目标跟踪算法地分类

合集下载

目标定位跟踪算法及仿真程序

目标定位跟踪算法及仿真程序

目标定位跟踪算法及仿真程序目标定位和跟踪是机器视觉和计算机图形学中一个重要的研究领域,旨在实现对视频图像中的目标进行准确的定位和持续的跟踪。

随着计算机视觉和深度学习的发展,目标定位和跟踪的算法也在不断进步和创新。

本文将介绍目标定位和跟踪算法的基本原理,并给出一个基于Python的仿真程序实例。

目标定位算法的基本原理是通过图像处理和特征提取来找到目标在图像中的位置。

常用的算法包括边缘检测算法、颜色分割算法、模板匹配算法等。

边缘检测算法通过检测图像中的边缘来定位目标,常用的算法有Sobel算子、Canny算子等。

颜色分割算法通过检测目标的颜色来定位目标,常用的算法有HSV颜色空间分割算法等。

模板匹配算法通过比对目标特征与图像的相似度来定位目标,常用的算法有模板匹配算法、相关滤波器算法等。

目标跟踪算法的基本原理是通过目标的运动信息和外观特征来实时追踪目标。

常用的算法包括卡尔曼滤波算法、粒子滤波算法、深度学习算法等。

卡尔曼滤波算法是一种常用的线性状态估计算法,通过迭代的方式对目标的位置和速度进行估计。

粒子滤波算法是一种基于贝叶斯滤波的非线性状态估计算法,通过一组粒子对目标的位置进行采样和估计。

深度学习算法利用卷积神经网络等深度学习模型对目标进行特征提取和跟踪。

下面以一个基于Python的仿真程序为例进行说明。

程序首先读取一个视频文件,并使用OpenCV库进行视频的读取和显示。

然后选择目标定位和跟踪的算法,并利用算法对视频帧进行处理,获取目标的位置信息。

最后,通过绘制矩形框来标记目标的位置,并将处理后的视频帧显示出来。

```pythonimport cv2#读取视频文件video = cv2.VideoCapture("video.mp4")#创建窗口dWindow("Object Tracking", cv2.WINDOW_NORMAL)#选择目标定位和跟踪算法#...while True:#读取视频帧ret, frame = video.readif not ret:break#目标定位和跟踪算法处理#...#绘制矩形框标记目标位置cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) #显示处理后的视频帧cv2.imshow("Object Tracking", frame)#按下ESC键退出程序if cv2.waitKey(1) == 27:break#释放资源video.releasecv2.destroyAllWindows```以上为一个简单的目标定位和跟踪的仿真程序示例,具体的算法实现需要根据具体场景和需求进行选择和开发。

自动驾驶车辆的目标检测与跟踪算法

自动驾驶车辆的目标检测与跟踪算法

自动驾驶车辆的目标检测与跟踪算法1. 引言随着人工智能和计算机视觉技术的不断发展,自动驾驶成为了汽车行业的一个热门领域。

自动驾驶车辆需要具备实时地感知和识别周围道路环境中的各种物体,其中最基本的就是目标检测与跟踪算法。

本文将介绍自动驾驶车辆中常用的目标检测与跟踪算法,并分析其优缺点。

2. 目标检测算法目标检测算法是自动驾驶车辆中的核心技术之一,其主要功能是识别道路上的各种目标物体,如车辆、行人、信号灯等。

目前,常用的目标检测算法主要有以下几种:2.1 卷积神经网络(CNN)卷积神经网络是目标检测中最为常用的算法之一。

它通过多层卷积和池化操作提取图像的特征,并通过全连接层进行分类。

CNN的优点是能够自动学习和提取图像特征,因此具有较高的准确率。

然而,CNN的计算量较大,在实时性方面存在一定的挑战。

2.2 支持向量机(SVM)支持向量机是一种二分类模型,其主要思想是通过找到一个最优超平面将不同类别的数据分离开。

在目标检测中,可以将SVM应用于特征提取和分类。

SVM的优点是在小样本情况下仍具有较好的表现,并且对于异常点的鲁棒性较强。

但SVM算法相对复杂,需要大量的计算资源。

2.3 区域卷积神经网络(R-CNN)R-CNN是一种基于区域的目标检测算法,其主要思想是先生成一系列候选框,然后对每个候选框应用CNN进行特征提取和分类。

R-CNN算法的优点是能够对目标进行定位,并且检测准确率较高。

但R-CNN算法的缺点是速度较慢,不适用于实时应用。

3. 目标跟踪算法目标跟踪算法是自动驾驶车辆中的另一个重要技术,其主要功能是在连续的图像序列中追踪目标物体的位置和运动。

以下是目标跟踪中常用的算法:3.1 卡尔曼滤波(Kalman Filter)卡尔曼滤波是一种用于状态估计和滤波的算法,其基本思想是通过融合预测和观测结果来估计目标的状态。

在目标跟踪中,可以将目标的位置和速度作为状态量进行估计。

卡尔曼滤波算法的优点是计算简单,适用于实时应用。

目标跟踪方法综述

目标跟踪方法综述

目标跟踪方法综述目标跟踪是计算机视觉领域一项重要的任务,它能够检测与跟踪目标,研究者们积极地探索并利用计算机视觉技术来解决该问题。

近年来,随着深度学习取得的成功,使得目标跟踪技术有了新的突破,并受到众多研究者的关注。

首先,根据背景抑制算法和模板匹配算法的思想,目标跟踪技术发展出基于跟踪器的传统视觉跟踪技术,其中包括基于随机样本极点算法、距离变换特征跟踪算法和基于加权和表示的跟踪算法,如Sparse Representation-based Tracking (SRT)等,并将它们用于实时的目标跟踪,大大提高了跟踪的准确度。

其次,基于深度学习的目标跟踪技术不仅提高了跟踪的准确性,同时也使得更多任务的实时性得到改善,从而取得良好的实验结果。

目前,已经有大量研究人员借助深度学习思想探索目标跟踪技术,其中有一些使用深度卷积神经网络(DCNN)、多种有效的目标匹配策略、透视反置变换等,以优化底层跟踪器,有效地提升了跟踪的性能。

另一方面,研究者也采用了空间序列学习技术来解决追踪结果的鲁棒性问题,并使用辨认技术来跟踪目标,以获得最佳的跟踪和识别结果。

最后,在无监督的情况下,研究者们也开发了一些目标跟踪技术。

他们利用Bellman,Kalman和Particle滤波技术等先进的数学方法来深入分析图像序列,有效地提升了目标跟踪的性能。

总之,采用传统技术和深度学习技术不仅提高了目标跟踪的准确度,同时也实现了实时的目标跟踪,为计算机视觉的发展提供了重要的技术支持。

至今,计算机视觉技术仍受到众多研究人员的关注,希望未来能改进系统的准确性以及运行的鲁棒性,使其能在实际的应用中发挥最佳的效果。

TLD目标跟踪算法

TLD目标跟踪算法

TLD目标跟踪算法一、算法的背景TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek出的一种新的单目标长时间(long term tracking)跟踪算法。

该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。

同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。

对于长时间跟踪而言,一个关键的问题是:当目标重新出现在相机视野中时,系统应该能重新检测到它,并开始重新跟踪。

但是,长时间跟踪过程中,被跟踪目标将不可避免的发生形状变化、光照条件变化、尺度变化、遮挡等情况。

传统的跟踪算法,前端需要跟检测模块相互配合,当检测到被跟踪目标之后,就开始进入跟踪模块,而此后,检测模块就不会介入到跟踪过程中。

但这种方法有一个致命的缺陷:即,当被跟踪目标存在形状变化或遮挡时,跟踪就很容易失败;因此,对于长时间跟踪,或者被跟踪目标存在形状变化情况下的跟踪,很多人采用检测的方法来代替跟踪。

该方法虽然在某些情况下可以改进跟踪效果,但它需要一个离线的学习过程。

即:在检测之前,需要挑选大量的被跟踪目标的样本来进行学习和训练。

这也就意味着,训练样本要涵盖被跟踪目标可能发生的各种形变和各种尺度、姿态变化和光照变化的情况。

换言之,利用检测的方法来达到长时间跟踪的目的,对于训练样本的选择至关重要,否则,跟踪的鲁棒性就难以保证。

考虑到单纯的跟踪或者单纯的检测算法都无法在长时间跟踪过程中达到理想的效果,所以,TLD方法就考虑将两者予以结合,并加入一种改进的在线学习机制,从而使得整体的目标跟踪更加稳定、有效。

简单来说,TLD算法由三部分组成:跟踪模块、检测模块、学习模块;如下图所示其运行机制为:检测模块和跟踪模块互补干涉的并行进行处理。

无人机图像处理中的目标识别与跟踪算法研究

无人机图像处理中的目标识别与跟踪算法研究

无人机图像处理中的目标识别与跟踪算法研究目录1. 引言2. 目标识别算法2.1 特征提取2.2 目标检测2.3 目标分类3. 目标跟踪算法3.1 单目标跟踪3.2 多目标跟踪4. 研究进展与挑战4.1 深度学习在目标识别与跟踪中的应用4.2 数据集和评估指标4.3 实时性与鲁棒性的平衡5. 结论1. 引言随着无人机技术的不断发展,无人机图像处理在军事、民用等领域中得到广泛应用。

目标识别与跟踪算法是实现无人机智能的重要技术之一,其能够帮助无人机准确定位、追踪和识别目标,提高无人机的自主决策能力。

本文将重点研究无人机图像处理中的目标识别与跟踪算法。

2. 目标识别算法目标识别算法的任务是从无人机采集的图像数据中提取目标特征,并将其识别为事先确定的目标类别。

它通常包括特征提取、目标检测和目标分类三个步骤。

2.1 特征提取特征提取是指从复杂的图像数据中提取出能够表征目标属性的特征。

常用的特征包括颜色、纹理、形状等。

在无人机图像处理中,由于航空环境的复杂性,特征提取既需要考虑目标自身的特点,又需要考虑光照、阴影等因素对图像的影响。

2.2 目标检测目标检测是指从图像中确定目标的位置和边界框。

常用的目标检测算法包括基于传统图像处理方法的边缘检测、模板匹配等,以及基于深度学习的卷积神经网络(CNN)等。

2.3 目标分类目标分类是指将检测到的目标识别为特定的类别。

常用的目标分类算法包括支持向量机(SVM)、决策树等。

近年来,深度学习在目标分类中取得了显著的进展,例如使用卷积神经网络进行图像分类。

3. 目标跟踪算法目标跟踪算法的任务是在视频序列中跟踪目标的位置和运动。

根据跟踪的目标数量可以分为单目标跟踪和多目标跟踪。

3.1 单目标跟踪单目标跟踪算法是指在视频序列中只跟踪一个目标。

常用的单目标跟踪算法包括基于模板匹配的相关滤波器、基于特征的光流跟踪等。

这些算法主要通过建立目标模型,根据目标与背景的差异进行跟踪。

3.2 多目标跟踪多目标跟踪算法是指在视频序列中同时跟踪多个目标。

运动目标跟踪

运动目标跟踪

运动目标跟踪运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。

它在实际应用中具有广泛的用途,例如视频监控、交通监控、自动驾驶等。

运动目标跟踪的目标是识别和跟踪视频中的感兴趣目标,并在目标移动、形状变化、遮挡等复杂场景下保持准确的跟踪。

跟踪的过程一般包括目标检测、目标定位和目标跟踪三个步骤。

首先,目标检测是从视频中检测出所有可能的目标区域。

常用的目标检测算法包括基于深度学习的目标检测算法,如Faster R-CNN、YOLO等。

这些算法可以快速准确地检测出目标区域,并生成候选框。

然后,目标定位是确定目标在当前帧中的准确位置。

目标定位一般采用基于特征的方法,通过计算目标候选框与目标模板之间的相似度来确定目标的位置。

常用的目标定位算法包括颜色直方图、HOG特征等。

这些算法可以通过算法模型进行目标定位,并快速准确地输出目标的位置。

最后,目标跟踪是在视频序列中持续追踪目标,并在目标发生变化或遮挡时进行目标重新定位和跟踪。

常用的目标跟踪算法包括基于粒子滤波器的跟踪算法、卡尔曼滤波器跟踪算法等。

这些算法可以利用目标模型和观测模型进行目标跟踪,并实时更新目标的位置和状态。

运动目标跟踪的关键技术包括目标检测和定位、目标跟踪和状态估计、特征提取和匹配等。

当前,随着深度学习技术的发展,基于深度学习的运动目标跟踪方法已经取得了很大的突破。

这些方法可以通过大规模的数据训练模型,实现更加准确和鲁棒的目标跟踪效果。

总之,运动目标跟踪是一种利用计算机视觉技术来自动识别和追踪视频中的运动目标的方法。

它在实际应用中具有广泛的用途,并且随着深度学习技术的发展,其性能和效果正在不断提高。

将来,运动目标跟踪技术有望在各个领域得到更广泛的应用。

《运动目标检测和跟踪算法的研究及实现》

《运动目标检测和跟踪算法的研究及实现》

《运动目标检测和跟踪算法的研究及实现》一、引言运动目标检测和跟踪是计算机视觉领域中的一项重要技术,广泛应用于智能监控、自动驾驶、人机交互等众多领域。

本文旨在研究并实现一种高效、准确的运动目标检测和跟踪算法,为相关领域的研究和应用提供参考。

二、运动目标检测算法研究1. 背景及意义运动目标检测是计算机视觉中的一项基础任务,其目的是从视频序列中提取出感兴趣的运动目标。

传统的运动目标检测方法主要包括帧间差分法、背景减除法等,但这些方法在复杂场景下往往存在误检、漏检等问题。

因此,研究一种适用于复杂场景的、高效的、准确的运动目标检测算法具有重要意义。

2. 算法原理及实现本文采用基于深度学习的运动目标检测算法。

该算法利用卷积神经网络(CNN)提取视频帧中的特征,并通过区域生成网络(RPN)生成候选目标区域。

接着,利用分类网络对候选区域进行分类,确定是否为运动目标。

最后,通过边界框回归和NMS (非极大值抑制)等技术对检测结果进行优化。

在实现过程中,我们采用了PyTorch等深度学习框架,利用GPU加速计算,提高了算法的运算速度。

同时,我们还针对不同场景的实际情况,对算法进行了优化和改进,提高了算法的准确性和鲁棒性。

三、运动目标跟踪算法研究1. 背景及意义运动目标跟踪是在检测出运动目标的基础上,进一步对目标进行跟踪和定位。

传统的运动目标跟踪方法主要包括基于特征的方法、基于模型的方法等,但这些方法在复杂场景下往往存在跟踪不准确、易丢失等问题。

因此,研究一种适用于复杂场景的、稳定的、准确的运动目标跟踪算法具有重要意义。

2. 算法原理及实现本文采用基于深度学习的Siamese网络进行运动目标跟踪。

Siamese网络通过学习目标模板和搜索区域的特征表示,实现目标的快速定位和跟踪。

在实现过程中,我们采用了离线训练和在线更新的方式,提高了算法的准确性和适应性。

同时,我们还结合了光流法等技术,进一步提高了算法的稳定性和准确性。

meanshift-目标跟踪算法1ppt课件

meanshift-目标跟踪算法1ppt课件

其中g (x )= -k '(x)
精选PPT课件
15
❖ 整个算法流程
①在当前帧以y0为起点,计算候选目标的特征
{p (y )} u
; 0 u=1,2…..m
②计算候选目标与目标的相似度:
③计算权值{w }i i=1,2…..m
④利用Mean-Shift算法,计算目标新位置
精选PPT课件
16
⑤更新{pu(y1)}u=1,2…..m,计算
8
❖ 选择核估计的原因 1.客服了直方图估计对高维数据的失效
性。 2.能够比较好的抑制噪声的影响 3.增强数据的有效性
精选PPT课件
9
❖ 均值漂移具体步骤
1.目标模型的计算
定义函数b(xi*)是像素xi*在量化的特征 空间的索引号。则特征u=1,…,m在目标模 式中出现的概率可表示为:
其中k(·)为核函数,即加权函数,δ(·)为 Kronecker函数,定义为:
精选PPT课件
22
2.目标计算 ⑴直方图的计算 对目标区域内做H分量的直方图计算。 (2)计算直方图的反向投影 (3)利用此反向投影计算整幅图,得到整
幅图的反向投影。 (4)以y0作为初始中心计算当前帧中窗口
的重心坐标。 (5)如果||y0-y1||<k,则停止,否则y0=y1转(4)
精选PPT课件
精选PPT课件
26
❖ Camshift计算窗宽 1.当前帧中用的窗比上次计算出来的窗
长和宽大20个像素。 2.在此窗中计算外界椭圆的各个参数 3.重新计算重心坐标 4.标记目标
精选PPT课件
27
外接椭圆各个参数的计算
长轴与x轴夹角
l为长轴 w为短轴
精选PPT课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实用标准文案 精彩文档 运动目标跟踪就是在一段序列图像中的每幅图像中实时地找到所感兴趣的运动目标 (包括位置、速度及加速度等运动参数)。在运动目标跟踪问题的研究上,总体来说有两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一、运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。 静态背景下运动检测就是摄像机在整个监视过程中不发生移动,只有被监视目标在摄像机视场内运动,这个过程只有目标相对于摄像机的运动;动态背景下运动检测就是摄像机在整个监视过程中发生了移动 (如平动、旋转或多自由度运动),被监视目标在摄像机视场内也发生了运动,这个过程就产生了目标与摄像机之间复杂的相对运动。 1、静态背景 背景差分法 背景差分法是利用当前图像与背景图像的差分来检测运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如天气、光照、背景扰动及背景物移入移出等特别敏感,运动目标的阴影也会影响检测结果的准确实用标准文案 精彩文档 性及跟踪的精确性。其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。 帧间差分法 相邻帧间差分法是通过相邻两帧图像的差值计算,获得运动物体位置和形状等信息的运动目标检测方法。其对环境的适应性较强,特别是对于光照的变化适应性强,但由于运动目标上像素的纹理、灰度等信息比较相近,不能检测出完整的目标,只能得到运动目标的部分信息且对运动缓慢的物体不敏感,存在一定的局限性。贺贵明等人在相邻帧间差分法的基础上提出了对称差分法,通过对图像序列中每连续三帧图像进行对称差分,检测出目标的运动范围,同时利用上一帧分割出来的模板对检测出来的目标运动范围进行修正,能较好地检测出中间帧运动目标的形状轮廓。 光流法 在空间中,运动可以用运动场描述,而在一个图像平面上,物体的运动往往是通过图像序列中图像灰度分布的不同来体现,从而使空间中的运动场转移到图像上就表示为光流场。光流场反映了图像上每一点灰度的变化趋势,可看成是带有灰度的像素点在图像平面上运动而产生的瞬时速度场,也是一种对真实运动场的近似估计。在比较理想的情况下,它能够检测独立运动的对象,不需要预先知道场景的任何信息,可以很精确地计算出运动物体的速度,并且可用于动态场景的情况。但是大多数光流方法的计算相当复杂,对硬件要求比较高,不适于实时处理,而且对噪声比较敏感,抗噪性差。 2、动态背景 实用标准文案 精彩文档 由于存在着目标与摄像机之间复杂的相对运动,动态背景下运动目标检测要比静态背景下的运动目标检测复杂得多。通常情况下,摄像机的运动形式可以分为两种:a)摄像机的支架固定,但摄像机可以偏转、俯仰以及缩放; b)将摄像机装在某个移动的载体上。由于以上两种情况下的背景及前景图像都在做全局运动,要准确检测运动目标的首要任务是进行图像的全局运动估计与补偿。 考虑到图像帧上各点的全局运动矢量虽不尽相同 (摄像机做平移运动除外 ),但它们均是在同一摄像机模型下的运动,因而应遵循相同的运动模型,可以用同一模型参数来表示。 全局运动的估计问题就被归结为全局运动模型参数的估计问题,通常使用块匹配法或光流估计法来进行运动参数的估计。 基于块的运动估算和补偿可算是最通用的算法。可以将图像分割成不同的图像块,假定同一图像小块上的运动矢量是相同的,通过像素域搜索得到最佳的运动矢量估算。块匹配法主要有如下三个关键技术: a)匹配法则,如最大相关、最小误差等。 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流估计法是对帧图像建立了光流场模型后,用光流场方程求解图像像素点运动速度的方法。 二、运动目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括实用标准文案 精彩文档 视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特征 (傅里叶描绘子、自回归模型)、代数特征 (图像矩阵的奇异值分解)等。除了使用单一特征外,也可通过融合多个特征来提高跟踪的可靠性。 相似性度量算法 对运动目标进行特性提取之后,需要采用一定的相似性度量算法与帧图像进行匹配,从而实现目标跟踪。图像处理与分析理论中,常见的相似性度量方法有欧氏距离、街区距离、棋盘距离、加权距离、巴特查理亚系数、Hausdorff距离等,其中应用最多和最简单的是欧氏距离。 搜索算法 目标跟踪过程中,直接对场景中的所有内容进行匹配计算,寻找最佳匹配位置,需要处理大量的冗余信息,这样运算量比较大,而且没有必要。采用一定的搜索算法对未来时刻目标的位置状态进行估计假设,缩小目标搜索范围便具有了非常重要的意义。其中一类比较常用的方法是预测运动体下一帧可能出现的位置,在其相关区域内寻找最优点。常见的预测算法有Kalman滤波、扩展的Kalman滤波及粒子滤波方法等。 Kalman滤波器是一个对动态系统的状态序列进行线性最小方差估计的算法。它通过状态方程和观测方程来描述一个动态系统,基于系统以前的状态序列对下一个状态作最优估计,预测时具有无偏、稳定和最优的特点,且具有计算量小、可实时计算的特点,可以准确地预测目标的位置和速度,但其只适合于线性且呈高斯分布的系统。相对于卡尔曼滤波算法,粒子滤波器特别适用于非线性、非高斯系统。粒子滤波算法是一种基于蒙特卡洛和贝叶斯估计理论的最优算法,它以递归的方式对测量数据进行序贯处理,因而无须对以前的测量数据进行存储实用标准文案 精彩文档 和再处理,节省了大量的存储空间。在跟踪多形式的目标以及在非线性运动和测量模型中,粒子滤波器具有极好的鲁棒性。 另一类减小搜索范围的算法是优化搜索方向。均值漂移算法 (Meanshift算法 )、连续自适应均值漂移算法 (Camshift算法 )和置信区域算法都是利用无参估计的方法优化目标模板和候选目标距离的迭代收敛过程,以达到缩小搜索范围的目的。Meanshift算法是利用梯度优化方法实现快速目标定位,能够对非刚性目标实时跟踪,适合于非线性运动目标的跟踪,对目标的变形、旋转等运动有较好的适用性。但是 Meanshift算法在目标跟踪过程中没有利用目标在空间中的运动方向和运动速度信息,当周围环境存在干扰时 (如光线、遮挡 ),容易丢失目标。Camshift算法是在Meanshift算法的基础上,进行了一定的扩展,结合目标色彩信息形成的一种改进的均值漂移算法。由于目标图像的直方图记录的是颜色出现的概率,这种方法不受目标形状变化的影响,可以有效地解决目标变形和部分遮挡的问题,且运算效率较高,但该算法在开始前需要由人工指定跟踪目标。 目标跟踪分类 依据运动目标的表达和相似性度量,运动目标跟踪算法可以分为四类:基于主动轮廓的跟踪、基于特征的跟踪、基于区域的跟踪和基于模型的跟踪。跟踪算法的精度和鲁棒性很大程度上取决于对运动目标的表达和相似性度量的定义,跟踪算法的实时性取决于匹配搜索策略和滤波预测算法。 1、基于主动轮廓的跟踪 Kass等人提出的主动轮廓模型,即Snake模型,是在图像域内定义的可变形曲线,通过对其能量函数的最小化,动态轮廓逐步调整自身形状与目标轮廓相实用标准文案 精彩文档 一致,该可变形曲线又称为Snake曲线。Snake技术可以处理任意形状物体的任意形变,首先将分割得到的物体边界作为跟踪的初始模板然后确定表征物体真实边界的目标函数,并通过降低目标函数值,使初始轮廓逐渐向物体的真实边界移动。 基于主动轮廓跟踪的优点是不但考虑来自图像的灰度信息,而且考虑整体轮廓的几何信息,增强了跟踪的可靠性。由于跟踪过程实际上是解的寻优过程,带来的计算量比较大,而且由于 Snake模型的盲目性,对于快速运动的物体或者形变较大的情况,跟踪效果不够理想。 2、基于特征的跟踪 基于特征匹配的跟踪方法不考虑运动目标的整体特征,只通过目标图像的一些显著特征来进行跟踪。假定运动目标可以由惟一的特征集合表达,搜索到该相应的特征集合就认为跟踪上了运动目标。除了用单一的特征来实现跟踪外,还可以采用多个特征信息融合在一起作为跟踪特征。基于特征的跟踪主要包括特征提取和特征匹配两个方面。 (1)特征提取 特征提取是指从景物的原始图像中提取图像的描绘特征,理想的图像特征应具备的特点是: a)特征应具有直观意义,符合人们的视觉特性; b)特征应具备较好的分类能力,能够区分不同的图像内容; c)特征计算应该相对简单,以便于快速识别; d)特征应具备图像平移、旋转、尺度变化等不变性。 目标跟踪中常用的运动目标的特征主要包括颜色、纹理、边缘、块特征、光流特征、周长、面积、质心、角点等。提取对尺度伸缩、形变和亮度变化不敏感的有效特征至今仍是图像处理研究领域中一个比较活跃的方面。

相关文档
最新文档