函数的定义域习题举例
高一函数定义域、值域习题练习及答案

5 、 设 f (x) 与 g(x) 的 定 义 域 是 {x | x R, 且x 1} , f (x) 是 偶 函 数 , g(x) 是 奇 函 数 , 且
f
(x)
g(x)
1 x 1
,求
f
(x)
与
g(x)
的解析表达式
四、求函数的单调区间
6、求下列函数的单调区间:
⑴ y x2 2x 3
⑵ y x2 2x 3
二、求函数的值域 5、求下列函数的值域:
⑴ y x2 2x 3 (x R) ⑵ y x2 2x 3 x [1, 2]
⑶ y 3x 1 x 1
⑸ y 2 x 6 x 2
三、求函数的解析式
1、 已知函数 f (x 1) x2 4x ,求函数 f (x) , f (2x 1) 的解析式。
一、 求函数的定义域 1、求下列函数的定义域:
⑴ y x2 2x 15 x3 3
复合函数定义域和值域练习题
(2) y 1 1 1 (2x 1)0 4 x 2 x 1
2、设函数 f (x) 的定义域为 [0,1] ,则函数 f (x 2 ) 的定义域为_ _ _;函数 f ( x 2) 的定义域为
二、函数值域:
5、(1){y | y 4} (5) y [3, 2) (9) y [0,3]
(2) y [0,5]
(3){y | y 3}
(4) y [7 ,3) 3
(6){y | y 5且y 1} (7){y | y 4} 2
(8) y R
(10) y [1, 4]
(11){y | y 1} 2
5)
,
y2 x 5 ;
⑵ y1 x 1 x 1 , y2 (x 1)(x 1) ;
函数定义域值域练习题

函数定义域值域练习题一、选择题1. 若函数f(x) = √(4 x^2),则f(x)的定义域是:A. x ≤ 2B. 2 ≤ x ≤ 2C. x ≥ 2D. 2 < x < 22. 已知函数g(x) = 1/(x 1),则g(x)的定义域是:A. x ≠ 1B. x > 1C. x < 1D. x ≥ 13. 设函数h(x) = (x + 3)/(x^2 9),h(x)的定义域是:A. x ≠ 3B. x ≠ 3C. x ≠ 3 且x ≠ 3D. x ∈ R4. 若函数f(x) = (x 2)^2,则f(x)的值域是:A. x ≥ 0B. x ≤ 4C. x ≥ 4D. x ≤ 05. 已知函数g(x) = |x 1|,则g(x)的值域是:A. x ≥ 0B. x ≤ 1C. x ≠ 0D. x ≠ 1二、填空题1. 函数f(x) = √(x 3)的定义域是______。
2. 函数g(x) = 2/(x 2)^2的值域是______。
3. 若函数h(x) = (x + 1)/(x^2 + x),则h(x)的定义域是______。
4. 已知函数f(x) = (x 1)(x + 2),求f(x)的值域是______。
5. 设函数g(x) = |x| 3,则g(x)的值域是______。
三、解答题1. 求函数f(x) = 3x^2 4x + 1的定义域和值域。
2. 已知函数g(x) = 1/(x^2 5x + 6),求g(x)的定义域。
3. 设函数h(x) = (x 2)^3,求h(x)的值域。
4. 已知函数f(x) = √(x^2 6x + 9),求f(x)的定义域和值域。
5. 设函数g(x) = |x^2 4|,求g(x)的值域。
四、判断题1. 函数f(x) = 1/(x^2)的定义域是所有实数。
()2. 函数g(x) = √(x + 4)的值域是所有非负实数。
()3. 若函数h(x) = (x 1)/(x + 2),则h(x)的定义域是x ≠ 2。
函数定义域的求法练习题含答案_

函数定义域的求法练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 函数f(x)=√1−2x+√x+2的定义域为( )A.(−2,0]B.(−2,1]C.(−∞,−2)∪(−2,0]D.(−∞,−2)∪(−2,1]2. 函数f(x)=lg(x−3)+√4−x的定义域为()A.[3,4];B.(3,4];C.(3,4);D.[3,4)3. 函数f(x)=√2−2x+1log3x的定义域为()A.{x|0<x<1}B.{x|x<1}C.{x|0<x≤1}D.{x|x>1}4. 函数f(x)=ln(x−x2)的定义域为()A.(0, 1)B.[0, 1]C.(0, 1]D.[0, 1)5. 已知f(x)的定义域为[−2, 1],函数f(3x−1)的定义域为( )A.(−7, 2)B.(−13,23) C.[−7, 2] D.[−13,23]6. 函数y=√1−3x的定义域为( )A.(0, 1]B.[0, +∞)C.(−1, 0]D.(−∞, 0]7. 已知函数f(x)=ln(x+3)√x−3,则函数f(x)的定义域为()A.(3,+∞)B.(−3,3)C.(−∞,−3)D.(−∞,3)8. 函数f(x)=√x+1的定义域为()A.[−1,5)B.[−1,5]C.(−1,5]D.(−1,5)9. 函数f(x)=1ax2+4ax+3的定义域为(−∞, +∞),则实数a的取值范围是( )A.(−∞, +∞)B.[0,34)C.(34,+∞)D.[0,34]10. 已知函数f(x)的定义域为[−2, 3],则函数g(x)=2√x 2−x−2的定义域为( )A.(−∞, −1)∪(2, +∞)B.[−6, −1)∪(2, 3]C.[−2, −1)∪(2, 3]D.[−√5,−1)∪(2,√5]11. 函数f (x +1)的定义域为[0,1],则f (x 2)的定义域为________.12. 已知函数 f [(12)x]的定义域为[1,2],则函数f (2x )的定义域为________.13. 函数f (x )=ln (x−1)x−2的定义域为________.14. 函数f (x )=√6+x−x 2ln x 的定义域为________.15. 函数f (x )=√x −3的定义域为________.16. 函数y =√4−x 2的定义域是________.17. 若函数f(x −1)的定义域为[−3, 3],则f(x)的定义域为________.18. 函数f(x)=√x −1+lg (3−x)的定义域为________.19. 已知函数f(x)=log 2(2−x)−log 2(2+x). (1)求函数f(x)的定义域;(2)试判断函数f(x)的奇偶性;(3)求不等式f(x)>1的解集.20. 求下列函数的定义域.(1)f(x)=√√3−2cos x;(2)f(x)=1.1−tan x21. 求下列函数的定义域.(1)f(x)=√3x+6;x−1(2)f(x)=√|x|−2+(x−3)0.22. 求下列函数的定义域:(1)f(x)=6;x2−3x+2(2)f(x)=√4−x.x−123. 设函数f(x)=√3−x+√x的定义域为集合M,函数g(x)=x2−2x+2.(1)求函数g(x)在x∈M时的值域;(2)若对于任意x∈R都有g(x)≥mx−2成立,求实数m的取值范围.24. 已知函数f(x)=√(x+1)(x−2)的定义域为集合A,B={x|x<a或x>a+1}.(1)求集合A;(2)若A⊆B,求实数a的取值范围.25. 设全集为R,函数f(x)=√−2x2+5x+3的定义域为A,集合B={x|x2+a<0}.(1)当a=−4时,求A∪B;(2)若A∩B=B,求实数a的取值范围.参考答案与试题解析 函数定义域的求法练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 A【考点】函数的定义域及其求法 【解析】本题主要考查函数定义域问题,根据定义域的要求进行求解即可 【解答】解:由{1−2x ≥0,x +2>0,解得−2<x ≤0, 所以函数f (x )=√1−2x √x+2的定义域为(−2,0].故选A . 2.【答案】 C【考点】函数的定义域及其求法 【解析】 此题暂无解析 【解答】 略 3.【答案】 A【考点】函数的定义域及其求法 【解析】根据函数成立的条件即可求函数的定义域. 【解答】解:要使函数有意义,则{2−2x ≥0,log 3x ≠0,x >0,即{x ≤1,x ≠1,x >0,得0<x <1,即函数的定义域为{x|0<x <1},故选A . 4. 【答案】 A【考点】函数的定义域及其求法【解析】根据对数函数的性质,求出函数的定义域即可.【解答】解:由题意得x−x2>0,即x(x−1)<0,解得0<x<1,故函数的定义域是(0, 1).故选A.5.【答案】D【考点】函数的定义域及其求法【解析】根据函数定义域的求法,直接解不等式−2≤3x−1≤1,即可求函数y=f(3x−1)的定义域.【解答】解:∵函数y=f(x)的定义域为[−2, 1],∴−2≤3x−1≤1,解得:−13≤x≤23,即x∈[−13, 23],故函数y=f(3x−1)的定义域为[−13, 2 3 ].故选D.6.【答案】D【考点】函数的定义域及其求法【解析】利用函数定义域的求法求函数的定义域.【解答】解:要使函数有意义,则有1−3x≥0,即3x≤1,所以x≤0,故函数的定义域为(−∞, 0].故选D.7.【答案】A【考点】函数的定义域及其求法【解析】无【解答】解:要使函数f(x)=ln(x+3)√x−3有意义,则有{x +3>0,x −3>0,解得x >3,所以函数f (x )的定义域为(3,+∞). 故选A . 8. 【答案】 D【考点】函数的定义域及其求法 【解析】 此题暂无解析 【解答】解:由题可知,{−3x +15>0,x +1>0,解得−1<x <5. 故选D . 9.【答案】 B【考点】与二次函数相关的复合函数问题 函数的定义域及其求法【解析】根据函数的定义域的定义,即ax 2+4ax +3≠0的解集为R ,即方程ax 2+4ax +3=0无解,根据二次函数的性质,即可得到 答案. 【解答】解:由题意,函数的定义域为(−∞,+∞), 即ax 2+4ax +3≠0的解集为R , 即方程ax 2+4ax +3=0无解.当a =0时,3=0,此时无解,符合题意; 当a ≠0时,Δ=(4a )2−4a ×3<0, 即16a 2−12a <0,所以0<a <34. 综上可得,实数a 的取值范围是[0,34). 故选B . 10. 【答案】 D【考点】函数的定义域及其求法 【解析】根据f(x)的定义域即可得出,要使得函数g(x)有意义,则需满足{−2≤3−x 2≤3x 2−x −2>0,解出x 的范围即可. 【解答】解:∵ f(x)的定义域为[−2, 3],∴ 要使g(x)有意义,则{−2≤3−x 2≤3,x 2−x −2>0,解得−√5≤x <−1或2<x ≤√5,∴ g(x)的定义域为[−√5,−1)∪(2,√5]. 故选D .二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 ) 11.【答案】[−√2,−1]∪[1,√2] 【考点】函数的定义域及其求法 【解析】 此题暂无解析 【解答】解:∵ f (x +1)的定义域为[0,1], 即0≤x ≤1, ∴ 1≤x +1≤2.∵ f (x +1)与f (x 2)是同一个对应关系f , ∴ x 2与x +1的取值范围相同, 即1≤x 2≤2,整理,得x 2−2≤0,x 2−1≥0, 解得−√2≤x ≤√2,x ≥1或x ≤−1, ∴ −√2≤x ≤−1,1≤x ≤√2,∴ f (x 2)的定义域为[−√2,−1]∪[1,√2]. 故答案为:[−√2,−1]∪[1,√2]. 12.【答案】 [−2,−1] 【考点】抽象函数及其应用 函数的定义域及其求法 【解析】由题意可知x ∈[1,2],(12)x∈[12,14],故有2x ∈[12,14],解得x 的范围,可得函数f (2x )的定义域. 【解答】解:∵ 函数f [(12)x]的定义域为[1,2], 即x ∈[1,2], ∴ (12)x∈[14,12], ∴ 2x ∈[14,12], 解得x ∈[−2,−1],∴ 函数f (2x )的定义域为[−2,−1]. 故答案为:[−2,−1]. 13.【答案】(1,2)∪(2,+∞) 【考点】函数的定义域及其求法 【解析】由条件可得{x −2≠0x −1>0,求解即可.【解答】解:要使函数有意义, 则{x −2≠0,x −1>0,解得1<x <2或x >2,即函数的定义域为(1,2)∪(2,+∞). 故答案为:(1,2)∪(2,+∞). 14.【答案】 (0,1)∪(1,3] 【考点】函数的定义域及其求法 【解析】根据二次根式的被开方数为非负数,分母不为零,对数的真数大于零,列不等式组求解即可. 【解答】解:要使函数有意义,则6+x −x 2≥0且ln x ≠0且x >0, 解得x ∈(0,1)∪(1,3]. 故答案为:(0,1)∪(1,3]. 15.【答案】 {x|x ≥3} 【考点】函数的定义域及其求法 【解析】 此题暂无解析 【解答】解:由题意得x −3≥0,解得x ≥3.故函数f (x )=√x −3的定义域为{x|x ≥3}. 故答案为:{x|x ≥3}. 16. 【答案】 (−1,2) 【考点】函数的定义域及其求法 对数函数的定义域 【解析】 此题暂无解析 【解答】解:由题意得{4−x 2>0,x +1>0,解得−1<x <2,∴ 函数y =√4−x 2的定义域是(−1,2).故答案为:(−1,2). 17.【答案】 [−4, 2] 【考点】函数的定义域及其求法 【解析】f(x −1)的定义域为[−3, 3],是指的x 的范围是[−3, 3],由此求出x −1的范围得到f(x)的定义域. 【解答】解:∵ f(x −1)的定义域为[−3, 3],即−3≤x ≤3. ∴ −4≤x −1≤2,即函数f(x)定义域为[−4, 2]. 故答案为:[−4, 2]. 18.【答案】 [1,3) 【考点】函数的定义域及其求法 【解析】由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组得答案. 【解答】解:∵ f(x)=√x −1+lg (3−x), ∴ {x −1≥0,3−x >0,解得1≤x <3,∴ 函数f(x)=√x −1+lg (3−x)的定义域为[1, 3). 故答案为:[1,3).三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 ) 19.【答案】解:(1)∵ f(x)=log 2(2−x)−log 2(2+x), ∴ {2−x >0,2+x >0,解得−2<x <2,∴ f(x)的定义域是(−2, 2);(2)∵ 函数f (x )的定义域为(−2,2).且f(−x)=log 2(2+x)−log 2(2−x) =−[log 2(2−x)−log 2(2+x)] =−f(x),∴ f(x)是定义域(−2, 2)上的奇函数; (3)∵ f(x)=log 2(2−x)−log 2(2+x)=log 22−x 2+x>1,∴ {−2<x <2,2−x 2+x>2,解得−2<x <−23∴ 不等式f(x)>1的解集是(−2, −23). 【考点】函数的定义域及其求法 函数单调性的判断与证明 指、对数不等式的解法【解析】(1)根据对数函数的定义,列出关于自变量x 的不等式组,求出f(x)的定义域; (2)由函数奇偶性的定义,判定f(x)在定义域上的奇偶性;(3)化简f(x),根据对数函数的单调性以及定义域,求出不等式f(x)>1的解集. 【解答】解:(1)∵ f(x)=log 2(2−x)−log 2(2+x), ∴ {2−x >0,2+x >0,解得−2<x <2,∴ f(x)的定义域是(−2, 2);(2)∵ 函数f (x )的定义域为(−2,2). 且f(−x)=log 2(2+x)−log 2(2−x) =−[log 2(2−x)−log 2(2+x)] =−f(x),∴ f(x)是定义域(−2, 2)上的奇函数; (3)∵ f(x)=log 2(2−x)−log 2(2+x)=log 22−x 2+x>1,∴ {−2<x <2,2−x 2+x >2,解得−2<x <−23∴ 不等式f(x)>1的解集是(−2, −23).20. 【答案】解:(1)由被开方数为非负数可得√3−2cos x ≥0, 解得cos x ≤√32,所以π6+2kπ≤x ≤11π6+2kπ,k ∈Z , 所以f (x )的定义域为[π6+2kπ,11π6+2kπ] k ∈Z .(2)由分式的分母不为零且正切函数中x ≠π2+kπ,k ∈Z ,可得1−tan x ≠0且x ≠π2+kπ,解得x ≠π4+kπ且x ≠π2+kπ,k ∈Z . 所以f (x )的定义域为{x|x ≠π2+kπ且x ≠π4+kπ,k ∈Z}.【考点】函数的定义域及其求法【解析】此题暂无解析【解答】解:(1)由被开方数为非负数可得√3−2cos x ≥0,解得cos x ≤√32, 所以π6+2kπ≤x ≤11π6+2kπ,k ∈Z , 所以f (x )的定义域为[π6+2kπ,11π6+2kπ] k ∈Z .(2)由分式的分母不为零且正切函数中x ≠π2+kπ,k ∈Z ,可得1−tan x ≠0且x ≠π2+kπ, 解得x ≠π4+kπ且x ≠π2+kπ,k ∈Z .所以f (x )的定义域为{x|x ≠π2+kπ且x ≠π4+kπ,k ∈Z}.21.【答案】解:(1)由题意得:{3x +6≥0,x −1≠0,解得x ≥−2且x ≠−1,所以函数f (x )的定义域为{x ∣x ≥−2且x ≠1}.(2)由题意得:{|x |−2≥0,x −3≠0,解得x <−2或x >2且x ≠3,故f (x )的定义域为{x ∣x <−2或x >2且x ≠3}.【考点】函数的定义域及其求法【解析】(1)由分母不为零,偶次根式底数为非负数,构造不等式组即可解出.(2)由偶次根式底数为非负数,零指数幂底数不为零,构造不等式组即可解出.【解答】解:(1)由题意得:{3x +6≥0,x −1≠0,解得x ≥−2且x ≠−1,所以函数f (x )的定义域为{x ∣x ≥−2且x ≠1}.(2)由题意得:{|x |−2≥0,x −3≠0,解得x <−2或x >2且x ≠3,故f (x )的定义域为{x ∣x <−2或x >2且x ≠3}.22.【答案】(1)∵ f(x)=6x 2−3x+2,∴ x 2−3x +2≠0,解得x ≠1且x ≠2,∴ f(x)的定义域为(−∞,1)∪(1,2)∪(2,+∞).(2)∵ f(x)=√4−x x−1, ∴ {4−x ≥0,x −1≠0,解得x ≤4且x ≠1,∴ f(x)的定义域为(−∞,1)∪(1,4].【考点】函数的定义域及其求法【解析】;.【解答】(1)∵ f(x)=6x 2−3x+2,∴ x 2−3x +2≠0,解得x ≠1且x ≠2,∴ f(x)的定义域为(−∞,1)∪(1,2)∪(2,+∞).(2)∵ f(x)=√4−x x−1, ∴ {4−x ≥0,x −1≠0,解得x ≤4且x ≠1,∴ f(x)的定义域为(−∞,1)∪(1,4].23.【答案】解:(1)由{3−x ≥0,x ≥0得{x ≤3,x ≥0, 所以M ={x|0≤x ≤3}.因为g (x )=x 2−2x +2=(x −1)2+1,x ∈[0,3],所以g (x )max =g (3)=5,g (x )min =g (1)=1,所以函数g (x )在x ∈M 时的值域为[1,5].(2)由任意x ∈R 都有g (x )≥mx −2成立得,x 2−(m +2)x +4≥0对x ∈R 恒成立,所以Δ=(m +2)2−16≤0,解得−6≤m ≤2,所以实数m 的取值范围为[−6,2].【考点】函数的值域及其求法函数的定义域及其求法一元二次不等式的解法【解析】(1)答案未提供解析.(2)答案未提供解析.【解答】解:(1)由{3−x ≥0,x ≥0得{x ≤3,x ≥0, 所以M ={x|0≤x ≤3}.因为g (x )=x 2−2x +2=(x −1)2+1,x ∈[0,3],所以g (x )max =g (3)=5,g (x )min =g (1)=1,所以函数g (x )在x ∈M 时的值域为[1,5].(2)由任意x ∈R 都有g (x )≥mx −2成立得,x 2−(m +2)x +4≥0对x ∈R 恒成立,所以Δ=(m +2)2−16≤0,解得−6≤m ≤2,所以实数m 的取值范围为[−6,2].24.【答案】解:(1)由(x +1)(x −2)≥0得:x ≤−1或x ≥2,所以A =(−∞, −1]∪[2, +∞).(2)A =(−∞, −1]∪[2, +∞),B ={x|x <a 或x >a +1},因为A ⊆B ,所以{a >−1,a +1<2,解得:−1<a <1,所以实数a 的取值范围是(−1, 1).【考点】集合关系中的参数取值问题一元二次不等式的解法函数的定义域及其求法【解析】(1)根据题目中使函数有意义的x的值解分式不等式求得函数的定义域A;(2)由若A⊆B,根据两个集合端点值之间的关系列不等式组求解a的取值范围.【解答】解:(1)由(x+1)(x−2)≥0得:x≤−1或x≥2,所以A=(−∞, −1]∪[2, +∞).(2)A=(−∞, −1]∪[2, +∞),B={x|x<a或x>a+1},因为A⊆B,所以{a>−1,a+1<2,解得:−1<a<1,所以实数a的取值范围是(−1, 1).25.【答案】解:(1)由−2x2+5x+3≥0,解得:−12≤x≤3,故A=[−12, 3],当a=−4时,x2−4<0,解得:−2<x<2,故B=(−2, 2),故A∪B=(−2, 3];(2)若A∩B=B,则B⊆A,①当a<0时,(−√−a, √−a)⊆[−12, 3],即−14≤a<0;②当a≥0时,B为⌀,符合题意.∴a∈[−14, +∞).【考点】函数的定义域及其求法并集及其运算集合的包含关系判断及应用【解析】(1)解不等式分别求出集合A、B,求出A、B的交集即可;(2)根据A、B的包含关系,得到关于a的不等式,解出即可.【解答】解:(1)由−2x2+5x+3≥0,解得:−12≤x≤3,故A=[−12, 3],当a=−4时,x2−4<0,解得:−2<x<2,故B=(−2, 2),故A∪B=(−2, 3];(2)若A∩B=B,则B⊆A,, 3],①当a<0时,(−√−a, √−a)⊆[−12≤a<0;即−14②当a≥0时,B为⌀,符合题意.∴a∈[−1, +∞).4。
函数定义域、值域经典习题及答案

复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y =⑽ 4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间: ⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y = 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x = ⑸21)52()(-=x x f , 52)(2-=x x f 。
整理定义域值域练习题

一、常见抽象函数定义域一)已知f (x )的定义域,求f [g (x )]的定义域其解法是:若f (x )的定义域为a ≤x ≤b ,则f [g (x )]中a ≤g (x )≤b ,从中解得x 的取值范围即为f [g (x )]的定义域.例1 已知函数f (x )的定义域为[-1,5],求f (x 2-3x -5)的定义域.二)已知f [g (x )]的定义域,求f (x )的定义域其解法是:若f [g (x )]的定义域为m ≤x ≤n ,则由m ≤x ≤n 确定g (x )的范围即为f (x )的定义域.例2 已知函数f (x 2-2x +2)的定义域是[0,3],求函数f (x )的定义域.三)已知f [g (x )]的定义域,求f [h (x )]的定义域其解法是:可先由f [g (x )]定义域求得f (x )的定义域,再由f (x )的定义域求得f [h (x )]的定义域.例3 若函数f (x +1)的定义域为[-21,2],求f (x 2)的定义域.练习题: 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(l o g 2x f 的定义域为 。
二、常用函数定义域的求法已知函数的解析式,若未加特殊说明,则定义域是使解析式有意义的自变量的取值范围。
一般有以下几种情况:●分式中的分母不为零; ●偶次方根下的数(或式)大于或等于零; ●指数式的底数大于零且不等于1; ● 对数式的底数大于零且不等于1,真数大于零。
● 正切函数x y tan = ⎪⎭⎫ ⎝⎛∈+≠∈Z ππk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且例1(2000上海) 函数x x y --=312log2的定义域为 。
例2 函数y的定义域为_ ___ .例3 求函数y 11x -的定义域.例4 求函数y =()022x x -+.巩固练习1、(2002上海春)函数2231x x y --=的定义域为 。
定义域值域练习题

定义域值域练习题定义域和值域是数学中的重要概念,它们在函数的研究和应用中起着至关重要的作用。
通过练习题的形式来加深对定义域和值域的理解,可以帮助我们更好地掌握这一概念。
1. 练习题一:给定函数f(x) = √(x+2),求函数的定义域和值域。
解析:对于函数f(x) = √(x+2),由于根号下的表达式不能为负数,所以x+2≥0,即x≥-2。
因此,函数的定义域为[-2, +∞)。
对于值域,我们可以观察到随着x的增大,函数值也随之增大,且函数值没有上界。
因此,函数的值域为[0, +∞)。
2. 练习题二:给定函数g(x) = 1/(x-3),求函数的定义域和值域。
解析:对于函数g(x) = 1/(x-3),由于分母不能为零,所以x-3≠0,即x≠3。
因此,函数的定义域为(-∞, 3)∪(3, +∞)。
对于值域,我们可以观察到随着x的增大或减小,函数值也随之增大或减小。
但由于定义域中不包含x=3,所以函数的值域为(-∞, 0)∪(0, +∞)。
3. 练习题三:给定函数h(x) = e^x,求函数的定义域和值域。
解析:对于函数h(x) = e^x,指数函数e^x对于所有实数x都有定义。
因此,函数的定义域为(-∞, +∞)。
对于值域,我们可以观察到指数函数e^x的特点是随着x的增大,函数值也随之增大,且函数值没有下界。
因此,函数的值域为(0, +∞)。
通过以上练习题,我们可以看出定义域和值域的求解是通过对函数表达式的分析和观察来完成的。
对于定义域,我们需要注意函数中出现的分母不能为零,根号下的表达式不能为负数等限制条件。
对于值域,我们需要观察函数随着自变量的变化而变化的规律,以确定函数值的范围。
在实际应用中,对于函数的定义域和值域的求解有助于我们理解函数的性质和特点,进而在问题求解中进行合理的取值范围的设定。
例如,在经济学中,对于某个经济指标的函数,我们可以通过求解其定义域和值域来确定该指标的有效范围和变化趋势,从而作出合理的经济决策。
完整版)高一数学函数经典习题及答案
完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。
三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。
2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。
3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。
5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。
高一数学函数经典练习题(含答案详细)
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
高一数学《函数的定义域值域》练习题(含答案)
函数值域、定义域、解析式专题一、函数值域的求法 1、直接法:例1:求函数y = 例2:求函数1y =的值域。
2、配方法:例1:求函数242y x x =-++([1,1]x ∈-例2:求 函 数y =例3:求函数y125xx -+的值域。
例2:求函数122+--=x x xx y 的值域.例3:求函数132x y x -=-得值域.4、换元法:例1:求函数2y x =例2: 求 函 数1x x y -+=的 值 域。
5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。
例1:求函数y x =例2:求函数()x x x f -++=11的值域。
例3:求 函 数1x 1x y --+=的 值 域。
63||5|x x ++-的值域。
结合非负数的性质,可求出相关函数的值域。
例1、(1)求函数216x y -=的值域。
(2)求函数1322+-=x x y 的值域。
二、函数定义域例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.例3:求下列函数的定义域:① 21)(-=x x f ; ② 23)(+=x x f ; ③ xx x f -++=211)( 例4:求下列函数的定义域:④ 14)(2--=x x f⑤ ②2143)(2-+--=x x x x f⑥ 373132+++-=x x y ④f (的解析式.例2:已知:11)11(2-=+x x f ,求)(x f 。
例3 :已知x x x f 2)1(+=+,求)1(+x f .3、待定系数法例1.已知:f(x) 是二次函数,且f(2)=-3, f(-2)=-7, f(0)=-3,求f(x)。
例2:设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .4、赋值(式)法例1:已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。
定义域基础练习题
定义域基础练习题一、选择题1. 若函数f(x) = √(x^2 5x + 6),则f(x)的定义域为:A. x > 3B. x ≤ 2 或x ≥ 3C. x ≥ 2D. x ≤ 22. 函数g(x) = 1 / (x 4)的定义域为:A. x ≠ 4B. x > 4C. x < 4D. x ≥ 43. 若函数h(x) = √(4 x^2),则h(x)的定义域为:A. 2 ≤ x ≤ 2B. x ≤ 2 或x ≥ 2C. 2 < x < 2D. x ≠ 0二、填空题4. 函数f(x) = √(3x 9)的定义域为______。
5. 函数g(x) = ln(x^2 1)的定义域为______。
6. 若函数h(x) = (x + 3) / (x^2 4x + 3),则h(x)的定义域为______。
三、解答题7. 求函数f(x) = √(2x 5)的定义域。
8. 求函数g(x) = 1 / √(4 x^2)的定义域。
9. 已知函数h(x) = (x 2) / (x^3 8),求h(x)的定义域。
10. 求函数f(x) = √(x^2 4x + 3)的定义域。
11. 已知函数g(x) = (x^2 5x + 6) / (x 3),求g(x)的定义域。
12. 求函数h(x) = √(4x^2 9)的定义域。
13. 已知函数f(x) = ln(5 x^2),求f(x)的定义域。
14. 求函数g(x) = √(x^2 6x + 9)的定义域。
15. 已知函数h(x) = (x + 2) / (x^2 5x + 6),求h(x)的定义域。
四、判断题16. 函数f(x) = √(x + 4)的定义域是所有实数。
()17. 函数g(x) = 1 / (x^2 9)的定义域是{x | x ≠ 3 且x ≠ 3}。
()18. 函数h(x) = log_2(x 1)的定义域是{x | x > 1}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的定义域习题举例
1.求下列函数的定义域
① 1()||fxxx ② 1()11fxx ③ f(x) = 1x+x21
④ f(x) = 24xx ⑤ ()131fxxx
参考答案:
【①(,0);②(,1)(1,0)(0,);③[1,2)(2,);④
[4,2)(2,)
⑤[3,1]。】
2.。已知函数f (x) = 3x+21x
(1)求函数的定义域;
(2)求f(-3),f (32)的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式
y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的
集合,函数的定义域、值域要写成集合或区间的形式.
解:(1)3020xx得函数的定义域为[3,2)(2,)。
(1) f(-3)=-1,f (32)=31183
(2) 当a>0时,(2,)a ,f(a)=132aa。1(1,)a,f(a-1)=
1
21aa
。
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R .
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的
集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意
义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
3.求下列函数的定义域。
(1)(),{1,2,3,4,5}fxxx
(2)1()5fxx
(3)217yxx
(4)0(1)||xyxx
参考答案:
(1)()fx的定义域为{1,2,3,4,5}
(2)要使1()5fxx有意义,须满足50x,即5x,所以1()5fxx的定义域
是{|5}xx
4. 〖例〗函数1()41fxxx的定义域是___________(用区间表示)
〖例〗
函数2yxx的定义域 ( )
A.|2xx B.|0xx C.|02xx D.|2xx0
〖解〗
D
〖例〗
函数xxy22的定义域为0,1,2,3A,值域为B,则AB
A.0,1 B.1,2 C.1,3 D.0,3
〖解〗
D
〖例〗
若函数xxy22的定义域为3,2,1,0,则其值域为 ( )
A.3,0,1 B.3,2,1,0 C.31yy D.30yy
〖解〗
A
〖例〗
函数1yx在区间]2,21[上的最大值是( )
A. 12 B.1 C. 12 D.3
〖解〗
C
〖例〗
函数xxy22的定义域为3,2,1,0,那么其值域为( )
A.3,0,1 B.3,2,1,0 C.31yy D.30yy
〖解〗
A
〖例〗
求下列函数的值域:
(1)22xxy; (2)9,2,23xxy;
(3)2,1,322xxxy; (4)6228610xxxxy.
〖解〗
(1)49, (2)7,15 (3)0,4 (4),4
〖例〗
函数)1(5)10(3)0(32xxxxxxy的最大值是_____________.
〖解〗
)(xfy
的最大值是4.