∃∈R ,2230x x --<”的否定形式是()A.x ∃∈R ,2230x x -->B.x ∃∈R ,2230x x --≥C.x ∀∈R ,2230x x --< D.x ∀∈R ,2230x x --≥4.下列函数中,既是奇函数又在定义域上是增函数的是()A.ln y x =B.2x y =C.3y x = D.1y x=-5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.140D.1206.设lg2a =,12log 3b =,0.22c =,则()A.a b c <<B.a c b<< C.b a c<< D.<<b c a7.若122log log 2a b +=,则有A.2a b= B.2b a= C.4a b= D.4b a=8.若()f x 是偶函数,且当[)0,x ∈+∞时,()1f x x =-,则()10f x -<的解集是()A.{}10x x -<<B.{0x x <或}12x <<C.{}02x x << D.{}12x x <<9.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)A.6年B.7年C.8年D.9年二、填空题(本大题共5小题,每小题5分,共25分.)11.函数()1lg(1)2f x x x =-+-的定义域为___________.12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=______;12x x -=______.13.设函数()f x 同时满足以下条件:①定义域为R ;②()01f =;③1x ∀,2R x ∈,当12x x ≠时,()()21210f x f x x x -<-;试写出一个函数解析式()f x =______.14.设函数()3log ,x af x x x a ≤≤=>⎪⎩,其中0a >.①若5a =,则()81f f ⎡⎤⎣⎦______;②若函数()3y f x =-有两个零点,则a 的取值范围是______.15.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.三、解答题(本大题共6小题,共85分.)16.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.17.已知函数()211f x x =-.(1)证明:()f x 为偶函数;(2)用定义证明:()f x 是()1,+∞上的减函数;(3)直接写出()f x 在()1,+∞的值域.18.甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示2017年2018年2019年2020年2021年2022年甲4.944.904.954.824.80 4.79乙 4.86 4.904.864.844.744.72(1)计算乙从2017年到2022年这6年的视力平均值;(2)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;(3)甲和乙的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)19.某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x 万个()020x <≤,每年需投入的其它成本为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩(单位:万元),且该纪念品每年都能买光.(1)求年利润()f x (单位:万元)关于x 的函数关系式;(2)当年产量x 为何值时,该厂的年利润最大?求出此时的年利润.20.已知函数()()12log 21xf x mx =+-,m ∈R .(1)求()0f ;(2)若函数()f x 是偶函数,求m 的值;(3)当1m =-时,当函数()y f x =的图象在直线=2y -的上方时,求x 的取值范围.21.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.2023-2024学年度第一学期北京高一数学12月月考试卷一、选择题(本大题共10小题,每小题4分,共40分1.已知集合{}2,A x x k k ==∈Z ,{}33B x x =-<<,那么A B = ()A.{}1,1- B.{}2,0-C.{}2,0,2- D.{}2,1,0,1--【答案】C 【解析】【分析】解不等式()323k k Z -<<∈,求得整数k 的取值,由此可求得A B ⋂.【详解】解不等式323k -<<,得3322k -<<,k Z ∈ ,所以,整数k 的可能取值有1-、0、1,因此,{}2,0,2A B =- .故选:C.【点睛】本题考查交集的计算,考查计算能力,属于基础题.2.方程组22205x y x y +=⎧⎨+=⎩的解集是()A.()(){}1,2,1,2--B.()(){}1,2,1,2--C.()(){}2,1,2,1-- D.()(){}2,1,2,1--【答案】A 【解析】【分析】利用代入消元法,求解方程组的解集即可.【详解】因为22205x y x y +=⎧⎨+=⎩,所以2y x =-代入225x y +=,即()2225x x +-=,解得1x =±.当=1x -时,()212y =-⨯-=;当1x =时,212y =-⨯=-.故22205x y x y +=⎧⎨+=⎩的解集是()(){}1,2,1,2--.故选:A.3.命题“x ∃∈R ,2230x x --<”的否定形式是()A.x ∃∈R ,2230x x -->B.x ∃∈R ,2230x x --≥C.x ∀∈R ,2230x x --<D.x ∀∈R ,2230x x --≥【答案】D 【解析】【分析】直接根据特称命题的否定是全称命题来得答案.【详解】根据特称命题的否定是全称命题可得命题“x ∃∈R ,2230x x --<”的否定形式是x ∀∈R ,2230x x --≥.故选:D.4.下列函数中,既是奇函数又在定义域上是增函数的是()A.ln y x =B.2x y =C.3y x =D.1y x=-【答案】C 【解析】【分析】由函数的奇偶性和单调性的定义对选项一一判断即可得出答案.【详解】对于A ,ln y x =的定义域为{}0x x >,不关于原点对称,所以ln y x =是非奇非偶函数,故A 不正确;对于B ,2x y =的定义域为R ,关于原点对称,而()()122xx f x f x --==≠-,所以2x y =不是奇函数,故B 不正确;对于C ,3y x =的定义域为R ,关于原点对称,而()()()33f x x x f x -=-=-=-,所以3y x =是奇函数且在R 上是增函数,故C 正确;对于D ,1y x=-定义域为{}0x x ≠,关于原点对称,()()1f x f x x -==-,所以1y x=-是奇函数,1y x=-在(),0∞-和()0,∞+上单调递增,不能说成在定义域上单调递增,因为不满足增函数的定义,故D 不正确.故选:C .5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.140D.120【答案】C 【解析】【详解】试题分析:由题意得,自习时间不少于22.5小时的频率为(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的人数为0.7200140⨯=,故选C.考点:频率分布直方图及其应用.6.设lg2a =,12log 3b =,0.22c =,则()A.a b c <<B.a c b<< C.b a c<< D.<<b c a【答案】C 【解析】【分析】借助中间量0,1可确定大小.【详解】对于lg2a =,由lg2lg1=0,lg2lg10=1><得01a <<,对于12log 3b =,由1122log 3log 10<=得0b <,对于0.22c =,由0.20221>=得1c >,所以b a c <<.故选:C.7.若122log log 2a b +=,则有A.2a b = B.2b a= C.4a b= D.4b a=【答案】C 【解析】【分析】由对数的运算可得212log log a b +=2log 2ab=,再求解即可.【详解】解:因为212log log a b +=222log log log 2a b ab-==,所以224a b==,即4a b =,故选:C.【点睛】本题考查了对数的运算,属基础题.8.若()f x 是偶函数,且当[)0,x ∈+∞时,()1f x x =-,则()10f x -<的解集是()A.{}10x x -<<B.{0x x <或}12x <<C.{}02x x << D.{}12x x <<【答案】C 【解析】【分析】根据()f x 是偶函数,先得到()0f x <的解集,再由()10f x -<,将1x -代入求解.【详解】因为[)0,x ∈+∞时,()1f x x =-,所以由()0f x <,解得01x ≤<,又因为()f x 是偶函数,所以()0f x <的解集是11x -<<,所以()10f x -<,得111x -<-<,解得02x <<所以()10f x -<的解集是{}02x x <<,故选:C9.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由()f x 是R 上的增函数得()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之若对任意0a >,()()f x a f x +<,满足()()y f x a f x =+-无零点,但不满足()f x 是R 上的增函数,不满足必要性,即可判断.【详解】若()f x 是R 上的增函数,则对任意0a >,显然x a x +>,故()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之,若对任意0a >,()()f x a f x +<,即()()0f x a f x +<-,满足()()y f x a f x =+-无零点,但()f x 是R 上的减函数,不满足必要性,故“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的充分而不必要条件.故选:A.10.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)A.6年 B.7年 C.8年 D.9年【答案】B 【解析】【分析】依题求出经过x 年后,A 产品和B 产品的年产量分别为310(2x,640()5x,根据题意列出不等式,求出x 的范围即可得到答案.【详解】依题经过x 年后,A 产品的年产量为1310(110()22xx+=)B 产品的年产量为1640(140()55x x +=,依题意若A 产品的年产量会超过B 产品的年产量,则3610()40(25xx>化简得154x x +>,即lg 5(1)lg 4x x >+,所以2lg 213lg 2x >-,又20.3010lg =,则2lg 26.206213lg 2≈-所以至少经过7年A 产品的年产量会超过B 产品的年产量.故选:B【点睛】本题主要考查指数函数模型,解指数型不等式,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分.)11.函数()1lg(1)2f x x x =-+-的定义域为___________.【答案】()()1,22,⋃+∞【解析】【分析】根据函数的解析式,列出函数有意义时满足的不等式,求得答案.【详解】函数()()1lg 12f x x x =-+-需满足1020x x ->⎧⎨-≠⎩,解得1x >且2x ≠,故函数()()1lg 12f x x x =-+-的定义域为()()1,22,⋃+∞,故答案为:()()1,22,⋃+∞12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=______;12x x -=______.【答案】①.14②.【解析】【分析】利用韦达定理可得2212x x +、12x x -的值.【详解】因为方程2410x x -+=的两根为1x 和2x ,由韦达定理可得124x x +=,121=x x ,所以,()2221222121242114x x x x x x =+-=-=+⨯,12x x -===.故答案为:14;.13.设函数()f x 同时满足以下条件:①定义域为R ;②()01f =;③1x ∀,2R x ∈,当12x x ≠时,()()21210f x f x x x -<-;试写出一个函数解析式()f x =______.【答案】1x -+(答案不唯一)【解析】【分析】由题意首先由③得到函数的单调性,再结合函数定义域,特殊点的函数值,容易联想到一次函数,由此即可得解.【详解】由③,不妨设12x x ∀<,即210x x ->,都有()()21210f x f x x x -<-,即()()210f x f x -<,即()()21f x f x <,所以由题意可知()f x 是定义域为R 的减函数且满足()01f =,不妨设一次函数y x b =-+满足题意,则10b =-+,即1b =.故答案为:1x -+.14.设函数()3log ,x a f x x x a ≤≤=>⎪⎩,其中0a >.①若5a =,则()81f f ⎡⎤⎣⎦______;②若函数()3y f x =-有两个零点,则a 的取值范围是______.【答案】①.2②.[)9,27【解析】【分析】①代值计算即可;②分别画出()y f x =与3y =的图象,函数有两个零点,结合图象可得答案.【详解】①当5a =时,()35log ,5x f x x x ≤≤=>⎪⎩因为815>,所以()43381log 81log 345f ===<,所以()()8142f f f ⎡⎤===⎣⎦.②因为函数()3y f x =-有两个零点,所以()3f x =,即()y f x =与3y =的图象有两个交点.3=得9x =,3log 3x =得27x =.结合图象可得927a ≤<,即[)9,27a ∈.所以a 的取值范围是[)9,27.故答案为:①2;②[)9,27.15.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.【答案】①③【解析】【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A =(﹣∞,0)∪(0,+∞),B =(﹣∞,0)∪(0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B =(0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A =(0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.三、解答题(本大题共6小题,共85分.)16.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.【答案】(Ⅰ)男生3人,女生2人;(Ⅱ)35【解析】【分析】(Ⅰ)利用分层抽样按比例计算出这5人中男生人数和女生人数.(Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2,利用列举法能求出抽取的2人中恰有1名女生的概率.【详解】(Ⅰ)这5人中男生人数为19253320⨯=,女生人数为12852320⨯=.(Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2,则样本空间为:Ω={(B 1,B 2),(B 1,B 3),(B 1,G 1),(B 1,G 2),(B 2,B 3),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2),(G 1,G 2)},样本空间中,共包含10个样本点.设事件A 为“抽取的2人中恰有1名女生”,则A ={(B 1,G 1),(B 1,G 2),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2)},事件A 共包含6个样本点.从而()63105P A ==所以抽取的2人中恰有1名女生的概率为35.【点睛】本题考查古典概型概率,考查分层抽样、列举法等基础知识,考查运算求解能力,是基础题.17.已知函数()211f x x =-.(1)证明:()f x 为偶函数;(2)用定义证明:()f x 是()1,+∞上的减函数;(3)直接写出()f x 在()1,+∞的值域.【答案】(1)证明见解析(2)证明见解析(3)()0,∞+【解析】【分析】(1)根据奇偶性的定义证明即可;(2)利用单调性定义证明即可;(3)根据单调性直接求得即可.【小问1详解】由函数()211f x x =-可知210x -¹,即1x ≠±,所以函数()f x 的定义域为{}1D x x =≠±,所以x D ∀∈,()()()221111f x f x x x -===---,故()f x 为偶函数.【小问2详解】假设()12,1,x x ∀∈+∞且12x x <,则()()()()()()()()()()()222221212121122222222212121212111111111111x x x x x x x x f x f x x x x x x x x x ----+--=-===--------,由()12,1,x x ∀∈+∞,12x x <知()()222121120,0,110x x x x x x ->+>++>,从而()()120f x f x ->,即()()12f x f x >.所以()f x 是()1,+∞上的减函数.【小问3详解】因为()f x 在()1,+∞上减函数,所以()f x 在()1,+∞的值域为()0,∞+.18.甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示2017年2018年2019年2020年2021年2022年甲 4.94 4.90 4.95 4.82 4.80 4.79乙4.864.904.864.844.744.72(1)计算乙从2017年到2022年这6年的视力平均值;(2)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;(3)甲和乙的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)【答案】(1)4.82(2)25(3)甲的视力平均值从2020开始连续三年的方差最小,乙的视力平均值从2017开始连续三年的方差最小.【解析】【分析】(1)利用平均数公式计算即可;(2)列表分析,利用古典概型概率公式计算即可(3)由表中数据分析波动性即可得结论.【小问1详解】乙从2017年到2022年这6年的视力平均值为:4.86 4.90 4.86 4.84 4.74 4.724.826+++++=.【小问2详解】列表:2017年2018年2019年2020年2021年2022年甲 4.94 4.90 4.95 4.82 4.80 4.79乙 4.864.904.864.844.744.72甲与乙视力值的差0.0800.090.02-0.060.07由表格可知:2017年到2022年这6年中随机选取2年,这两年甲的视力值都比乙高0.05上的年份由有4年,故所求概率为:2426C 62C 155P ===【小问3详解】从表格数据分析可得:甲的视力平均值从2020开始连续三年的方差最小,乙的视力平均值从2017开始连续三年的方差最小.19.某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x 万个()020x <≤,每年需投入的其它成本为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩(单位:万元),且该纪念品每年都能买光.(1)求年利润()f x (单位:万元)关于x 的函数关系式;(2)当年产量x 为何值时,该厂的年利润最大?求出此时的年利润.【答案】(1)()214520,0102256010736,1020x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-++<≤ ⎪⎪⎝⎭⎩(2)当年产量x 为16万个时,该厂的年利润最大,为416万元【解析】【分析】(1)根据利润等于销售总额减去总成本即可得出答案.(2)求出分段函数每一段的最大值,进行比较即可得出答案.【小问1详解】由题意得:()()5020f x x C x =--,()020x <≤.因为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩所以()2150205,01022560502060756,1020x x x x f x x x x x ⎧⎛⎫--+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎩,即()214520,0102256010736,1020x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-++<≤ ⎪⎪⎝⎭⎩.【小问2详解】当010x <≤时,函数()2145202f x x x =-+-在(]0,10单调递增,此时()()2max 110104510203802f x f ==-⨯+⨯-=.当1020x <≤时,函数()256010736f x x x ⎛⎫=-++ ⎪⎝⎭在()10,16上单调递增,在()16,20上单调递减,此时()()max 256016101673641638016f x f ⎛⎫==-⨯++=> ⎪⎝⎭.综上可得:当年产量x 为16万个时,该厂的年利润最大,为416万元.20.已知函数()()12log 21x f x mx =+-,m ∈R .(1)求()0f ;(2)若函数()f x 是偶函数,求m 的值;(3)当1m =-时,当函数()y f x =的图象在直线=2y -的上方时,求x 的取值范围.【答案】(1)1-(2)12m =-(3)21log 3x >【解析】【分析】(1)直接将0x =代入计算;(2)通过计算()()0f x f x --=恒成立可得m 的值;(3)解不等式()12log 212xx ++>-即可.【小问1详解】由已知得()()12log 2110f =+=-;【小问2详解】函数()f x 是偶函数,()()()()11122221log 21log 21log 212x xxx mxf x f x mx mx --⎡⎤+∴--=+--++⎢+⎣-=⎥⎦()1222210log 2x mx x mx x m =-=--=-+=,又()210x m -+=要恒成立,故210m +=,解得12m =-;【小问3详解】当1m =-时,()()12log 21x f x x =++,当函数()y f x =的图象在直线=2y -的上方时有()12log 212xx ++>-,()2211222112422l 2og 212log 21x xxxx x x --+--⎛⎫⎛⎫⇒==⨯ ⎪⎪⎝⎭⎝+>--=+<⎭21log 31321223xx⇒⨯>⇒>=解得21log 3x >.21.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明.【小问1详解】{}2,3,5A =Q ,{}6,10,15B ∴=【小问2详解】设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数等于7个,所以生成集B 中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。

安徽省淮北市第一中学20172018学年高二上学期第四次月考理科数学含

安徽省淮北市第一中学20172018学年高二上学期第四次月考理科数学含

淮北一中2017-2018学年第一学期高二年级第四次月考理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,,则()A. B. C. D.【答案】C【解析】因为全集,集合或,,,故选C.2. 已知点在双曲线的一条渐近线上,则()A. B. 3 C. 2 D.【答案】B【解析】双曲线的一条渐近线方程是,将代入,得,,即故选B.3. 下列命题错误的是()A. 命题“若,则”的逆命题为“若,则”B. 对于命题,使得,则,则C. “”是“”的充分不必要条件D. 若为假命题,则均为假命题【答案】D【解析】对于,命题“若,则”的逆否命题为“若,则”,满足逆否命题的形式,所以正确;对于,对于命题,使得,则,则,满足特称命题的否定形式,所以正确;对于,“”是“”的充分不必要条件,因为时,也成立,所以正确;对于,若为假命题,则均为假命题,显然不正确,因为一个命题是假命题,则也为假命题,所以不正确,故选D.4. 《算法统综》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有()盏灯.A. 14B. 12C. 10D. 8【答案】B【解析】设第一层有a盏灯,则由题意知第一层至第七层的灯的盏数构成一个以a1为首项,以为公比的等比数列,∴,解得a1=192,∴a5=a1×()4=192×=12,故选:B.5. 已知点是抛物线上的一个动点,则点到点的距离与点到轴的距离之和的最小值为()A. 2B.C.D.【答案】C【解析】抛物线,可得:y2=4x,抛物线的焦点坐标(1,0).依题点P到点A(0,1)的距离与点P到y轴的距离之和的最小值,就是P到(0,1)与P到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P到点A(0,1)的距离与P到该抛物线焦点坐标的距离之和减1,可得:﹣1=.故选:C.6. 已知,则下列三个数,,()A. 都大于6B. 至少有一个不大于6C. 都小于6D. 至少有一个不小于6【答案】D【解析】假设3个数,,都小于6,则故选D.点睛:本题考查反证法,考查进行简单的合情推理,属于中档题,正确运用反证法是关键.7. 动圆与圆外切,与圆内切,则动圆圆心的轨迹方程是()A. B. C. D.【答案】B........................因此动圆圆心M的轨迹是以为焦点的椭圆,所以,选B. 点睛:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:①直接法:直接根据题目提供的条件列出方程.②定义法:根据圆、直线等定义列方程.③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.8. 程序框图如图所示,当时,输出的的值为()A. 26B. 25C. 24D. 23【答案】C【解析】由已知中的程序框图可知:该程序的功能是计算S=+++…+=的值,∵A=,退出循环的条件为S≥A,当k=24时,=满足条件,故输出k=24,故选:C点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 淮北一中艺术节对射影类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是或作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“两项作品未获得一等奖”;丁说:“是作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是()A. 作品B. 作品C. 作品D. 作品【答案】B【解析】根据题意,A,B,C,D作品进行评奖,只评一项一等奖,假设参赛的作品A为一等奖,则甲、乙、丙、丁的说法都错误,不符合题意;假设参赛的作品B为一等奖,则甲、丁的说法都错误,乙、丙的说法正确,符合题意;假设参赛的作品C为一等奖,则乙的说法都错误,甲、丙、丁的说法正确,不符合题意;假设参赛的作品D为一等奖,则乙、丙、丁的说法都错误,甲的说法正确,不符合题意;故获得参赛的作品B为一等奖;故选:B.10. 设满足约束条件,若目标函数()的最大值为2,则的最小值为()A. 2B.C. 4D.【答案】A【解析】作出不等式组表示的可行域如下图所示。

一元二次不等式的解法

一元二次不等式的解法

一元二次不等式的解法解含参一元二次不等式,常涉及对参数的分类讨论以确定不等式的解,这是解含参一元二次不等式问题的一个难点. 在高考中各种题型多以选择题、填空题等出现,其试题难度属中高档题.【方法点评】类型一 根据二次项系数的符号分类解题模板:第一步 直接讨论参数大于0、小于0或者等于0;第二步 分别求出其对应的不等式的解集;第三步 得出结论.例1 已知关于x 的不等式2320ax x -+>)(R a ∈.(1)若不等式2320ax x -+>的解集为{|1}或x x x b <>,求,a b 的值.(2)求不等式ax x ax ->+-5232)(R a ∈的解集【变式演练1】解关于x 的不等式:(2)(2)0x ax -->.【变式演练2】已知p :1x 和2x 是方程220x mx --=的两个实根,不等式21253||a a x x --≥-对任意实数[]1,1m ∈-恒成立;q :不等式2210ax x +->有解,若p 为真,q 为假,求a 的取值范围.【变式演练3】关于x 的不等式2(2)20ax a x +--≥,()a R ∈(1)已知不等式的解集为(][),12,-∞-⋃+∞,求a 的值;(2)解关于x 的不等式2(2)20ax a x +--≥.类型二 根据二次不等式所对应方程的根的大小分类使用情景:一元二次不等式可因式分解类型解题模板:第一步 将所给的一元二次不等式进行因式分解;第二步 比较两根的大小关系并根据其大小进行分类讨论;第三步 得出结论.【变式演练4】解关于x 的不等式01)1(2>++-x a ax (a 为常数且0≠a ).【变式演练5】已知0a <,解关于x 的不等式2(2)20ax a x ---<.【变式演练6】已知二次函数2()23f x mx x =--,关于实数x 的不等式()0f x ≤的解集为[]1,n -.(1)当0a >时,解关于x 的不等式:21(1)2ax n m x ax ++>++;(2)是否存在实数(0,1)a ∈,使得关于x 的函数1()3x x y f a a+=-([]1,2x ∈)的最小值为5-?若存在,求实数a 的值;若不存在,说明理由.考点:二次不等式解集与二次方程根的关系,二次函数最值.类型三 根据判别式的符号分类使用情景:一般一元二次不等式类型解题模板:第一步 首先求出不等式所对应方程的判别式; 第二步 讨论判别式大于0、小于0或等于0所对应的不等式的解集;第三步 得出结论.【变式演练7】在区间错误!未找到引用源。

高一数学第一次月考试题与答案

高一数学第一次月考试题与答案

2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。

学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。

版高中数学专题10解密三角函数之给值求值问题特色专题训练新人教A版必修4

版高中数学专题10解密三角函数之给值求值问题特色专题训练新人教A版必修4

专题10 解密三角函数之给值求值问题一、单选题1.【陕西省西安中学2018届高三上学期期中】若tanθ=13,则cos2θ=()A.45-B.15-C.15D.45【答案】D【解析】∵tanθ=13,则22222211149211519cos sin tancoscos sin tanθθθθθθθ---====+++,故选D.【点睛】本题考查二倍角公式、同角三角函数的基本关系等知识,解决本题的关键是熟练掌握倍角公式,敏锐的观察角间的关系.2.【山东省邹城市第一中学2018届高三上学期期中】已知1sin cos63παα⎛⎫--=⎪⎝⎭,则cos23πα⎛⎫+=⎪⎝⎭( )A.79-B.79C.518-D.518【答案】B3.【四川省成都市第七中学2018届高三上学期一诊】已知2tan,tan.34mmπαα⎛⎫=+=⎪⎝⎭则m=()A. -6或1B. -1或6C. 6D. 1 【答案】A【解析】由题意,2tan+1tan,tan tan=,3441tanmmππααααα⎛⎫⎛⎫=+=+⎪ ⎪-⎝⎭⎝⎭,,123,613mmmm+∴=∴=--或1,故选A.4.【安徽省淮北市第一中学2017-2018学年高二上学期期中】若角α满足sin 2cos 0αα+=,则tan2α= ( )A . 43-B . 34C . 34-D . 43【答案】D【解析】由题意可得22tan 4tan 2,tan21tan 3αααα=-==-,选D .5.【湖北省咸宁市2018届高三重点高中11月联考】已知()tan 3αβ+=, tan 2α=,则ta n2β=( )A . 512-B . 512C . 724-D . 724【答案】D6.【广西玉林、贵港市2017届高三下学期质量检测】若cos 3sin 0θθ+=,则tan 4πθ⎛⎫+= ⎪⎝⎭( ) A . 12-B . 2-C . 12D . 2 【答案】C 【解析】30cos sin θθ+=3cos sin θθ∴=- sin 1tan cos 3θθθ∴==- 则11tan tan1341421tan tan 1143tan πθπθπθ-++⎛⎫+=== ⎪⎛⎫⎝⎭---⨯ ⎪⎝⎭故选C7.【天津市实验中学2018届高三上学期二模】已知2sin23a =,则2cos 4a π⎛⎫+= ⎪⎝⎭( ) A .16 B . 13 C . 12 D . 23【答案】A 【解析】223sin a =221cos 211212342226a sin a cos a ππ⎛⎫++-⎪-⎛⎫⎝⎭∴+==== ⎪⎝⎭ 故选A8.【河北省衡水第一中学2018届高三上学期分科综合考试】已知函数()()23sin cos 4cos 0f x x x x ωωωω=->的最小正周期为π,且()12f θ=,则2f πθ⎛⎫+= ⎪⎝⎭ ( )A . 52-B . 92-C . 112-D . 132- 【答案】B9.【天津市耀华中学2018届高三上学期第一次月考】已知()1sin 2αβ+=, ()1sin 3αβ-=,则2tan tan αβ⎛⎫⎪⎭等于 ( )A . 5B . 4C . 3D . 2【答案】B【解析】∵()1sin 2αβ+=, ()1sin 3αβ-=∴1sin cos cos sin 2αβαβ+=, 1sin cos cos sin 3αβαβ-= ∴5sin cos 12αβ=, 1cos sin 12αβ=∴tan 5tan αβ=∴22tan 4tan αβ⎛⎫== ⎪⎝⎭故选B10.【河北省衡水中学2016-2017学年高二下学期期末】若cos2sin 4απα=⎛⎫- ⎪⎝⎭,则sin cos αα+的值为 ( )A. B . 12- C . 12 D【答案】C11.【辽宁省鞍山市第一中学2018届高三上学期二模】已知2sin23α=,则2cos 4πα⎛⎫+= ⎪⎝⎭( ) A .16 B . 13 C . 12 D . 23【答案】A【解析】21cos 21sin212cos 4226παπαα⎛⎫++ ⎪-⎛⎫⎝⎭+=== ⎪⎝⎭,故选A 12.【河南省豫北豫南名校2018届高三上学期精英联赛】已知1cos 63x π⎛⎫-= ⎪⎝⎭,则cos cos 3x x π⎛⎫+-= ⎪⎝⎭( )A .2B C . 12 D . 3【答案】D【解析】cos cos cos cos 36666x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+-=-++--= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 2cos cos 66x ππ⎛⎫-= ⎪⎝⎭选D .13.【陕西省西安市长安区2018届高三大联考】设为锐角,若,则的值为A .B .C .D .【答案】B14.【广西桂林市第十八中学2018届高三第三次月考】已知2sin 16πα⎛⎫+=⎪⎝⎭,则2cos 23πα⎛⎫-= ⎪⎝⎭( )A .12 B . 12- C D . 【答案】B 【解析】∵1sin 62πα⎛⎫+=⎪⎝⎭,∴1cos α32π⎛⎫-= ⎪⎝⎭ ∴221cos 2cos2α2cos α13332πππα⎛⎫⎛⎫⎛⎫-=-=--=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:B15.【广西贺州市桂梧高中2018届高三上学期第四次联考】若111sin cos tan 26παα+=,则s i n 2α=( )A . 14-B . 1112-C . 14D . 1112【答案】B【解析】111sin cos tan 26παα+==,∴()21sin cos 1sin212ααα+=+=,∴11sin212α=-.选B 。

淮北一中2017--2018学年度高一年级第一学期第三次考试数学试题含答案

淮北一中2017--2018学年度高一年级第一学期第三次考试数学试题含答案

淮北一中2017--2018学年度高一年级第一学期第三次考试数学试题命题人:陈朋审核人:李芳第I 卷选择题一、选择题(共12小题,每小题5分,满分60分)1.已知集合1|222x A x ⎧⎫=<≤⎨⎬⎩⎭,1|ln 02B x x ⎧⎫⎛⎫=-≤⎨⎬ ⎪⎝⎭⎩⎭,则()R A B C ⋂=( )A. ∅B. 11,2⎛⎤- ⎥⎝⎦C. 1,12⎡⎫⎪⎢⎣⎭D. (]1,1-2.下列结论正确的是( ) A .空间中不同三点确定一个平面B .空间中两两相交的三条直线确定一个平面C .一条直线和一个点能确定一个平面D .梯形一定是平面图形3.函数()()23log x f x x =--的零点所在的区间是( ).A. B. C. D.4.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列说法正确的是( ) A .若m ∥α,α∩β=n ,则 m ∥n B .若m ∥α,m ⊥n ,则n ⊥α C .若m ⊥α,n ⊥α,则m ∥n D .若m ⊂α,n ⊂β,α⊥β,则m ⊥n 5、已知F(x)=(1+)0)(()122≠⋅-x x f x是偶函数,且f(x)不恒等于零,则f(x)( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数6.圆柱被一个平面截去一部分后与一个四棱锥组成的几何体的三视图如图所示,则该几何体的体积为( ) A .4π+8 B .8π+16 C .16π+16 D .16π+487.奇函数f (x )在(),0-∞为减函数,且f (2)=0,则不等式 (x-1)f (x-1)>0的解集为( )A .{x |-3<x <-1}B .{x |-3<x <1或x >2}C .{x |-3<x <0或x >3}D .{x |-1<x <1或1<x <3}8.如图所示,正方体1111ABCD A BC D -中,,E F 分别是正方形11ADD A 和ABCD 的中心,G 是1CC 的中点,则异面直线1,GF C E 所成角的余弦值为( )9.已知函数()()212log 2218,f x x a x a R ⎡⎤=--+∈⎣⎦,若()f x 在[),a +∞上为减函数,则实数a 的取值范围为( )A .(],2-∞B .4,23⎛⎤- ⎥⎝⎦C .(],1-∞D .4,13⎛⎤- ⎥⎝⎦10.已知A ,B 是半径为的球面上的两点,过AB 作互相垂直的两个平面α、β,若α,β截该球所得的两个截面的面积之和为16π,则线段AB 的长度是( ) A .B .2C .D .411.已知函数f (x )=|lg(−x )|,x <0x 2−6x +4,x ≥0,若关于x 的方程f 2(x )−bf (x )+1=0有8个不同根,则实数b 的取值范围是( ) A. (2,174] B. (2,174]∪(−∞,−2) C. (2,8)D. (−∞,−2)∪(2,+∞)12.已知函数()F x x e =满足:()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数,若(]0,2x ∀∈ 使得不等式()()20g x ah x -≥恒成立,则实数a 的取值范围是( )A.(-∞ B.(-∞ C.( D.()+∞第Ⅱ卷非选择题二、填空题:(本大题共4小题,每小题5分,共20分。

淮北一中2017--2018学年度高一年级第一学期第三次考试数学参考答案

淮北一中2017-2018学年高一上学期第三次月考数学参考答案1-5 BDBCA 6-10 BDADD 11-12 AB13.答案:214.答案:15. 答案:]66,66[- 16.答案:17.解:(1)由已知解得:()4,2A =-,)3[]1,(∞+⋃--∞=,B , 则],14(--=⋂,B A ).3[)2(∞+⋃-∞=⋃,,B A(2)⇒-=)31(,B C R ).21()(,-=⋂B C A R18.19.解:设银行裁员x 人,所获得的经济效益为y 万元,则64003851620203202++-=-+-=x x x x x y ).)((, 由题意:32043320⨯≥-x ,又8000≤≤∴≥x x ,且N x ∈,2+因为对称轴:8095>=x , 所以函数640038512++-=x x y 在[0,80]单调递增,所以80=x 时,8160=max y 即银行裁员80=x 人,所获得经济效益最大为8160万元,答:银行应裁员80人时,所获经济效益最大为8160万元. 20.21.解:⑴定义域为.所以对一切成立.当时,不可能对一切成立.所以,即解得.综上. ……4分⑵,()()221221log 21g ax x ax x ++=++R 2210ax x ++>x R ∈0a =210x +>x R ∈0440a a >⎧⎨∆=-<⎩01a a >⎧⎨>⎩1a >1a >21112211log 2log222t t y x x x +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+∈⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦,,令,所以 当时,.当时,. 当时,.所以 ……9分 ⑶在上是增函数,若存在非负实数、满足题意,则, 即、是方程的两非负实根,且, 所以.即存在满足题意…12分.22.解:(1)∵2()log (41)()x f x kx k =++∈R 是偶函数, ∴2()log (41)()x f x kx f x --=+-=对任意x R ∈,恒成立 即:22log (41)2log (41)x x x kx kx +--=++恒成立,∴1k =-(2)由于0a >,所以24()log (2)3x g x a a =⋅-定义域为24(log ,)3+∞, 也就是满足423x > ∵函数()f x 与()g x 的图象有且只有一个交点, ∴方程224log (41)log (2)3x x x a a +-=⋅-在24(log ,)3+∞上只有一解 即:方程414223x x x a a +=⋅-在24(log ,)3+∞上只有一解 []12log 1u x t t =∈+,()[]2222111y u u u u t t =-+=-+∈+,,1t ≥2min 22y t t =-+01t <<min 1y =0t ≤2min 1y t =+()22 1 01 012 2 1t t h t t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩2y x =[0)+∞,m n 2222m m n n ⎧=⎪⎨=⎪⎩m n 22x x =m n <02m n ==,02m n ==,。

安徽省淮北市第一中学2017-2018学年高三上学期第三次月考化学试题 扫描版含答案

2017-2018学年练习卷高三月考化学参考答案一、选择题(每题2分,共50分)1~5 CDCDB 6~10 BCACD 11~15 BDACB 16~20 BBCAC 21~25 ADBAB二、非选择题(共50分)26.(12分,每空2分)(1)还原性 2MnO 4-+5H 2C 2O 4+6H +=2Mn 2++10CO 2↑+8H 2O(2)HCO 3-+H 2C 2O 4=HC 2O 4-+CO 2↑+H 2O(3)除去混合气体中的CO 2 H 2C 2O 4△=====CO 2↑+CO ↑+H 2O(4)反应所得溶液为NaHC 2O 4溶液,由于HC 2O 4-的电离程度比水解程度大,导致溶液中 c(H +)>c(OH -),所以溶液呈酸性。

27.(12分,每空2分)(1)AlP +3H 2O =Al(OH)3+PH 3↑(2分)(2) ①共价; ②溶液pH 或HCl 浓度或电导率等。

(各1分)(3) ①一; ② 3:10 (各2分)(4) ①PH 3+2Ca(ClO)2=H 3PO 4+2CaCl 2。

(2分)②次氯酸钙与水蒸气接触,水解得到氧化性更强的次氯酸。

(2分)28.(12分,每空2分)(1) MnO 、MnCO 3和Fe 2O 3 1.5 (2) ac(3) 氯化钡溶液或KSCN 溶液等(4) MnO 2+H 2O +e -=MnO(OH)+OH -, Mn 2+-2e -+2H 2O =MnO 2+4H +29.(14分,每空2分)(1)第三周期 ⅦA 族(2)5Cl 2+I 2+6H 2O =2IO 3-+10Cl -+12H +(3)BaSO 4、Fe 2O 3(4)(NH 4)2SO 4·2FeSO 4·2H 2O 或(NH 4)2Fe 2(SO 4)3·2H 2O取少量无机盐X 于试管中加水溶解,先滴加几滴KSCN 溶液,无明显现象,再滴加少量氯水,若溶液出现血红色,则证明存在Fe 2+。

安徽省临泉县2017-2018学年高二数学12月阶段考(第三次月考)试题 理

安徽省临泉县2017-2018学年高二数学12月阶段考(第三次月考)试题 理考试范围:必修五、选修4-5、选修2-1第一章 考试时间:120分钟 总分:150分 一、选择题(本大题共12小题,每题5分,计60分,每小题只有一个正确选项) 1. 命题 “若0=a ,则0=ab ”的逆命题,否命题,逆否命题这三个命题中,真命题的个数是( )A.0B.1C.2D.32. 已知点O 是是A B C ∆的重心,内角C B A ,,所对的边长分别为c b a ,,,且3322=++c b a ,则角C 的大小是( ) A.6π B.4π C.3π D.32π 3. 设实数2121,,,b b a a 均不为零,则“2121b b a a =成立”是“关于x 的不等式011>+b x a 与022>+b x a 的解集相同”的( )条件A. 充分不必要B.必要不充分C.充要D.既不充分也不必要 4.下列说法正确的是( ) A. ⎥⎦⎤⎝⎛∈+=2,0,sin 2sin πx x x y 没有最小值 B.当230<<x 时,()222323⎪⎭⎫⎝⎛-+≤-x x x x 恒成立C.已知5.40<<x ,则当x x 292-=时,()x x 292-的值最大D.当101<<x 时,xx y lg 1lg +=的最小值为2 5.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则y x z 2+=的取值范围是( )A .[0,6]B .[0,4]C .[6,)∞+D .[4,)∞+6. 对于使()M x f ≤成立的所有常数M 中,我们把M 的最小值叫做()x f 的上确界,若+∈R b a ,且1=+b a ,则ba 221--的上确界为( ) A.29- B.29 C.41D.4-7. 若不等式42,21≤+≤≤-≤b a b a ,则b a 24-的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)8. 若b a ,是函数()()0,02>>+-=q p q px x x f 的两个不同的零点,且2,,-b a 这三个数排序后成等差数列,也可适当排序后成等比数列,则=+q p ( ) A.1 B.4 C.5 D.99. 已知4321,,,a a a a 是各项均为正数的等差数列,其公差d 大于零,若线段4321,,,l l l l 的长分别为4321,,,a a a a ,则( )A. 对任意的d ,均存在以321,,l l l 为三边的三角形B. 对任意的d ,均不存在以321,,l l l 为三边的三角形C. 对任意的d ,均存在以432,,l l l 为三边的三角形D. 对任意的d ,均不存在以432,,l l l 为三边的三角形 10. 实数b a ,满足0>ab 且b a ≠,由ab ba b a ,2,,+按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列11. 在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“LQYZ 拓展”,已知数列1,2,第一次“LQYZ 拓展”后得到1,3,2,第二次“LQYZ 拓展”后得到1,4,3,5,2,那么第10次“LQYZ 拓展”后得到的数列的所有项的和为( )(可能用到的数据17714735904931110==,) A.88572 B.88575 C.29523 D.2952612. 已知正六边形621A A A 内接于圆O ,点P 为圆O 上一点,向量与i OA 的夹角为()6,,2,1 =i i θ,若将621θθθ,,, 从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为( )A. ︒45 B. ︒60 C. ︒75 D.︒90 二、填空题(本大题共4小题,每题5分,计20分)13. 命题”1sin ,≥∈∀x R x ”的否定为 . 14. 不等式()()05243≥---x x x 的解集为 .15. 在ABC ∆中,内角C B A ,,的对应边分别为c b a ,,,已知2,cos sin =+=b C b B c a ,则ABC ∆面积的最大值等于 .16. 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则b a +的最大值为 .三、解答题(本大题共6小题,17题10分,其余每题12分,计70分,每题请写出必要的解题步骤)17. 已知函数()2312-++=x x x f .(1)求不等式()5≥x f 的解集;(2)若关于x 的不等式()1-<m x f 的解集非空,求实数m 的取值范围.18. 已知命题:p 方程012=++mx x 有两个不等的负实根,命题:q 方程01)2(442=+-+x m x 无实根,若命题q p ∧为假,p q ∨为真,求实数m 的取值范围.19. 已知命题:“[]1,1-∈∃x ,使等式x x m -=2成立”是真命题.(1)求实数m 的取值集合M ;(2)设不等式[]0)2()(<---a x a x 的解集为N ,若M N ⊆,求a 的取值范围.20. (1)已知1,1<<b a ,求证:11<--abba .(2)不等式11<--λλab ba 对满足1,1<<b a 的一切实数b a ,恒成立,求实数λ的取值范围.21. 已知函数21()2cos ()2f x x x x R =--∈. (1)当5[,]1212x ππ∈-时,求函数()f x 的值域;(2)设ABC ∆的内角,,A B C 的对应边分别为,,a b c ,且)0c ==,若向量(1,sin )m A =.与向量(2,sin )n B =共线,求,a b 的值.22. 正项数列{}n a 满足221132n n n n a a a a +++=+,11a =.(1)求2a 的值;(2)证明:对任意的n N *∈,12n n a a +<;(3)记数列{}n a 的前n 项和为n S ,证明:对任意的n N *∈,11232n n S --≤<.1sin,<∈∃x R x临泉一中高二年级第一学期阶段考试试题数学(理科)答案一、选择题1-6 BCBBDA 7-12ADCBBC 二、填空题14.[)+∞⎥⎦⎤⎝⎛,43,25 15.221+16. 413.三、解答题17.(1)⎭⎬⎫⎩⎨⎧≥-≤5654x x x 或 …………(5分) (2)31034>-<m m 或…………(10分)18.解:命题p 为真,则240202m m m ⎧->⎪⇒>⎨-<⎪⎩…………(3分)命题q 成立:13m <<,………(6分)p 真q 假:2313m m m m >⎧⇒≥⎨≤≥⎩或………(8分) p 假q 真:21213m m m ≤⎧⇒<≤⎨<<⎩………(10分) 312m m ∴≥<≤或……………(12分)19.解:(1) 由题意知,方程02=--m x x 在[]1,1-上有解,即m 的取值范围为函数y =x 2-x 在[]1,1-上的值域,易得M =⎥⎦⎤⎢⎣⎡-2,41 ………(6分) (2) 当a =1时,解集N 为空集,满足题意;………(7分)当a >1时,a >2-a ,此时集合N ={x |2-a <x <a },则21≤<a ………(9分) 当a <1时,a <2-a ,此时集合N ={x|a <x <2-a },则10<≤a ………(11分) 综上:20≤≤a ………(12分)20.解析:(1)证略…………(6分)11≤≤-λ…………(12分) 21.解:(Ⅰ) 1cos 21()222x f x x +=--12cos 212x x =-- sin(2)16x π=--……………(3分)∵51212x ππ-≤≤,∴22363x πππ-≤-≤,∴sin(2)126x π-≤-≤,从而01)62sin(231≤--≤--πx 。

安徽省淮北市第一中学2017-2018学年高一上学期期中考试数学试题含答案

2017学年第一学期高一期中考试数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1。

设全集4}321{0,,,,=U ,集合3}2{1,,=A ,4}3{2,,=B ,则=)(B C A U ( ) A . }0{ B . }1{ C .}1,0{ D .}4,3,2,1,0{ 2.下列函数中,是同一函数的是( )A .x y =与2x y = B .2x y =与||x x y =C .1)3)(1(-+-=x x x y 与3+=x y D .12+=x y 与12+=t y3.设⎪⎩⎪⎨⎧≥-<=-2),1(log 2,2)(231x x x x f x ,则))2((f f 的值为( )A . 0B . 1C . 2D . 34。

函数12)(3-+=x x x f 一定存在零点的区间是( ) A . )21,41( B .)41,0( C. )1,21( D .)2,1( 5.令7.06=a ,67.0=b ,6log 7.0=c ,则三个数c b a ,,的大小顺序是( )A . a c b <<B . c a b << C. a b c << D .b a c <<6。

函数a a y x 1-=(0>a ,1≠a )的部分图像可能是( )A .B .C. D .7。

已知函数)1(+=x f y 定义域是]3,2[-,则)12(-=x f y 的定义域是( )A .]25,0[ B .]4,1[- C 。

]5,5[- D .]7,3[- 8.设函数24)(x x x f +=,则使得)12()(->x f x f 成立的x 的取值范围是( )A .),31()31,(+∞--∞B .),1()31,(+∞-∞ C. )31,31(- D .)1,31(9.已知函数⎩⎨⎧≥<+-=1,log 1,4)12()(x x x a x a x f a 满足对任意的实数21x x ≠都有0)()(2121<--x x x f x f 成立,则实数a 的取值范围为( )A . )1,0(B .)21,0( C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮北一中2017-2018学年度高一年级第一学期第三次考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】选B.2. 下列结论正确的是()A. 空间中不同三点确定一个平面B. 空间中两两相交的三条直线确定一个平面C. 一条直线和一个点能确定一个平面D. 梯形一定是平面图形【答案】D..................3. 函数的零点所在的区间是()A. B. C. D.【答案】B【解析】为单调递增函数,且,所以零点所在的区间是,选B.4. 设,是两条不同的直线,,是两个不同的平面,下列说法正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,,则【答案】C【解析】若,,当过时;若,,则可以与平行、相交或在面内;若,,则;若,,,则可以平行、相交或异面,所以选C.5. 已知()是偶函数,且不恒等于零,则()A. 是奇函数B. 可能是奇函数,也可能是奇函数C. 是偶函数D. 不是奇函数,也不是偶函数【答案】A【解析】因为为偶函数,所以,即(所以因为,所以即又不恒等于零,所以为奇函数,故选A.【点评】本题考查抽象函数奇偶性的判断,解题时利用定义是解决有关问题的强有力工具,必须熟练准确掌握.6. 圆柱被一个平面截去一部分与一个四棱锥组成的几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】几何体如图,则体积为,选B.7. 奇函数在为减函数,且,则不等式的解集为()A. B.C. D.【答案】D【解析】选D.8. 如图所示,正方体中,,分别是正方形和的中心,是的中点,则异面直线,所成的余弦值为()A. B. C. D.【答案】A【解析】因为 ,所以异面直线,所成的角为所以,选A.9. 已知函数,,若在上为减函数,则实数的取值范围为()A. B. C. D.【答案】D【解析】由题意得,选D.点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.10. 已知,是半径为的球面上的两点,过作互相垂直的两个平面、,若,截该球所得的两个截面的面积之和为,则线段的长度是()A. B. C. D.【答案】D【解析】设球心为,两个截面圆的圆心分别为,线段的中点为,则四边形为矩形.设圆的半径分别为,,则.由可得,,则.选D.11. 已知函数,若关于的方程有个不同根,则实数的取值范围是()A. B. C. D.【答案】A【解析】作函数图知,时有四个不同的根,因此方程在有两个不同的根,即,选A.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 已知函数满足:,且,分别是上的偶函数和奇函数,若使得不等式恒成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】令,则(当且仅当时取等号),所以选B.点睛:研究不等式恒成立或存在型问题,首先要构造函数,通过研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.第Ⅱ卷非选择题二、填空题:(本大题共4小题,每小题5分,共20分,将答案填在答题纸上)13. 已知幂函数()的图象与轴、轴无交点且关于原点对称,则__________.【答案】【解析】由题意得当时不关于原点对称,所以14. 一个水平放置的平面图形的斜二直观图是一个底为,腰和上底均为的等腰梯形,则原平面图形的面积为__________.【答案】【解析】试题分析:原图形是上底为,下底为,高为的直角梯形.∴.考点:斜二测法.15. 已知函数是定义在上的奇函数,当时,,若,,则实数的取值范围为__________.【答案】【解析】当时,所以根据奇函数作函数图,由图得16. 已知函数,函数有四个不同的零点,,,且满足,则的取值范围为__________.【答案】【解析】作函数图,由图得,所以点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设集合为函数的定义域,集合为函数的值域.求:(1)与;(2)【答案】(1),.(2)【解析】试题分析:(1)根据真数大于零得函数定义域,求得A;再根据基本不等式求函数值域得B,最后根据数轴求集合交与并(2)先求B的补集,再利用数轴求交集试题解析:解:(1)由已知解得:,,则,.(2)18. 如图,四棱锥的底面是矩形,平面,,分别是,的中点,且.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.【答案】(1)见解析 (2) 见解析【解析】试题分析:(1)取的中点,利用平几知识得是平行四边形,再根据,利用线面平行判定定理证明结论(2)先根据等腰三角形性质得,再根据线面垂直得,由线面垂直判定定理得面,最后根据线线平行得面,由面面垂直判定定理得结论试题解析:证明:(Ⅰ)取的中点,连结、∴为的中位线,,.∵四边形为矩形,为的中点,∴,.∴,,∴四边形是平行四边形,∴又平面,平面,∴平面;(Ⅱ)∵,∴平面,∴,又因为,,∴面由(Ⅰ)得,∴面又平面,∴平面平面.19. 信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员人,平均每人每年可创利万元.据评估,在经营条件不变的前提下,每裁员人,则留岗职员每人每年多创利万元,但银行需付下岗职员每人每年万元的生活费,并且该银行正常运转所需人数不得少于现有职员的,为使裁员后获得的经济效益最大,该银行裁员多少人?此时银行所获得的最大经济效益是多少万元?【答案】银行应裁员人时,所获经济效益最大为万元.试题解析:设银行裁员人,所获得的经济效益为万元,则,由题意:,又且,因为对称轴:,所以函数在[0,80]单调递增,所以时,即银行裁员人,所获得经济效益最大为8160万元,答:银行应裁员80人时,所获经济效益最大为8160万元.20. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑(biē nào).在如图所示的阳马中,侧棱底面,且,点是的中点,连接,,.(1)证明:平面.(2)试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(3)记阳马的体积为,四面体的体积为,求的值.【答案】(1)见解析 (2) 四面体是一个鳖臑,其四个面的直角分别是,,,.(3)4【解析】试题分析:(1)欲证平面,需在平面内找到两条相交的直线都与垂直,即证,即可;(2)根据锥体的体积公式表示出,,再利用之间的长度关系即可求得.试题解析:(1)因为底面,所以,由底面为长方形,有,而,所以平面平面,所以,又因为,点是的中点,所以,而,所以平面.由平面,平面可知四面体的四个面都是直角三角形,即四面体是一个鳖臑,其四个面的直角分别是.(2)由已知,是阳马的高,所以;由(1)知:是鳖臑的高,,所以在中,因为,点是的中点,所以,于是考点:1、线面垂直的判定;2、柱锥台体的体积公式.【方法点睛】要判断一条直线与一个平面是否垂直,取决于在这个平面内能否找到两条相交直线和已知直线垂直;因此证明线面垂直的问题,应转化为先证明线线垂直,证明线线垂直的常用方法有:①勾股定理的逆定理(已知长度),②等腰三角形的三线合一,③利用线面垂直的性质,④正方体(长方体)中的线线垂直、线面垂直.本题主要考查的是线面垂直的判定和性质,考查锥体体积的计算,考查学生分析解决问题的能力,属于中档题.21. 已知函数,函数(1)若的定义域为,求实数的取值范围;(2)当时,求函数的最小值;(3)是否存在非负实数、,使得函数的定义域为,值域为,若存在,求出、的值;若不存在,则说明理由.【答案】(1) (2) (3)存在,满足题意【解析】试题分析:对问题⑴,根据题目条件首先要对实数的取值进行分类讨论,再结合极端不等式恒成立即可求出函数的定义域为时实数的取值范围;对于问题⑵,根据二次函数的单调性并结合对参数的分类讨论,即可求得函数的最小值;对问题⑶,根据二次函数的单调性以及函数与方程的思想即可知道存在符合题意的实数、的值.试题解析:⑴定义域为.所以对一切成立.……………………1分当时,不可能对一切成立.……………………2分所以,即解得.综上.……………………4分⑵,令,所以……………………5分当时,.……………………6分当时,.……………………7分当时,.……………………8分所以……………………9分⑶在上是增函数,若存在非负实数、满足题意,则,………………………………10分即、是方程的两非负实根,且,所以.即存在满足题意………………………………12分.考点:1、函数的定义域、值域;2、函数的单调性;3分段函数;4、函数与方程及分类讨论的思想.【方法点晴】本题是一个关于函数的定义域、值域、函数的单调性、分段函数、函数与方程及分类讨论的思想方法方面的综合性问题,属于难题.解决本题的基本思路及切入点是,对问题⑴,根据题目条件首先要对实数的取值进行分类讨论,再结合极端不等式恒成立即可求出函数的定义域为时实数的取值范围;对于问题⑵,根据二次函数的单调性并结合对参数的分类讨论,即可求得函数的最小值;对问题⑶,根据二次函数的单调性以及函数与方程的思想即可知道存在符合题意的实数、的值.22. 已知函数,()是偶函数.(1)求的值;(2)设函数,其中.若函数与的图象有且只有一个交点,求的取值范围.【答案】(1) (2)【解析】试题分析:(1)由偶函数得,根据对数运算法则化简得的值;(2)化简方程得关于一元二次方程,先讨论时,是否满足条件,再根据实根分布讨论的取值范围.本题也可利用参变分离法,转化为讨论函数交点个数.试题解析:解:(1)∵()是偶函数,∴对任意,恒成立即:恒成立,∴(2)由于,所以定义域为,也就是满足∵函数与的图象有且只有一个交点,∴方程在上只有一解即:方程在上只有一解令,则,因而等价于关于的方程(*)在上只有一解当时,解得,不合题意;当时,记,其图象的对称轴∴函数在上递减,而∴方程(*)在无解当时,记,其图象的对称轴所以,只需,即,此恒成立∴此时的范围为综上所述,所求的取值范围为点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.。

相关文档
最新文档