基于数字电路的电子钟设计报告

合集下载

数字电子钟实验报告

数字电子钟实验报告

咸阳师范学院物理与电子工程学院课程设计报告题目:班级:姓名:学号:指导教师:成绩:完成日期:年月目录第一章概述 3第二章数字电子钟的电路原理 4 第三章电路调试与制作11第四章总结与体会12第五章附录13第一章概述数字钟是采用数字电路实现对.时,分,秒.数字显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,运运超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。

诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。

因此,研究数字钟及扩大其应用,有着非常现实的意义。

虽然市场上已有现成的数字集成电路芯片出售,价格便宜,使用方便,这里所制作的数字电子可以随意设置时,分的输出,是数字电子中具有体积小、耗电省、计时准确、性能稳定、维护方便等优点。

课程设计目的(1)加强对电子制作的认识,充分掌握和理解设计个部分的工作原理、设计过程、选择芯片器件、电路的焊接与调试等多项知识。

(2)把理论知识与实践相结合,充分发挥个人与团队协作能力,并在实践中锻炼。

(3)提高利用已学知识分析和解决问题的能力。

(4)提高实践动手能力。

第二章数字电子钟的电路原理数字电子钟的设计与制作主要包括:数码显示电路、计数器与校时电路、时基电路和闹铃报时电路四个部分。

1.数码显示电路译码和数码显示电路是将数字钟的计时状态直观清晰地反映出来。

显示器件选用FTTL-655SB双阴极显示屏组。

在计数电路输出信号的驱动下,显示出清晰的数字符号。

2.计数器电路LM8560是一种大规模时钟集成电路它与双阴极显示屏组可以制成数字钟钟控电路。

3.校时电路数字钟电路由于秒信号的精确性和稳定性不可能做到完全准确无误,时基电路的误差会累积;又因外部环境对电路的影响,设计产品会产生走时误差的现象。

数字电子钟设计报告

数字电子钟设计报告

数字电子钟一.摘要数字电子钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。

它的计时周期为24小时,显示满刻度为23时59分59秒。

因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器、校时电路和振荡器组成。

主电路系统由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路组成。

秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。

将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用24进制计时器,可实现对一天24小时的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态用七段显示译码器译码,通过七段显示器显示出来。

校时电路时用来对“时”、“分”、“秒”显示数字进行校对调整。

采用74160,74393实现24进制和60进制,从而实现计数功能。

目录一.正文 (3)1.1系统设计 (3)1.11设计原理(数字电子钟结构框图): (3)1.12石英晶体振荡器 (3)1.2单元电路设计 (4)1.21时、分、秒计数器的设计: (4)1.2.1.1 元器件的选择:74LS160 同步十进制计数器、与非门 (4)1.2.1.2 二十四进制计数器电路图 (5)1.2.1.3 六十进制计数器电路图 (6)1.2.1.4 秒脉冲谐振电路: (6)1.3系统的测试 (8)1.3.1 N进制级联 (8)1.3.2分频器电路 (8)1.3.3.调校电路 (9)1.4 总结 (10)参考文献 (10)附录 (11)1.元器件的明细表 (12)一.正文1.1系统设计1.11设计原理(数字电子钟结构框图):数字电子钟是一个典型的数字电路系统,其由直流稳压电源,秒脉冲发生器,时、分、秒计数器以及校时和显示电路组成结构框图如下:图表 11.12石英晶体振荡器:石英晶体振荡器的特点是振荡频率准确,电路结构简单,频率易调节。

数字电子技术课程设计报告数字钟的设计

数字电子技术课程设计报告数字钟的设计

数字电子技术课程设计报告一、设计目的数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.二、设计要求(1)设计指标①时间以12小时为一个周期;②显示时、分、秒;③具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;④计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时;⑤为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。

(2)设计要求①画出电路原理图(或仿真电路图);②元器件及参数选择;③电路仿真与调试;④PCB文件生成与打印输出。

(3)制作要求自行装配和调试,并能发现问题和解决问题。

(4)编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

三、原理框图1.数字钟的构成数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。

通常使用石英晶体振荡器电路构成数字钟。

(a)数字钟组成框图2.晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。

不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。

一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。

如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。

数字电子钟设计报告,完整版

数字电子钟设计报告,完整版

一、任务技术指标设计一个数字电子钟(1)能显示小时、分钟和秒;(2)能进行24小时和12小时转换;(3)具有小时和分钟的校时功能。

二、总体设计思想1.基本原理该数字钟由振荡器、分频器、计数器、译码器、显示器和校时电路等六部分组成。

振荡器产生的钟标信号送到分频器,分频电路将时标信号分成每秒一次的方波秒信号。

秒信号送入计数器进行计数,计数到60秒后向分进位,同理计数到60分后向小时进位,并将计数的结果以BCD-七段显示译码器显示出来。

计数选用十进制计数器74LS760D,校时电路通过选通开关对“时”和“分”进行校时。

二十四小时和十二小时的转换也可以用开关进行选择。

2.系统框图如图1:振荡器产生的钟标信号送到分频器,分频电路将时标信号送至计数器。

计数器通过译码显示把累计的结果以“时”、“分”、“秒”的数字显示出来。

整个过程中可选择用校时电路进行校时。

图1 系统框图三、具体设计1.总体设计电路该数字钟由振荡器、分频器、计数器、显示器和校时电路组成。

振荡器产生的钟标信号送到分频器,分频电路将时标信号分成每秒一次的方波秒信号。

秒信号送入计数器进行计数,计数到60秒后向分进位,同理分计数器计数到60分后向小时进位,并将计数的结果以BCD-七段显示译码器显示出来。

计数选用十进制计数器74LS760D,校时电路通过选通开关对“时”和“分”进行校时。

二十四小时和十二小时的转换可以用开关进行选择。

图2 总体电路图2.模块设计(1)振荡器的设计振荡器是数字钟的核心。

振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度,通常选用石英晶体构成振荡器电路。

石英晶体振荡器的作用是产生时间标准信号。

因此,一般采用石英晶体振荡器经过分频得到这一时间脉冲信号。

电路中采用的是将石英晶体与对称式多谐振荡器中的耦合电容串联起来,就组成了如图3所示石英晶体多谐振荡器。

图3振荡器电路图和仿真波形图(2)分频器的设计对于分频器的设计选定74LS90集成芯片。

多功能数字钟的电路设计报告书

多功能数字钟的电路设计报告书

多功能数字钟的电路设计报告书
报告书内容包括:
1.引言:介绍设计任务的背景和目的,解释为什么需要设计多功能数字钟电路。

2.设计要求:详细说明设计的功能要求和性能要求,例如显示时间、闹钟设置、温度显示等。

3.设计方案:展示设计的整体思路和方案,包括电路图和设计参数。

可以提供一些关键性的设计考虑和解决方案。

4.设计步骤:详细描述设计的步骤和过程,包括所选用的元器件、电路图的细节、电路的连接方法等。

5.实验结果:给出实验的结果和测试数据,包括电路工作的准确性、稳定性、可靠性和其他性能指标的测试结果。

6.结论:总结设计的过程和结果,评估电路设计的优点和不足之处,提出可能的改进方案。

8.附录:将电路图、元器件清单、代码等相关材料作为附录提供,方便读者参考和复制。

以上是一个可能的电路设计报告书的框架,具体的内容可以根据设计任务的要求和自己的实际情况进行调整。

数字电子技术课程设计报告——电子钟设计

数字电子技术课程设计报告——电子钟设计

数字电子技术课程设计报告 课 题:

数字钟的设计与制作

学 年:09学年 学 期: 第二学期

专 业:

班 级:

姓 名:

时 间:2009年6月20日—2009年6月26日 数字电子技术课程设计报告 一、设计目的 数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。 数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。 因此,我们此次设计与制作数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.

二、设计内容及要求 (1)设计指标 ① 由晶振电路产生1HZ标准秒信号; ② 分、秒为00~59六十进制计数器; ③ 时为00~23二十四进制计数器; ④ 周显示从1~日为七进制计数器; ⑤ 具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; ⑥ 整点具有报时功能,当时间到达整点前鸣叫五次低音(500HZ),整点时再鸣叫一次高音(1000HZ)。 (2)设计要求 ① 画出电路原理图(或仿真电路图); ② 元器件及参数选择; ③ 电路仿真与调试。 (3)制作要求 自行装配和调试,并能发现问题和解决问题。 (4)编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

三、原理框图 数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。数字电子钟的总体图如图(1)所示。由图(1)可见,数字电子钟由以下几部分组成:石英晶体振荡器和分频器组成的秒脉冲发生器;校对电路;六十进制秒、分计数器、二十进制时计数器及七十进制日计数器;以及秒、分、时的译码显示部分等。

基于单片机的数字钟设计开题报告

单片机的主要类型有8051系列、AVR系列、PIC系列等,其中8051系列单 片机是最常用的类型之一。
数字钟设计原理
数字钟是一种以数字方式显 示时间的计时装置,它由石 英晶体振荡器提供稳定的计
时基准。
数字钟的设计原理主要是利 用计数器对石英晶体振荡器 的输出信号进行计数,从而 得到时间信息,并通过显示
技术路线
技术调研
了解单片机、数字钟等相关技术,确定合适的技术方案。
方案选择
根据需求和技术调研,选择合适的单片机型号和外围器件,制定系统设计方案。
开发环境搭建
配置开发环境,包括单片机开发工具、编程语言等。
系统实现
按照系统设计方案,逐步实现数字钟的各项功能。
04
预期目标与成果
预期目标
完成数字钟的硬件电路设 计
培养创新人才
本课题的研究需要具备扎实的理论基础和实践能力,通过本课题的研究,可以培养学生的创新思维和实 践能力,提高其综合素质和就业竞争力。
02
相关技术综述
单片机技术介绍
单片机是一种集成电路芯片,它集成了中央处理器、随机存储器、只读存 储器、输入输出接口等计算机的基本组成部分。
单片机具有体积小、功耗低、功能强、可靠性高等优点,广泛应用于智能 仪表、智能家居、智能控制等领域。
分析实现数字钟所需的关键技术,如 时钟信号的获取与处理、时间的显示 方式等。
研究方法
文献综述
查阅相关文献,了解数字钟设计的最新研究 动态和发展趋势。
实验设计
根据需求分析,设计实验方案,包括硬件电 路设计和软件编程。
实验实施
根据实验设计,搭建硬件平台,编写并调试 软件程序。
结果分析
对实验结果进行分析,评估数字钟的性能和 功能,并提出改进方案。

数电课程实验报告——数字钟的设计

数电课程实验报告——数字钟的设计
本次实验以数字钟的设计为主,目的是说明实现一个独立的数字钟的时钟电路的实验、设计。

首先,在实验之前,首先对大致原理和框图必须做到熟练。

电路的结构可以由电
路示意图获得,由此确定可采用的元件型号,以确定具体的电路框图。

随后,根据设计需求,确定每一部分的具体参数,精心测试,并在最终的方案中执行。

其次,进行实验,实验过程中,在测试电路的过程中,步骤要清晰,仔细进行夹线,
以实现一部完整的设计构思。

其中,要将LED灯和各个元件进行夹线,以输出一个完整
的数字钟图像,经过验证后,灯光和接线方式都是正确的。

最后,证实了数字钟电路操作的功效,与预期相符并可实现完美的数字时钟。

该实验
能够帮助我们更加深入了解电路设计,提升此类电路的设计能力,以及在实际应用中的能力。

总的来说,本次数字钟的实验表明,要想设计出一个成功的数字钟,除了要仔细设计
静态和动态电路以外,还要注意正确夹线,保证LED灯的正确连接,以及各个电路的回路
的正确连接。

此外,仔细观察、调试实验数据,并及时发现和纠正可能存在的差错,也至
关重要。

只有将这些要点全部结合起来,才能够做出一个准确、有效的数字时钟。

数字钟课程设计报告

数字钟课程设计报告1. 引言数字钟是一种能够显示时间的设备,广泛应用于家庭、学校和办公场所等各个领域。

本课程设计旨在通过设计一个数字钟的硬件电路和相应的软件程序来实现一个简单的数字钟。

本报告将详细介绍数字钟的设计过程,包括硬件电路的设计和软件程序的开发。

通过本课程设计,将加深学生对数字电路和嵌入式系统的理解,并提升他们的设计能力和解决实际问题的能力。

2. 设计目标本课程设计的目标是设计一个具有以下功能的数字钟:•显示当前的小时、分钟和秒钟;•支持时间的设置和调整功能;•提供闹钟功能,可以设置闹钟时间和开启闹钟功能。

3. 硬件电路设计在硬件电路设计中,我们将使用以下电子元件:• 1 个时钟模块,用于产生基准时钟信号;• 1 个微控制器,用于控制数字钟的功能;• 1 个LCD液晶显示屏,用于显示时间和设置信息;• 1 个按键开关模块,用于设置和调整时间,以及开启或关闭闹钟功能。

硬件电路的设计包括以下主要步骤:1.连接时钟模块和微控制器,使得时钟模块能够产生基准时钟信号,并输入给微控制器。

2.连接LCD液晶显示屏和微控制器,使得微控制器能够将时间信息输出到液晶显示屏上。

3.连接按键开关模块和微控制器,使得微控制器能够接收按键输入,并根据输入来实现设置、调整和开启闹钟功能的操作。

4. 软件程序开发软件程序开发是本课程设计的重要部分,它包括以下主要任务:1.初始化:在程序开始时,初始化时钟模块、LCD液晶显示屏和按键开关模块。

2.时间显示:通过获取当前时间,并将其显示在LCD液晶显示屏上。

3.时间设置:通过按键输入来设置和调整时间,然后将修改后的时间保存到内存中。

4.闹钟设置:通过按键输入来设置和调整闹钟时间,然后将修改后的闹钟时间保存到内存中。

5.闹钟功能:在闹钟时间到达时,触发相应的操作,例如发出蜂鸣器声音或闪烁LED灯等。

5. 结果与分析经过几次迭代的设计和调试,最终成功实现了一个简单的数字钟。

该数字钟能够准确地显示当前的小时、分钟和秒钟,支持时间的设置和调整功能,并提供闹钟功能。

数字钟电路课程设计报告

一、设计任务和要求 (2)二、设计的方案的选择与论证(1)总体电路分析 (2)(2)仿真分析 (2)(3)仿真说明 (2)三、电路设计计算与分析 (3)(1)小时计时电路 (3)(2)分钟计时电路 (8)(3)秒钟计时电路 (9)(4)校时选择电路 (10)(5)脉冲产生电路 (10)(6) Multisim总原理图 (11)四、Protel99se的使用 (12)(1)SCH原理图 (12)(2)PCB原理图 (13)五、焊接 (13)(1)主要焊接仪器 (13)(2)焊接步骤 (13)(3)焊接理论依据 (13)六、调试 (13)(1)主要测试仪器 (13)(2)测试步骤 (14)(3)测试电路功能 (14)(4)整块电路的联调 (14)七、数字钟实物 (15)(1)正面的数字钟实物 (15)(2)反面的数字钟实物 (15)(3)工作中的数字钟实物 (16)八、总结及心得附录 (16)九、参考文献 (17)一、设计任务和要求实现24小时的时钟显示、校准。

具体要求:(1)显示功能:具有“时”、“分”、“秒”的数字显示(“时”从0~23,分0~59,秒0~59)。

(2)校时功能:当刚接通电源或数字时钟有偏差时,可以通过手动的方式去校时。

二、设计的方案的选择与论证(1)总体电路分析总体电路设计是将单元电路模块小时计时电路、分钟计时电路、秒计时电路、校时选择电路,外接输入开关和输出显示数码管构成。

总体结构图如下:(2)仿真分析单击运行按钮,可观测仿真结果。

电路能完成显示计时、校时功能。

○1计时功能。

当开关J1、J2都处于断开时,给数字钟+5V的工作电压,数字时钟工作于计时状态。

此时,电路中的秒计时电路、分计时电路以及小时计时电路分别对秒脉冲、分脉冲和小时脉冲进行计数。

计数结果经数码管显示计时时间值。

○2校时功能。

当开关J1、J2处于导通状态时,给数字钟+5V的工作电压,数字时钟工作于同时校时校分状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 设计目的训练学生综合地运用所学的《数字逻辑》的基本知识,包括熟悉集成电路的引脚安排、各芯片的逻辑功能及使用方法,了解面包板结构及其接线方法,通过使用proteus仿真技术,独立完整地设计一定功能的电子电路,以及仿真和调试等的综合能力。

2 设计任务2.1设计指标(1)时间以24小时为一个周期;(2)显示时、分、秒、星期;(3)有校时功能,可以分别对时及分及星期进行单独校时,使其校正到标准时间;(4)计时过程具有报时功能,当时间到达整点前10秒每2秒进行一次蜂鸣报时;(5)为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。

2.2设计要求(1)画出电路原理图(或仿真电路图);(2)元器件及参数选择;(3)电路仿真与调试;2.3制作要求自行装配和调试,并能发现问题和解决问题。

2.4编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。

3 数字钟的系统设计3.1数字钟的构成数字钟实际上是一个对标准频率(1Hz)进行计数的计数电路。

由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1Hz时间信号必须做到准确稳定。

通常使用石英晶体振荡器电路构成数字钟。

图 3-1所示为数字钟的一般构成框图。

图1 数字钟的组成框图3.1.1晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。

不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。

3.1.2分频器电路2)次分频后得到1Hz的方波信号供秒分频器电路将32768Hz的高频方波信号经32768(15计数器进行计数。

分频器实际上也就是计数器。

3.1.3时间计数器电路时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器、时个位和时十位计及星期个位数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器,星期为七进制计数器。

3.1.4译码驱动电路译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。

3.1.5数码管数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管。

3.3数字钟的工作原理3.3.1晶体振荡器电路晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定。

图3-2所示电路通过CMOS非门构成的输出为方波的数字式晶体振荡电路,这个电路中,CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。

输出反馈电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。

电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反馈网络,实现了振荡器的功能。

由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。

晶体XTAL的频率选为32768H Z。

该元件专为数字钟电路而设计,其频率较低,有利于减少分频器级数。

从有关手册中,可查得C1、C2均为30pF。

当要求频率准确度和稳定度更高时,还可接入校正电容并采取温度补偿措施。

由于CMOS电路的输入阻抗极高,因此反馈电阻R1可选为10MΩ。

较高的反馈电阻有利于提高振荡频率的稳定性。

非门电路选74ls04。

图2 COMS晶体振荡器3.3.2分频器电路通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,需要对振荡器的输出信号进行分频。

通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现。

例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768(215),即实现该分频功能的计数器相当于15极2进制计数器。

常用的2进制计数器有74HC393等。

本实验中采用CD4060来构成分频电路。

CD4060在数字集成电路中可实现的分频次数最高,而且CD4060还包含振荡电路所需的非门,使用更为方便。

CD4060计数为14级2进制计数器,可以将32768HZ的信号分频为2HZ,其内部框图如图3所示,从图中可以看出,CD4060的时钟输入端两个串接的非门,因此可以直接实现振荡和分频的功能。

图3 CD4060内部框图3.3.3时间计数单元时间计数单元有时计数、分计数和秒计数等几个部分。

时计数单元一般为12进制计数器计数器,其输出为两位8421BCD码形式;分计数和秒计数单元为60进制计数器,其输出也为8421BCD码。

一般采用10进制计数器74ls90来实现时间计数单元的计数功能。

为减少器件使用数量,可选74ls90,其内部逻辑框图如图4所示。

该器件为双2—5-10异步计数器,并且每一计数器均提供一个异步清零端(高电平有效)。

图4 74LS90内部逻辑框图秒个位计数单元为10进制计数器,无需进制转换,只需将QA与CPB(下降沿有效)相连即可。

CPA(下降没效)与1HZ秒输入信号相连,Q3可作为向上的进位信号与十位计数单元的CPA相连。

秒十位计数单元为6进制计数器,需要进制转换。

将10进制计数器转换为6进制计数器的电路连接方法如图5所示,其中Q2可作为向上的进位信号与分个位的计数单元的CPA相连。

图5 10进制——6进制计数器转换电路3.3.4译码驱动及显示单元计数器实现了对时间的累计以8421BCD码形式输出,选用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流,选用CD4511作为显示译码电路,选用LED数码管作为显示单元电路。

3.3.5校时电源电路当重新接通电源或走时出现误差时都需要对时间进行校正。

通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可。

根据要求,数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。

图6所示即为带有基本RS触发器的校时电路,图6 带有消抖动电路的校正电路3.3.6整点报时电路一般时钟都应具备整点报时电路功能,即在时间出现整点前数秒内,数字钟会自动报时,以示提醒。

其作用方式是发出连续的或有节奏的音频声波,较复杂的也可以是实时语音提示。

根据要求,电路应在整点前10秒钟内开始整点报时,每2秒响一次蜂鸣,即当时间在59分50秒到59分59秒期间时,报时电路报时控制信号。

报时电路选74LS30,选蜂鸣器为电声器件。

4 数字钟的装配过程一个74HC4511和一个LED数码管连接成一个74HC4511驱动电路,数码管可从0---9显示,以次来检查数码管的好坏,图7 4511驱动电路图8 74LS90十进制计数器利用一个LED数码管,一块HC4511,一块74LS390,一块74LS00连接成一个十进制计数器,电路在晶振的作用下数码管从0—9显示,见图8。

利用一个LED数码管,一块CD4511,一块74LS390,一块74LS00和一个晶振连接成一个六进制计数器,数码管从0—6显示,见图9图9 7490六进制计数器利用一个六进制电路和一个十进制连接成一个六十进制电路,电路可从0—59显示,见图10图10 六十进制电路利用两个六十进制的电路合成一个双六十进制电路,两个六十进制之间有进位,见图11。

图11 双六十进制电路图12 七进制电路功能扩展 显示星期的功能利用一个LED 数码管,一块HC4511,一块74LS390,一块74LS00连接成一个七进制计数器,电路在晶振的作用下数码管显示1,2,3,4,5,6,日。

电路见图12利用CD4060、电阻及晶振连接成一个分频——晶振电路,见附图12。

图13 分频—晶振电路成整点报时电路。

见图14。

图14 整点报时电路5 系统调试与误差分析5.1系统调试过程5.1.1故障一组装完成后,发现电子钟秒表计数到05后,06无法正常显示,同时还会导致时分秒都计数混乱。

但是拆除时和分的数码管后,秒表可以正常计数;分别拆除时和秒或者分和秒后,分或时也可以正常计数。

经检测分析,是由于各数码管均未接电阻,导致数码管电压过高,相互之间产生影响所以导致了计数混乱。

在数码管接地引脚与地线之间接上电阻后问题可以解决。

5.1.2故障二接上蜂蜜器后,无法在50秒后开始报时,检查后发现是由于74LS30的引脚未与秒表的74LS90的输出引脚对应好。

5.1.3故障三在校时校分电路接上去都开关后发现无法实现去抖功能。

研究电路图后发现,我们把开关接成了单刀单掷开关,导致开关按下后,去抖电路的R与S端同时接地,去抖功能丧失。

修改方法为把开关接成单刀双掷开关,在开关闭合或者断开时,R与S始终只有一端接地,由此实现开关的去抖功能。

5.1.4故障四在用EDA进行电路仿真时,晶振电路连接没有错误,却无法产生脉冲,另一方面实物连接时可以产生要求的脉冲信号。

查阅资料后发现,是由于该软件不支持晶振电路的模拟。

5.2误差分析实际时间(s) 测试时间(s) 相对误差绝对误差(s)10 10.1 1% 0.120 19.7 1.5% 0.330 29.8 0.67% 0.240 40.1 0.25% 0.150 50.0 0.0% 0.060 59.9 0.167% 0.1测试手段:秒表误差原因:我们用的是秒表测试,测试结果出现误差的原因有多种,以上误差原因主要集中在测试手段不够精确,人工计时的反应时间等。

就测试结果而言,我们设计的数字电子钟符合要求,计时准确,基本功能全部实现。

6 设计总结6.1设计体会在这次数字电子钟的设计组装过程中,我们对各主要芯片有了进一步的了解,包括其功能和相应的连接方法。

虽然设计的电路比较简单,但要求我们对每一条连线都有深入的认识,包括七进制、六进制、十进制、十二进制、去抖开关等,这样才能在连接错误的情况下快速的找到出错原因并及时纠正,也正因为如此,我们整个连接过程都十分顺利,极少出现严重的错误。

6.2对该设计的建议这次数字电子钟的设计重点在与仿真和接线,由于我们加上了星期的拓展功能,所用芯片和线较多,焊接复杂容易出错。

因此在做这类课程设计的时候一定要分工明确,而且对电路图深入把握,这样才能快速准确的展现出器件应有的功能!7 附录7.1实验中用到的器材元器件数量面包板1块万用表1个共阴八段双位数码管4个CD4511集成块7块CD4060集成块1块74LS90集成块8块74LS00集成块3块74LS08集成块1块74LS04集成块2块74LS30集成块1块74LS10集成块1块电阻22MΩ2个、10kΩ4个、510Ω4个30p电容2个32.768k时钟晶体1个蜂鸣器1个5V电源1个7.2最终版数字钟设计电路全图图22 完整电路图参考文献:康华光,《电子技术基础—数字部分(第五版)》,高等教育出版社。

相关文档
最新文档