2015-2016学年山东省济宁市曲阜市八年级(上)期末数学试卷含解析答案
山东省济宁市曲阜市2023-2024学年八年级上学期期末数学试题(含解析)

2023~2024学年度第一学期期末教学质量监测考试八年级数学试题注意事项:1、本试卷分第I 卷和第Ⅱ卷两部分,共4页,第I 卷为选择题,36分;第Ⅱ卷为非选择题、64分;共100分、考试时间为120分钟.2.答题前、考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第I 卷时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动、必须先用橡皮擦干净、再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写.务必在题号所指示的答题区域内作答、5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求.1.剪纸是我国古老的民间艺术,下列四个剪纸图案为轴对称图形的是( )A .B .C .D .2.下列计算正确的是( )A .B .C .D .2m m m +=()222244m n m mn n +=++()2236x x -=623x x x ÷=A .125°B .135°6.如图,,那么添加下列一个条件后,仍无法判定( )A .B 7.若,则下列分式化简正确的是(A .B CAB DAB ∠=∠ABC ABD ∠=∠a b ¹22a a b b +=+A .3B .4C .6D .810.利用下面图形之间的变化关系以及图形的几何意义,可以证明的数学等式是( )A .B .C .D .11.如图,是等边三角形,是边上的高,是的中点,是上的一个动点,当与的和最小时,等于( )A .B .C .D .12.如图,在中,,点D 为线段上一动点(不与点B ,C 重合),连接,作,交线段于点E ,下列结论:①;②若,则;③当时,则D 为中点;④当为等腰三角形时,.222()2a b a ab b +=++222()2a b a ab b -=-+2222a b a b ab +=+-()22()()a b a b a b -=+-ABC AD BC E AC P AD PC PE CPE ∠30︒90︒45︒60︒ABC AB AC =BC AD 40ADE B ∠=∠=︒DE AC DEC BDA ∠=∠AB DC =AD DE =DE AC ⊥BC ADE V 30BAD ∠=︒A .①②B .②③④第II 二、填空题:本大题共6小题,每小题13.若分式有意义,则x 的取值范围是16.如图,E 为平分线的距离为 .17.如图,在中,,将沿着折叠,点18.若实数,则我们把称为13x +BAC ∠ABC E CBD △BD 1x ≠-11x -+(1)作出关于直线的轴对称图形(2)写出点的坐标(____,____(3)在内有一点,点的坐标(________,________).22.如图,在等边中,,交于点,于点.ABC l A 'ABC (),P m n ABC D N BM AD ⊥M(1)求证:;(2)若,求的长.23.为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是元和元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共本,总费用不超过元,则至少购进“传统文化”经典读本多少本?24.仔细阅读下面例题,解答问题:例题:已知二次三项式分解因式后有一个因式是,求另一个因式以及的值.解:设另一个因式为,得,则,,解得:,,另一个因式为,的值为.请仿照上述方法解答下面问题:(1)若,则______,______;(2)已知二次三项式分解因式后有一个因式是,求另一个因式以及的值;(3)已知二次三项式有一个因式是,是正整数,求另一个因式以及的值.ABE CAD ≌6MN =BN 140007000 1.430010001288024x x m -+()3x +m ()x n +()()243x x m x x n -+=++()22433x x m x n x n -+=+++343n m n +=-⎧∴⎨=⎩7n =-21m =-∴()7x -m 21-()()223x bx c x x ++=+-b =c =2814x x k --()23x -k 2642x ax ++()2x a +a a25.已知在中,,过点引一条射线,是上一点.【问题解决】(1)如图1,若,射线在内部,,求证:.小明同学展示的做法是:在上取一点使得.通过已知的条件,从而求得的度数,请你帮助小明写出证明过程.【类比探究】(2)如图2,已知.①当射线在内,求的度数;②当射线在下方,如图3所示,请问的度数会变化吗?若不变,请说明理由,若改变,请求出的度数.答案与解析1.C 【分析】过一个图形的一条直线,把这个图形分成可以完全重合的两个部分,这个图形就叫做轴对称图形;根据轴对称图形的概念求解即可.【详解】解:A 、不是轴对称图形,本选项不符合题意;B 、不是轴对称图形,本选项不符合题意;C 、是轴对称图形,本选项符合题意;ABC AB AC =B BM D BM 60ABC ∠=︒BM ABC ∠60ADB ∠=︒60BDC ∠=︒BM E AE AD =BDC ∠20ABC ADB ∠=∠=︒BM ABC ∠BDC ∠BM BC BDC ∠BDC ∠D 、不是轴对称图形,本选项不符合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】本题主要考查了同底数幂相除,合并同类项,完全平方公式,积的乘方,熟练掌握相关运算法则是解题的关键.根据同底数幂相除,合并同类项,完全平方公式,积的乘方,逐项判断即可求解.【详解】解:A .,故本选项错误,不符合题意;B .,故本选项正确,符合题意;C .,故本选项错误,不符合题意;D .,故本选项错误,不符合题意;故选:B .3.C【分析】根据三角形的三边关系求得第三边的取值范围,再看哪个选项内的数在这个范围内即可.【详解】解:设第三边长为x ,根据三角形的三边关系,得7-4<x <7+4,即3<x <11.∴10在第三边长的取值范围内.故选:C .【点睛】本题考查了三角形三边关系,记住两边之和大于第三边,两边之差小于第三边是解题的关键.4.A【分析】本题考查因式分解的概念,根据因式分解的定义(把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式)逐项判断即可.【详解】解:A 、属于因式分解,符合题意;B 、属于整式的乘法运算,不符合题意;C 、属于整式的乘法运算,不符合题意;2m m m +=()222244m n m mn n +=++()2239x x -=624x x x ÷=()2105521x x x x -=-()a m n am an +=+()2222a b a ab b +=++变化后图形的面积为:,所以故选:D【点睛】本题主要考查了平方差公式的几何背景,熟练利用面积的两种表示方法得到平方差公式的是解题的关键.11.D【分析】本题考查的是最短线路问题及等边三角形的性质,连接,则的长度即为与和的最小值.再利用等边三角形的性质可得,即可解决问题.【详解】解:如图,连接,与交于点,此时最小,是等边三角形,,,,即就是的最小值,是等边三角形,,,,,,,,,,∴故选:D .12.C()()a b a b +-22()()a b a b a b -=+-BE BE PE PC 30PBC PCB ∠=∠=︒BE AD P PE PC +ABC AD BC ⊥PC PB ∴=PE PC PB PE BE ∴+=+≥BE PE PC +ABC 60BCE ∴∠=︒BA BC = AE EC =BE AC ∴⊥90BEC ∴∠=︒30EBC ∴∠=︒PB PC = 30PCB PBC ∴∠=∠=︒30ACP ∴∠=︒60CPE ∠=︒∴,故答案为:.【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是分母不为0是解题的关键.14.【分析】利用提公因式和平方差公式进行因式分解.【详解】解:.故答案为:.【点睛】本题考查了因式分解,解题的关键是掌握提公因式和平方差公式因式分解法.15.6【分析】本题考查了全等三角形的判定及性质、直角三角形的特征,根据直角三角形的特征及可得,进而可得,再根据即可求解,熟练掌握全等三角形的判定及性质是解题的关键.【详解】解:和是由摆动得到,,,,,,,,,,在和中,,,3x ≠-3x ≠-()()322m m m -+3312m m -()234m m =-()()322m m m =-+()()322m m m -+AAS OBD COE ≌ OD CE =AD OA OD =- OB OC OA OB CO ∴= OB OC ⊥90BOC ∴∠=︒BD OA ⊥ CE OA ⊥90BDO OEC ∴∠=∠=︒90BOD OBD ∴∠+∠=︒90BOD EOC ∠+∠=︒OBD COE ∴∠=∠OBD COE BDO OEC OBD COE OB CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS OBD COE ∴ ≌(2),,,故答案为:4,1;5,4;3,3;(3)点关于直线的对称点的坐标为,故答案为:,.22.(1)见解析(2)【分析】本题考查等边三角表的性质,全等三角形的判定和性质,含30度角的直角三角形的性质:(1)根据等边三角形的性质可得,,即可证明;(2)根据可证,通过等量代换可证,进而可得,最后根据含30度角的直角三角形的性质即可求解.【详解】(1)证明:是等边三角形,,,在和中,,;(2)解:,,,(4,1)A '(5,4)B '(3,3)C 'P l P (2,)m n -2m -n 12AB BC AC ==60BAC ACB ∠=∠=︒()AAS ABE CAD ≌()AAS ABE CAD ≌ABE CAD ∠=∠60BNM ∠=︒30NBM ∠=︒ABC AB BC AC ∴==60BAC ACB ∠=∠=︒ABE CAD AEB ADC BAE ACD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABE CAD ∴ ≌ABE CAD ≌ABE CAD ∴∠=∠60BNM BAN ABN BAN CAD BAC ∴∠=∠+∠=∠+∠=∠=︒【分析】(1)将,等式右边展开,根据对应项系数相等,即可求解,(2)设另一个因式为:,根据多项式的乘法运算法则展开,根据对应项系数相等,即可求解,(3)设另一个因式是,根据多项式的乘法运算法则展开,根据对应项系数相等,即可求解,本题考查了,根据因式分解的结果求参数,多项式乘多项式,解题的关键是:理解因式分解与多项式乘法互为逆运算.【详解】(1)解:,,,故答案为:,,(2)解:设另一个因式为:,则,,解得:,,另一个因式是,故答案为:,,(3)解:设另一个因式是,则则,解得:或,是正整数,,另一个因式是;(不符合题意舍去),另一个因式是,a 的值是2.25.(1)详见解析(2)①;②会变化,()()223x bx c x x ++=+-()4x b +()3x m +()()22236x x x x x bx c +-=--=++ 1b ∴=-6c =-1-6-()4x b +()()()2222348212382123814x x b x bx x b x b x b x x k -+=+--=+--=--212143b b k -=-⎧∴⎨=⎩1b =-3k =-∴()41x -()41x -3k =-()3x m +()()()2223623642x a x m x m a x am x ax ++=+++=++2342m a a am +=⎧⎨=⎩21a m =⎧⎨=⎩21a m =-⎧⎨=-⎩ a 2a ∴=()31x +2a =-∴()31x +140︒40︒【分析】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质,等腰三角形的判定和性质,正确作出辅助线,构造全等三角形进行计算和证明是解题的关键.(1)根据等边三角形的判定定理得到、是等边三角形,进而得到,根据证明,根据全等三角形的性质得到,据此可得到答案;(2)①在上取一点E ,,证明,得到,可求出答案;②在延长线上取一点E ,使得,同理证明,求出,进而求出.【详解】(1)证明:如图1,在上取一点E ,使,∵,∴是等边三角形,∴,∵,,∴是等边三角形,∴,∴,∴,即,∵在和中,∴,∴,∴;(2)证明:①在上取一点E ,,如图所示:∵,,∴,,ADE V ABC BAE CAD ∠=∠SAS BAE CAD △≌△120ADC AEB ∠=∠=︒BD AE AD =BAE CAD △≌△160ADC ∠=︒DB AE AD =BAE CAD △≌△20ADC E ∠=∠=︒BDC ∠BM AE AD =60ADB ∠=︒ADE V 60EAD ∠=︒AB AC =60ABC ∠=︒ABC 60BAC ∠=︒BAC EAD ∠=∠BAC EAC EAD EAC ∠-∠=∠-∠BAE CAD ∠=∠BAE CAD AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩()SAS BAE CAD ≌120ADC AEB ∠=∠=︒1206060BDC ∠=︒-︒=︒BD AE AD =20ABC ADB ∠=∠=︒AB AC =20ABC ACB ∠=∠=︒20AED ADE ∠=∠=︒∴,∴,∵在和中,∴,∴,∴;②的度数会变化,理由如下:在延长线上取一点E ,使得,如图所示:同理①的方法可证:,∴,∴.140BAC EAD ∠=∠=︒BAE CAD ∠=∠BAE CAD AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩()SAS BAE CAD ≌18020160ADC AEB ∠=∠=︒-︒=︒16020140BDC ∠=︒-︒=︒BDC ∠DB AE AD =BAE CAD △≌△20ADC E ∠=∠=︒202040BDC ADE ADC ∠=∠+∠=︒+︒=︒。
济宁市八年级上期末数学试卷含解析-名校版

2017-2018学年微山县八年级(上)期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣12.(3分)下列各式中,正确的是()A.30=0 B.x3•x2=x5 C.(x﹣1)2=x2﹣1 D.x﹣2x=x3.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或174.(3分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B. 1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣35.(3分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE ≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③6.(3分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣27.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b28.(3分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.9.(3分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()[] A.5 B.﹣5 C.1 D.﹣110.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:x2y﹣4y= .12.(3分)一个多边形的内角和为540°,则这个多边形的边数是.13.(3分)比较大小:27508140(填>,<或=).14.(3分)如果关于x的分式方程=m的解是正数,则m的取值范围为.15.(3分)有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是.三、解答题(本大题共7小题,共55分)16.(6分)计算:(1)(2a﹣3b)(2a+5b);(2)(2ab2c﹣3)﹣2÷(a﹣2b)3.17.(6分)如图,△ABC中,∠B=40°,∠C=80°,AE是△ABC的高.(1)画出△ABC的角平分线AD,并求出∠DAE的度数;(2)直接写出∠B,∠C和∠DAE三者之间的数量关系.18.(7分)如图,△ABC是等边三角形,BD是高线,延长BC到E,使CE=AD.猜想:DB与DE数量关系,并证明你的猜想.19.(8分)先化简(﹣x+1)÷,再从﹣1,+1,﹣2中选择合适的x值代入求值.20.(8分)某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?21.(9分)【阅读材料】对于二次三项式a2+2ab+b2可以直接分解为(a+b)2的形式,但对于二次三项式a2+2ab﹣8b2,就不能直接用公式了,我们可以在二次三项式a2+2ab﹣8b2中先加上一项b2,使其成为完全平方式,再减去b2这项,(这里也可把﹣8b2拆成+b2与﹣9b2的和),使整个式子的值不变.于是有:a2+2ab﹣8b2=a2+2ab﹣8b2+b2﹣b2=(a2+2ab+b2)﹣8b2﹣b2=(a+b)2﹣9b2=[(a+b)+3b][(a+b)﹣3b]=(a+4b)(a﹣2b)我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.【应用材料】(1)上式中添(拆)项后先把完全平方式组合在一起,然后用法实现分解因式.(2)请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:①m2+6m+8;②a4+a2b2+b422.(11分)在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm,求BE的长.”(1)请你也独立完成这道题;(2)待同学们完成这道题后,张老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.2017-2018学年山东省济宁市微山县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.2.(3分)下列各式中,正确的是()A.30=0 B.x3•x2=x5C.(x﹣1)2=x2﹣1 D.x﹣2x=x【解答】解:A、30=1,故原题计算错误;B、x3•x2=x5,故原题计算正确;C、(x﹣1)2=x2﹣2x+1,故原题计算错误;D、x﹣2x=﹣x,故原题计算错误;故选:B.3.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.4.(3分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B.1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣3【解答】解:0.000151=1.51×10﹣4,故选:C.5.(3分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE ≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③【解答】解:加上条件AE=CF,利用SSS证明三角形全等;添加条件∠D=∠B,根据SAS得出全等;故选:D.6.(3分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣2【解答】解:∵3x=4,3y=6,∴3x﹣y=3x÷3y=4÷6=.故选:B.7.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选:A.8.(3分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.【解答】解:设江水的流速为x km/h,则逆流的速度为(30﹣x)km/h,顺流的速度为(30+x)km/h,由题意得, =.故选:C.9.(3分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()A.5 B.﹣5 C.1 D.﹣1【解答】解:(x+1)(x﹣3)=x2﹣3x+x﹣3=x2﹣2x﹣3,由x2+ax+b=(x+1)(x﹣3)=x2﹣2x﹣3知a=﹣2、b=﹣3,则a+b=﹣2﹣3=﹣5,故选:B.10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64【解答】解:根据题意得:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7,系数之和为2(1+7+21+35)=128,故选:C.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:x2y﹣4y= y(x+2)(x﹣2).【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).12.(3分)一个多边形的内角和为540°,则这个多边形的边数是 5 .【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.13.(3分)比较大小:2750>8140(填>,<或=).【解答】解:∵2750=(33)50=3150,8140=(34)40=3120,∴2750>8140,故答案为:>.14.(3分)如果关于x的分式方程=m的解是正数,则m的取值范围为0<m<1 .【解答】解: =m,方程两边同乘以x+1,得,x﹣m=m(x+1),解得x=,∵分式方程=m的解是正数,∴>0且x+1≠0,即0<m<1.故答案为:0<m<1.15.(3分)有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是20°或35°或27.5°.【解答】解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,∠C=(180°﹣110°)=35°,②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,∠C=(180°﹣125°)=27.5°,③AD=BD,此时,∠ADB=180°﹣2×70°=40°,∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,∠C=(180°﹣140°)=20°,综上所述,∠C度数可以为20°或35°或27.5°.故答案为:20°或35°或27.5°三、解答题(本大题共7小题,共55分)16.(6分)计算:(1)(2a﹣3b)(2a+5b);(2)(2ab2c﹣3)﹣2÷(a﹣2b)3.【解答】解:(1)(2a﹣3b)(2a+5b)=4a2+10ab﹣6ab﹣15b2=4a2+4ab﹣15b2;(2)(2ab2c﹣3)﹣2÷(a﹣2b)3=2﹣2a﹣2b﹣4c6÷(a﹣6b3)=.17.(6分)如图,△ABC中,∠B=40°,∠C=80°,AE是△ABC的高.(1)画出△ABC的角平分线AD,并求出∠DAE的度数;(2)直接写出∠B,∠C和∠DAE三者之间的数量关系.【解答】解:(1)如图所示,∵∠DAB=180°﹣∠ABC﹣∠ADB=180°﹣90°﹣40°=50°,∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣80°=60°,又∵AE平分∠BAC,∴∠BAE=∠BAC=30°,(角平分线的定义)∴∠DAE=∠DAB﹣∠BA E=50°﹣30°=20°;(2)∠DAE=.18.(7分)如图,△ABC是等边三角形,BD是高线,延长BC到E,使CE=AD.猜想:DB与DE数量关系,并证明你的猜想.【解答】解:BD=DE,理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD⊥AC,∴AD=CD,∠DBC=∠ABC=30°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBE=∠E,∴BD=DE;19.(8分)先化简(﹣x+1)÷,再从﹣1,+1,﹣2中选择合适的x值代入求值.【解答】解:(﹣x+1)÷===,当x=1时,原式=.20.(8分)某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?【解答】解:设甲、乙两人单独完成该工作各需x、y小时,由题意得,,解得:,经检验他们是原方程的解,答:甲、乙两人单独完成该工作各需10、15小时;21.(9分)【阅读材料】对于二次三项式a2+2ab+b2可以直接分解为(a+b)2的形式,但对于二次三项式a2+2ab﹣8b2,就不能直接用公式了,我们可以在二次三项式a2+2ab﹣8b2中先加上一项b2,使其成为完全平方式,再减去b2这项,(这里也可把﹣8b2拆成+b2与﹣9b2的和),使整个式子的值不变.于是有:a2+2ab﹣8b2=a2+2ab﹣8b2+b2﹣b2=(a2+2ab+b2)﹣8b2﹣b2=(a+b)2﹣9b2=[(a+b)+3b][(a+b)﹣3b]=(a+4b)(a﹣2b)我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.【应用材料】(1)上式中添(拆)项后先把完全平方式组合在一起,然后用公式法实现分解因式.(2)请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:①m2+6m+8;②a4+a2b2+b4【解答】解:(1)上式中添(拆)项后先把完全平方式组合在一起,然后用公式法实现分解因式.故答案为:公式;(2)①m2+6m+8=m2+6m+9﹣1=(m+3)2﹣12=(m+3+1)(m+3﹣1)=(m+4)(m+2);②a4+a2b2+b4=a4+2a2b2+b4﹣a2b2=(a2+b2)2﹣(ab)2=(a2+b2+ab)(a2+b2﹣ab).22.(11分)在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm,求BE的长.”(1)请你也独立完成这道题;(2)待同学们完成这道题后,张老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.【解答】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5.∵DC=CE﹣DE,DE=1.7cm,∴DC=2.5﹣1.7=0.8cm,∴BE=0.8cm;(2)AD+BE=DE,证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CE B和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD,∴DE=CE+DE=AD+BE;(3)、(2)中的猜想还成立,证明:∵∠BCE+∠ACB+∠ACD=180°,∠DAC+∠ACB+∠ACD=180°,∠ADC=∠BCA,∴∠BCE=∠CAD,在△CEB和△ADC中,,∴△CEB≌△ADC,∴BE=CD,EC=AD,∴DE=EC+CD=AD+BE.。
2017-2018学年山东省济宁市曲阜市八年级(上)期末数学试卷(J)

2017-2018学年山东省济宁市曲阜市八年级(上)期末数学试卷(J)副标题一、选择题(本大题共10小题,共10.0分)1.将下列长度的三根木棒首尾顺次连接,能组成三角形的是A. 1,2,4B. 8,6,4C. 12,6,5D. 3,3,6【答案】B【解析】解:A、,不能组成三角形,故此选项错误;B、,能组成三角形,故此选项正确;C、,不能组成三角形,故此选项错误;D、,不能组成三角形,故此选项错误;故选:B.根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.下列计算结果为的是A. B. C. D.【答案】C【解析】解:A、,无法计算,故此选项错误;B、,故此选项错误;C、,故此选项正确;D、,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则计算得出答案.此题主要考查了同底数幂的乘除运算、幂的乘方运算,正确掌握运算法则是解题关键.3.如图所示,在折纸活动中,小明制作了一张纸片,点D,E分别是边AB、AC上,将沿着DE重叠压平,A与重合,若,则A.B.C.D.【答案】A【解析】解:四边形的内角和为,而由折叠可知,,,,.故选:A.首先根据四边形的内角和公式可以求出四边形的内角和,由折叠可知,,,又,由此可以求出,再利用邻补角的关系即可求出.本题考查根据多边形的内角和计算公式求和多边形相关的角的度数,解答时要会根据公式进行正确运算、变形和数据处理.4.若分式的值为0,则x的值为A. 0B. 1C.D.【答案】C【解析】解:分式的值为0,,且,解得:.故选:C.直接利用分式的值为0,则分子为0,进而得出答案.此题主要考查了分式的值,正确把握定义是解题关键.5.第24届冬季奥林匹克运动会,将于2022年02月04日~年02月20日在中华人民共和国北京市和张家口市联合举行在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是A. B. C. D.【答案】D【解析】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.6.如图,已知,添加下列条件还不能判定 ≌ 的是A. B.C. D.【答案】A【解析】解:由题意,得,,A、,,,三角形不全等,故A错误;B、在与中,, ≌ ,故B正确;C、在与中,, ≌ ,故C正确;D、在与中,, ≌ ,故D正确;故选:A.根据全等三角形的判定:SAS,AAS,ASA,可得答案.本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体石墨烯是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使米长的石墨烯断裂其中用科学记数法表示为A. B. C. D.【答案】A【解析】解:,故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.如图,在中,,点D,E分别在边BC和AC上,若,则下列结论不一定成立的是A. B.C. D.【答案】D【解析】解:是的外角,,选项A正确;,,选项B正确;,,选项C正确;,不一定成立,选项D错误;故选:D.由三角形的外角性质、等腰三角形的性质得出选项A、B、C正确,选项D不一定成立,即可得出答案.本题考查了等腰三角形的性质、三角形的外角性质;熟练掌握等腰三角形的性质和三角形的外角性质是解决问题的关键.9.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地已知快车速度是慢车速度的倍,如果设慢车的速度为,那么可列方程为A. B. C. D.【答案】A【解析】解:设慢车的速度为,慢车所用时间为,快车所用时间为,可列方程:.故选:A.此题求速度,有路程,所以要根据时间来列等量关系因为他们同时到达目的地,所以此题等量关系为:慢车所用时间快车所用时间.这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,但是需要考虑怎样设未知数才能比较容易地列出方程进行解答解题时还要注意有必要考虑是直接设未知数还是间接设未知数,然后再利用等量关系列出方程.10.如图,下列4个三角形中,均有,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是A. B. C. D.【答案】C【解析】解:由题意知,要求“被一条直线分成两个小等腰三角形”,中分成的两个等腰三角形的角的度数分别为:,,和,,能;不能;显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;中的为,72,和,,,能.故选:C.顶角为:,,,的四种等腰三角形都可以用一条直线把这四个等腰三角形每个都分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.二、填空题(本大题共5小题,共5.0分)11.当______时,分式有意义.【答案】【解析】解:根据题意得,,解得.故答案为:.根据分母不等于0列式计算即可得解.本题考查的知识点为:分式有意义,分母不为0.12.在平面直角坐标系中点关于x轴的对称点是______.【答案】【解析】解:关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,点关于x轴的对称点坐标是,故答案为:.根据关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数可得答案.此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.13.如图,是五边形ABCDE的一个外角,若,则______【答案】425【解析】解:,,,故答案为:425.根据补角的定义得到,根据五边形的内角和即可得到结论.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.14.如图,在中,,,则______.【答案】【解析】解:中,,,,,,,故答案为:先根据等腰三角形的性质求出的度数,再由平角的定义得出的度数,根据等腰三角形的性质即可得出结论.本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.15.一列数,,满足条件,:,,且n为整数,则______.【答案】2【解析】解:,,,可以发现:数列以,2,循环出现,,所以.故答案为2.根据题意求出,,,的值,找出循环规律即可求解.此题主要考查数列的规律探索,认真计算找出循环出现的规律是解题的关键.三、计算题(本大题共3小题,共3.0分)16.计算:【答案】解:;.【解析】利用完全平方公式法和平方差公式法计算,再进一步合并即可;利用完全平方公式和整式的乘计算.此题考查整式的混合运算,掌握计算方法和计算公式是解决问题的关键.17.解方程:.【答案】解:去分母得:,移项合并得:,解得:,经检验是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.先化简,再求值:,其中.【答案】解:原式,当时,原式.【解析】先算括号内的减法,再把除法变成乘法,求出结果,最后代入求出即可.本题考查的是分式的化简求值,在解答此类问题时要注意把分式化为最简形式,再代入求值.四、解答题(本大题共5小题,共5.0分)19.如图所示,,,求证:.【答案】证明:,在和中,≌【解析】先判断出,进而判断出 ≌ 即可得出结论.此题是三角形全等的判定和性质,解本题的关键是判断出.20.如图,在中,已知,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若,则的度数是______度若,的周长是14cm.求BC的长度;若点P为直线MN上一点,请你直接写出周长的最小值.【答案】50【解析】解:,,,的垂直平分线交AB于点N,,,故答案为:50;是AB的垂直平分线,,的周长,,的周长是14,;当点P与M重合时,周长的值最小,理由:,,与M重合时,,此时最小,周长的最小值.根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;根据线段垂直平分线上的点到线段两端点的距离相等的性质可得,然后求出的周长,再代入数据进行计算即可得解,当点P与M重合时,周长的值最小,于是得到结论.本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.21.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的倍,结果小明比小芳早6分钟到达,求小芳的速度.【答案】解:设小芳的速度是x米分钟,则小明的速度是米分钟,根据题意得:,解得:,经检验是原方程的解,答:小芳的速度是50米分钟.【解析】设小芳的速度是x米分钟,则小明的速度是米分钟,根据路程速度时间,列出方程,再求解即可.此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度时间路程,路程时间速度,路程速度时间是解题的关键.22.阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当时,可是我见到有这样一个神奇的等式:其中a,b为任意实数,且你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看”完成下列任务:请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立在相应方框内打勾;当______,______时,等式______成立;不成立;当______,______时,等式______成立;不成立.对于任意实数a,,通过计算说明是否成立.【答案】2;3;成立;3;5;成立【解析】解:例如:当,时,等式成立;当,时,等式成立.解:,.所以等式成立.利用特殊值代入检验即可;两边分别通分计算即可判定;本题考查分式的化简求值,分式的基本性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.在等边中,点D在BC边上,点E在AC的延长线上,如图求证:;点E关于直线BC的对称点为M,连接DM,AM.依题意将图2补全;小姚通过观察,实验提出猜想:在点D运动的过程中,始终有,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明,只需证是等边三角形;想法2:连接CM,只需证明 ≌ 即可.请你参考上面的想法,帮助小姚证明一种方法即可【答案】解:如图1,,,是等边三角形,,即,;补全图形如图2;证法1:由轴对称可得,,,,,由可得,,,中,,,,是等边三角形,;证法2:连接CM,由轴对称可得,,,,,由可得,,,中,,,,中,,又,,由轴对称可得,,又,,,在和中,,≌ ,.【解析】根据等腰三角形的性质,得出,根据等边三角形的性质,得出,据此可得出;根据轴对称作图即可;想法1:要证明,只需根据有一个角是的等腰三角形是等边三角形,证是等边三角形;想法2:连接CM,只需根据ASA证明 ≌ 即可.本题属于三角形的综合题,主要考查了等边三角形的性质、全等三角形的判定和性质、轴对称变换以及三角形外角性质等知识的综合应用根据题目条件构造相应的全等三角形是解第题的关键,解题时注意运用等边三角形的三个内角都等于,三条边都相等.。
2016-2017学年山东省济宁市曲阜市八年级(下)期末数学试卷

2016-2017学年山东省济宁市曲阜市八年级(下)期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.(3分)下列各式中,属于最简二次根式的是()A. B.C.D.2.(3分)在函数y=中,自变量x的取值范围是()A.x>3 B.x≥3 C.x≠3 D.x≤33.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.224.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.105.(3分)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为S甲2=141.7,S2=433.3,则产量稳定,适合推广的品种为()乙A.甲、乙均可B.甲C.乙D.无法确定6.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.7.(3分)下列计算正确的是()A.=2B.= C.=x D.=x8.(3分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=4,AB=3,则线段CE的长度是()A.B.C.3 D.2.89.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<110.(3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.B.6 C.D.二、填空题(每小题3分,共18分)11.(3分)的倒数是.12.(3分)已知一组数据为1,2,3,4,5,则这组数据的方差为.13.(3分)一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=.14.(3分)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.15.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.16.(3分)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.三、解答题(共52分)17.(5分)计算:2﹣6+.18.(6分)如图,AD⊥CD,AB=13,BC=12,CD=4,AD=3,∠CAB=α,求∠B.(用α表示)19.(7分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.20.(7分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.21.(8分)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种与某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x (时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人多搬运了多少千克?22.(9分)如图,在矩形纸片ABCD中,AD=5,AB=3,点E为BC上一点,沿着AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D.(1)当点E与点B的距离是多少时,四边形AEE'D是菱形?并说明理由;(2)在(1)的条件下,求菱形AEE'D的两条对角线的长.23.(10分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C 的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D (E)点运动的时间为t秒.(1)当t为何值时,四边形ABDE是矩形;(2)当t为何值时,四边形OEDC是平行四边形?(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.2016-2017学年山东省济宁市曲阜市八年级(下)期末数学试卷参考答案与试题解析一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.(3分)下列各式中,属于最简二次根式的是()A. B.C.D.【解答】解:A、是最简二次根式,故A正确;B、=,不是最简二次根式,故B不正确;C、=,不是最简二次根式,故C不正确;D、=a,不是最简二次根式,故D不正确;故选:A.2.(3分)在函数y=中,自变量x的取值范围是()A.x>3 B.x≥3 C.x≠3 D.x≤3【解答】解:由题意,得x﹣3≥0,解得x≥3,故选:B.3.(3分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.22【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.4.(3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:C.5.(3分)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为S甲2=141.7,S乙2=433.3,则产量稳定,适合推广的品种为()A.甲、乙均可B.甲C.乙D.无法确定【解答】解:根据题意,可得甲、乙两种水稻的平均产量相同,∵141.7<433.3,∴S甲2<S乙2,即甲种水稻的产量稳定,∴产量稳定,适合推广的品种为甲种水稻.故选:B.6.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选:D.7.(3分)下列计算正确的是()A.=2B.= C.=x D.=x【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.8.(3分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=4,AB=3,则线段CE的长度是()A.B.C.3 D.2.8【解答】解:设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,AC==5,∴Rt△EFC中,FC=5﹣3=2,EC=4﹣X,∴(4﹣x)2=x2+22,解得x=.所以CE=4﹣,故选:B.9.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1【解答】解:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选:C.10.(3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.B.6 C.D.【解答】解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴BC′=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC′=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.二、填空题(每小题3分,共18分)11.(3分)的倒数是.【解答】解:的倒数为=.故填.12.(3分)已知一组数据为1,2,3,4,5,则这组数据的方差为2.【解答】解:平均数为=(1+2+3+4+5)÷5=3,S2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故答案为:2.13.(3分)一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=3.【解答】解:把(0,2)代入解析式得|m﹣1|=2,解得m=3或﹣1,∵y随x的增大而增大,∴m>0,∴m=3.故答案为3.14.(3分)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是77分.【解答】解:根据题意,该应聘者的总成绩是:70×+80×+90×=77(分),故答案为:77.15.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.16.(3分)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为(1342,0).【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2014=335×6+4,∴点B4向右平移1340(即335×4)到点B2014.∵B4的坐标为(2,0),∴B2014的坐标为(2+1340,0),∴B2014的坐标为(1342,0).故答案为:(1342,0).三、解答题(共52分)17.(5分)计算:2﹣6+.【解答】解:原式=4﹣2+=2+4.18.(6分)如图,AD⊥CD,AB=13,BC=12,CD=4,AD=3,∠CAB=α,求∠B.(用α表示)【解答】解:∵AD⊥CD,CD=4,AD=3,∴AC==5,∵AC2+BC2=169,AB2=169,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴∠B=90°﹣α.19.(7分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.【解答】解:(1)平均数===26(件),将表中的数据按照从大到小的顺序排列,可得出第8名工人的加工零件数为24件,且零件加工数为24的工人最多,故中位数为:24件,众数为:24件.答:这15人该月加工零件数的平均数为26件,中位数为24件,众数为24件.(2)24件较为合理,24既是众数,也是中位数,且24小于人均零件加工数,是大多数人能达到的定额.20.(7分)如图,六个完全相同的小长方形拼成了一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边;(2)在图2中画出线段AB 的垂直平分线.【解答】解:(1)如图所示,∠ABC=45°.(AB 、AC 是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.21.(8分)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种与某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x (时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人多搬运了多少千克?【解答】解:(1)设y B关于x的函数解析式是y B=kx+b,,得,答:y B关于x的函数解析式是y B=90x﹣90(1≤k≤6);(2)由图象可得,A种机器人屠呦呦的速度为:180÷3=60千克/小时,B种机器人的速度为:180÷(3﹣1)=90千克/小时,∴A、B两种机器人连续搬运5个小时,B种机器人多搬运了(90﹣60)×5=150(千克),答:A、B两种机器人连续搬运5个小时,那么B种机器人多搬运了150千克.22.(9分)如图,在矩形纸片ABCD中,AD=5,AB=3,点E为BC上一点,沿着AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D.(1)当点E与点B的距离是多少时,四边形AEE'D是菱形?并说明理由;(2)在(1)的条件下,求菱形AEE'D的两条对角线的长.【解答】解:(1)当BE=4时,四边形AEE'D是菱形.理由:由△ABE平移至△DCE'的位置,可知AD∥EE'且AD=EE'.∴四边形AEE'D是平行四边形.∵四边形AEE'D是菱形,∴AE=AD=5,∵AB=3,∠B=90°,∴BE==4.∴当BE=4时,四边形AEE'D是菱形.(2)∵BC=AD=5,DC=AB=3,BE=4,∴CE=1,BE'=9.在Rt△DCE中,.在Rt△ABE'中,.23.(10分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C 的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D (E)点运动的时间为t秒.(1)当t为何值时,四边形ABDE是矩形;(2)当t为何值时,四边形OEDC是平行四边形?(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.【解答】解:(1)∵点C的坐标为(2,8),点A的坐标为(26,0),∴OA=26,BC=24,AB=8,∵D(E)点运动的时间为t秒,∴BD=t,OE=3t,∵四边形ABDE是矩形,∴BD=AE,即t=26﹣3t,解得,t=;(2)∵四边形OEDC为平行四边形,∴CD=OE,即24﹣t=3t,解得,t=6;(3)如图1,当点E在OA上时,AE=26﹣3t,则S=×AE×AB=×(26﹣3t)×8=﹣12t+104,当点E在AB上时,AE=3t﹣26,BD=t,则S=×AE×DB=×(3t﹣26)×t=t2﹣13t.。
[优质]济宁市八年级上期末数学试卷含解析
![[优质]济宁市八年级上期末数学试卷含解析](https://img.taocdn.com/s3/m/87df19027fd5360cba1adbf7.png)
2017-2018学年微山县八年级(上)期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣12.(3分)下列各式中,正确的是()A.30=0 B.x3•x2=x5 C.(x﹣1)2=x2﹣1 D.x﹣2x=x3.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或174.(3分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B. 1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣35.(3分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE ≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③6.(3分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣27.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b28.(3分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.9.(3分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()[] A.5 B.﹣5 C.1 D.﹣110.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:x2y﹣4y= .12.(3分)一个多边形的内角和为540°,则这个多边形的边数是.13.(3分)比较大小:27508140(填>,<或=).14.(3分)如果关于x的分式方程=m的解是正数,则m的取值范围为.15.(3分)有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是.三、解答题(本大题共7小题,共55分)16.(6分)计算:(1)(2a﹣3b)(2a+5b);(2)(2ab2c﹣3)﹣2÷(a﹣2b)3.17.(6分)如图,△ABC中,∠B=40°,∠C=80°,AE是△ABC的高.(1)画出△ABC的角平分线AD,并求出∠DAE的度数;(2)直接写出∠B,∠C和∠DAE三者之间的数量关系.18.(7分)如图,△ABC是等边三角形,BD是高线,延长BC到E,使CE=AD.猜想:DB与DE数量关系,并证明你的猜想.19.(8分)先化简(﹣x+1)÷,再从﹣1,+1,﹣2中选择合适的x值代入求值.20.(8分)某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?21.(9分)【阅读材料】对于二次三项式a2+2ab+b2可以直接分解为(a+b)2的形式,但对于二次三项式a2+2ab﹣8b2,就不能直接用公式了,我们可以在二次三项式a2+2ab﹣8b2中先加上一项b2,使其成为完全平方式,再减去b2这项,(这里也可把﹣8b2拆成+b2与﹣9b2的和),使整个式子的值不变.于是有:a2+2ab﹣8b2=a2+2ab﹣8b2+b2﹣b2=(a2+2ab+b2)﹣8b2﹣b2=(a+b)2﹣9b2=[(a+b)+3b][(a+b)﹣3b]=(a+4b)(a﹣2b)我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.【应用材料】(1)上式中添(拆)项后先把完全平方式组合在一起,然后用法实现分解因式.(2)请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:①m2+6m+8;②a4+a2b2+b422.(11分)在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm,求BE的长.”(1)请你也独立完成这道题;(2)待同学们完成这道题后,张老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.2017-2018学年山东省济宁市微山县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.2.(3分)下列各式中,正确的是()A.30=0 B.x3•x2=x5C.(x﹣1)2=x2﹣1 D.x﹣2x=x【解答】解:A、30=1,故原题计算错误;B、x3•x2=x5,故原题计算正确;C、(x﹣1)2=x2﹣2x+1,故原题计算错误;D、x﹣2x=﹣x,故原题计算错误;故选:B.3.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.4.(3分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B.1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣3【解答】解:0.000151=1.51×10﹣4,故选:C.5.(3分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE ≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③【解答】解:加上条件AE=CF,利用SSS证明三角形全等;添加条件∠D=∠B,根据SAS得出全等;故选:D.6.(3分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣2【解答】解:∵3x=4,3y=6,∴3x﹣y=3x÷3y=4÷6=.故选:B.7.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选:A.8.(3分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.【解答】解:设江水的流速为x km/h,则逆流的速度为(30﹣x)km/h,顺流的速度为(30+x)km/h,由题意得, =.故选:C.9.(3分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()A.5 B.﹣5 C.1 D.﹣1【解答】解:(x+1)(x﹣3)=x2﹣3x+x﹣3=x2﹣2x﹣3,由x2+ax+b=(x+1)(x﹣3)=x2﹣2x﹣3知a=﹣2、b=﹣3,则a+b=﹣2﹣3=﹣5,故选:B.10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64【解答】解:根据题意得:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7,系数之和为2(1+7+21+35)=128,故选:C.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:x2y﹣4y= y(x+2)(x﹣2).【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).12.(3分)一个多边形的内角和为540°,则这个多边形的边数是 5 .【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.13.(3分)比较大小:2750>8140(填>,<或=).【解答】解:∵2750=(33)50=3150,8140=(34)40=3120,∴2750>8140,故答案为:>.14.(3分)如果关于x的分式方程=m的解是正数,则m的取值范围为0<m<1 .【解答】解: =m,方程两边同乘以x+1,得,x﹣m=m(x+1),解得x=,∵分式方程=m的解是正数,∴>0且x+1≠0,即0<m<1.故答案为:0<m<1.15.(3分)有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是20°或35°或27.5°.【解答】解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,∠C=(180°﹣110°)=35°,②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,∠C=(180°﹣125°)=27.5°,③AD=BD,此时,∠ADB=180°﹣2×70°=40°,∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,∠C=(180°﹣140°)=20°,综上所述,∠C度数可以为20°或35°或27.5°.故答案为:20°或35°或27.5°三、解答题(本大题共7小题,共55分)16.(6分)计算:(1)(2a﹣3b)(2a+5b);(2)(2ab2c﹣3)﹣2÷(a﹣2b)3.【解答】解:(1)(2a﹣3b)(2a+5b)=4a2+10ab﹣6ab﹣15b2=4a2+4ab﹣15b2;(2)(2ab2c﹣3)﹣2÷(a﹣2b)3=2﹣2a﹣2b﹣4c6÷(a﹣6b3)=.17.(6分)如图,△ABC中,∠B=40°,∠C=80°,AE是△ABC的高.(1)画出△ABC的角平分线AD,并求出∠DAE的度数;(2)直接写出∠B,∠C和∠DAE三者之间的数量关系.【解答】解:(1)如图所示,∵∠DAB=180°﹣∠ABC﹣∠ADB=180°﹣90°﹣40°=50°,∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣80°=60°,又∵AE平分∠BAC,∴∠BAE=∠BAC=30°,(角平分线的定义)∴∠DAE=∠DAB﹣∠BA E=50°﹣30°=20°;(2)∠DAE=.18.(7分)如图,△ABC是等边三角形,BD是高线,延长BC到E,使CE=AD.猜想:DB与DE数量关系,并证明你的猜想.【解答】解:BD=DE,理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD⊥AC,∴AD=CD,∠DBC=∠ABC=30°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBE=∠E,∴BD=DE;19.(8分)先化简(﹣x+1)÷,再从﹣1,+1,﹣2中选择合适的x值代入求值.【解答】解:(﹣x+1)÷===,当x=1时,原式=.20.(8分)某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?【解答】解:设甲、乙两人单独完成该工作各需x、y小时,由题意得,,解得:,经检验他们是原方程的解,答:甲、乙两人单独完成该工作各需10、15小时;21.(9分)【阅读材料】对于二次三项式a2+2ab+b2可以直接分解为(a+b)2的形式,但对于二次三项式a2+2ab﹣8b2,就不能直接用公式了,我们可以在二次三项式a2+2ab﹣8b2中先加上一项b2,使其成为完全平方式,再减去b2这项,(这里也可把﹣8b2拆成+b2与﹣9b2的和),使整个式子的值不变.于是有:a2+2ab﹣8b2=a2+2ab﹣8b2+b2﹣b2=(a2+2ab+b2)﹣8b2﹣b2=(a+b)2﹣9b2=[(a+b)+3b][(a+b)﹣3b]=(a+4b)(a﹣2b)我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.【应用材料】(1)上式中添(拆)项后先把完全平方式组合在一起,然后用公式法实现分解因式.(2)请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:①m2+6m+8;②a4+a2b2+b4【解答】解:(1)上式中添(拆)项后先把完全平方式组合在一起,然后用公式法实现分解因式.故答案为:公式;(2)①m2+6m+8=m2+6m+9﹣1=(m+3)2﹣12=(m+3+1)(m+3﹣1)=(m+4)(m+2);②a4+a2b2+b4=a4+2a2b2+b4﹣a2b2=(a2+b2)2﹣(ab)2=(a2+b2+ab)(a2+b2﹣ab).22.(11分)在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm,求BE的长.”(1)请你也独立完成这道题;(2)待同学们完成这道题后,张老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.【解答】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5.∵DC=CE﹣DE,DE=1.7cm,∴DC=2.5﹣1.7=0.8cm,∴BE=0.8cm;(2)AD+BE=DE,证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CE B和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD,∴DE=CE+DE=AD+BE;(3)、(2)中的猜想还成立,证明:∵∠BCE+∠ACB+∠ACD=180°,∠DAC+∠ACB+∠ACD=180°,∠ADC=∠BCA,∴∠BCE=∠CAD,在△CEB和△ADC中,,∴△CEB≌△ADC,∴BE=CD,EC=AD,∴DE=EC+CD=AD+BE.。
济宁市八年级上期末数学试卷含解析-优选

2017-2018学年微山县八年级(上)期末数学试卷一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣12.(3分)下列各式中,正确的是()A.30=0 B.x3•x2=x5 C.(x﹣1)2=x2﹣1 D.x﹣2x=x3.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或174.(3分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B. 1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣35.(3分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE ≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③6.(3分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣27.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b28.(3分)一艘轮船在静水中的最大航速是30km/h,它以最大航速沿江顺流航行90km所用时间,与它以最大航速逆流航行60km所用时间相等.如果设江水的流速为x km/h,所列方程正确的是()A.B.C.D.9.(3分)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a+b的值分别是()[] A.5 B.﹣5 C.1 D.﹣110.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:x2y﹣4y= .12.(3分)一个多边形的内角和为540°,则这个多边形的边数是.13.(3分)比较大小:27508140(填>,<或=).14.(3分)如果关于x的分式方程=m的解是正数,则m的取值范围为.15.(3分)有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是.三、解答题(本大题共7小题,共55分)16.(6分)计算:(1)(2a﹣3b)(2a+5b);(2)(2ab2c﹣3)﹣2÷(a﹣2b)3.17.(6分)如图,△ABC中,∠B=40°,∠C=80°,AE是△ABC的高.(1)画出△ABC的角平分线AD,并求出∠DAE的度数;(2)直接写出∠B,∠C和∠DAE三者之间的数量关系.18.(7分)如图,△ABC是等边三角形,BD是高线,延长BC到E,使CE=AD.猜想:DB与DE数量关系,并证明你的猜想.19.(8分)先化简(﹣x+1)÷,再从﹣1,+1,﹣2中选择合适的x值代入求值.20.(8分)某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?21.(9分)【阅读材料】对于二次三项式a2+2ab+b2可以直接分解为(a+b)2的形式,但对于二次三项式a2+2ab﹣8b2,就不能直接用公式了,我们可以在二次三项式a2+2ab﹣8b2中先加上一项b2,使其成为完全平方式,再减去b2这项,(这里也可把﹣8b2拆成+b2与﹣9b2的和),使整个式子的值不变.于是有:a2+2ab﹣8b2=a2+2ab﹣8b2+b2﹣b2=(a2+2ab+b2)﹣8b2﹣b2=(a+b)2﹣9b2=[(a+b)+3b][(a+b)﹣3b]=(a+4b)(a﹣2b)我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.【应用材料】(1)上式中添(拆)项后先把完全平方式组合在一起,然后用法实现分解因式.(2)请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:①m2+6m+8;②a4+a2b2+b422.(11分)在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm,求BE的长.”(1)请你也独立完成这道题;(2)待同学们完成这道题后,张老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.2017-2018学年山东省济宁市微山县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣1【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.2.(3分)下列各式中,正确的是()A.30=0 B.x3•x2=x5C.(x﹣1)2=x2﹣1 D.x﹣2x=x【解答】解:A、30=1,故原题计算错误;B、x3•x2=x5,故原题计算正确;C、(x﹣1)2=x2﹣2x+1,故原题计算错误;D、x﹣2x=﹣x,故原题计算错误;故选:B.3.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.4.(3分)2018年1月1日某县天气预报,空气质量为轻度污染,即空气里的主要污染物是可吸入颗粒物(PM10)在0.000151﹣0.0002克/立方米.数据0.000151用科学记数法表示为()A.15.1×10﹣8B.1.51×10﹣6C.1.51×10﹣4D.0.151×10﹣3【解答】解:0.000151=1.51×10﹣4,故选:C.5.(3分)如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE ≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A.①或③B.①或④C.②或④D.②或③【解答】解:加上条件AE=CF,利用SSS证明三角形全等;添加条件∠D=∠B,根据SAS得出全等;故选:D.6.(3分)若3x=4,3y=6,则3x﹣y的值是()A.2 B.C.D.﹣2【解答】解:∵3x=4,3y=6,∴3x﹣y=3x÷3y=4÷6=.故选:B.7.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【解答】解:由题意得:a 2﹣b 2=(a+b )(a ﹣b ).故选:A .8.(3分)一艘轮船在静水中的最大航速是30km/h ,它以最大航速沿江顺流航行90km 所用时间,与它以最大航速逆流航行60km 所用时间相等.如果设江水的流速为x km/h ,所列方程正确的是( )A .B .C .D .【解答】解:设江水的流速为x km/h ,则逆流的速度为(30﹣x )km/h ,顺流的速度为(30+x )km/h ,由题意得, =.故选:C .9.(3分)把多项式x 2+ax+b 分解因式,得(x+1)(x ﹣3),则a+b 的值分别是( )A .5B .﹣5C .1D .﹣1 【解答】解:(x+1)(x ﹣3)=x 2﹣3x+x ﹣3=x 2﹣2x ﹣3,由x 2+ax+b=(x+1)(x ﹣3)=x 2﹣2x ﹣3知a=﹣2、b=﹣3,则a+b=﹣2﹣3=﹣5,故选:B .10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出”杨辉三角“(如图),此图揭示了(a+b )n (n 为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b )0=1(a+b )1=a+b(a+b )2=a 2+2ab+b 2(a+b )3=a 3+3a 2b+3ab 2+b 3(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5…请你猜想(a+b)7的展开式中所有系数的和是()A.2018 B.512 C.128 D.64【解答】解:根据题意得:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7,系数之和为2(1+7+21+35)=128,故选:C.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:x2y﹣4y= y(x+2)(x﹣2).【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).12.(3分)一个多边形的内角和为540°,则这个多边形的边数是 5 .【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.13.(3分)比较大小:2750>8140(填>,<或=).【解答】解:∵2750=(33)50=3150,8140=(34)40=3120,∴2750>8140,故答案为:>.14.(3分)如果关于x的分式方程=m的解是正数,则m的取值范围为0<m<1 .【解答】解: =m,方程两边同乘以x+1,得,x﹣m=m(x+1),解得x=,∵分式方程=m的解是正数,∴>0且x+1≠0,即0<m<1.故答案为:0<m<1.15.(3分)有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是20°或35°或27.5°.【解答】解:由题意知△ABD与△DBC均为等腰三角形,对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,∠C=(180°﹣110°)=35°,②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,∠C=(180°﹣125°)=27.5°,③AD=BD,此时,∠ADB=180°﹣2×70°=40°,∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,∠C=(180°﹣140°)=20°,综上所述,∠C度数可以为20°或35°或27.5°.故答案为:20°或35°或27.5°三、解答题(本大题共7小题,共55分)16.(6分)计算:(1)(2a﹣3b)(2a+5b);(2)(2ab2c﹣3)﹣2÷(a﹣2b)3.【解答】解:(1)(2a﹣3b)(2a+5b)=4a2+10ab﹣6ab﹣15b2=4a2+4ab﹣15b2;(2)(2ab2c﹣3)﹣2÷(a﹣2b)3=2﹣2a﹣2b﹣4c6÷(a﹣6b3)=.17.(6分)如图,△ABC中,∠B=40°,∠C=80°,AE是△ABC的高.(1)画出△ABC的角平分线AD,并求出∠DAE的度数;(2)直接写出∠B,∠C和∠DAE三者之间的数量关系.【解答】解:(1)如图所示,∵∠DAB=180°﹣∠ABC﹣∠ADB=180°﹣90°﹣40°=50°,∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣80°=60°,又∵AE平分∠BAC,∴∠BAE=∠BAC=30°,(角平分线的定义)∴∠DAE=∠DAB﹣∠BA E=50°﹣30°=20°;(2)∠DAE=.18.(7分)如图,△ABC是等边三角形,BD是高线,延长BC到E,使CE=AD.猜想:DB与DE数量关系,并证明你的猜想.【解答】解:BD=DE,理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD⊥AC,∴AD=CD,∠DBC=∠ABC=30°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBE=∠E,∴BD=DE;19.(8分)先化简(﹣x+1)÷,再从﹣1,+1,﹣2中选择合适的x值代入求值.【解答】解:(﹣x+1)÷===,当x=1时,原式=.20.(8分)某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?【解答】解:设甲、乙两人单独完成该工作各需x、y小时,由题意得,,解得:,经检验他们是原方程的解,答:甲、乙两人单独完成该工作各需10、15小时;21.(9分)【阅读材料】对于二次三项式a2+2ab+b2可以直接分解为(a+b)2的形式,但对于二次三项式a2+2ab﹣8b2,就不能直接用公式了,我们可以在二次三项式a2+2ab﹣8b2中先加上一项b2,使其成为完全平方式,再减去b2这项,(这里也可把﹣8b2拆成+b2与﹣9b2的和),使整个式子的值不变.于是有:a2+2ab﹣8b2=a2+2ab﹣8b2+b2﹣b2=(a2+2ab+b2)﹣8b2﹣b2=(a+b)2﹣9b2=[(a+b)+3b][(a+b)﹣3b]=(a+4b)(a﹣2b)我们把像这样将二次三项式分解因式的方法叫做添(拆)项法.【应用材料】(1)上式中添(拆)项后先把完全平方式组合在一起,然后用公式法实现分解因式.(2)请你根据材料中提供的因式分解的方法,将下面的多项式分解因式:①m2+6m+8;②a4+a2b2+b4【解答】解:(1)上式中添(拆)项后先把完全平方式组合在一起,然后用公式法实现分解因式.故答案为:公式;(2)①m2+6m+8=m2+6m+9﹣1=(m+3)2﹣12=(m+3+1)(m+3﹣1)=(m+4)(m+2);②a4+a2b2+b4=a4+2a2b2+b4﹣a2b2=(a2+b2)2﹣(ab)2=(a2+b2+ab)(a2+b2﹣ab).22.(11分)在学习完第十二章后,张老师让同学们独立完成课本56页第9题:“如图1,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm,求BE的长.”(1)请你也独立完成这道题;(2)待同学们完成这道题后,张老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有∠BEC=∠ADC=∠BCA=α,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.【解答】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5.∵DC=CE﹣DE,DE=1.7cm,∴DC=2.5﹣1.7=0.8cm,∴BE=0.8cm;(2)AD+BE=DE,证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CE B和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD,∴DE=CE+DE=AD+BE;(3)、(2)中的猜想还成立,证明:∵∠BCE+∠ACB+∠ACD=180°,∠DAC+∠ACB+∠ACD=180°,∠ADC=∠BCA,∴∠BCE=∠CAD,在△CEB和△ADC中,,∴△CEB≌△ADC,∴BE=CD,EC=AD,∴DE=EC+CD=AD+BE.。
2015-2016学年度八年级第二学期期末考试数学试题及参考答案
2015-2016学年度第二学期期末考试八年级数学试题(时间:120分钟 满分:150分)请注意:所有试题的答案均填写在答题卡上,答案写在试卷上无效。
一、选择题:(本大题共6小题,每小题3分,计18分) 1.下列式子中,为最简二次根式的是 ( ▲ ) A .10B .8C .21D .212.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ )A .B . C.D.3.与分式x--11的值相等的是( ▲ ) A .11--xB .x+-11 C .x+11D .11-x 4. 已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03>aB .03<-aC .03>+aD .03>a5.矩形具有而平行四边形不一定具有的性质是( ▲ ) A .对角线互相平分 B .两组对角相等 C .对角线相等D .两组对边相等6.如图,△ABC 的三个顶点分别为A (1,2),B (1,3),C (3,1).若反比例函数xky =在第一象限内的图象与△ABC 有公共点,则k 的取值范围是( ▲ ) A .32≤≤k B .42≤≤k C .43≤≤kD .5.32≤≤k二、填空题:(本大题共10小题,每小题3分,计30分)7x 的取值范围是 ▲ .8.如图,将△ABC 绕点A 按顺时针方向旋转60°得△ADE ,则∠BAD= ▲ °.9.若分式392+-x x 的值为0,则x 的值为 ▲ .10.若b a <,则2)(b a -可化简为 ▲ .11.若一元二次方程020162=-+bx ax 有一根为1-=x ,则b a -的值为 ▲ .12.在菱形ABCD 中,对角线AC ,BD 的长分别是6和8,则菱形的周长是 ▲ . 13.如图,在Rt △ABC 中,∠ACB=90°,点D 、E 、F 分别是AB 、AC 、BC 的中点,若CD=5,则EF 的长为 ▲ .第8题图 第13题图 第16题图14.某药品2014年价格为每盒120元,经过两年连续降价后,2016价格为每盒76.8元,设这两年该药品价格平均降低率为x ,根据题意可列方程为 ▲ . 15.已知)2,(m A 与)3,1(-m B 是反比例函数xky =图像上的两个点,则m 的值为 ▲ . 16.如图,矩形ABCD 中,AB=7cm,BC=3cm,P 、Q 两点分别从A 、B 两点同时出发,沿矩形ABCD 的边逆时针运动,速度均为1cm/s ,当点P 到达B 点时两点同时停止运动,若PQ 长度为5cm 时,运动时间为 ▲ s . 三、解答题:(本大题共10小题,计102分) 17.(本题10分)计算:(1)0)21()12(8+-+(2))32)(32(-+18.(本题10分)解下列一元二次方程: (1)x x 3322=-(用公式法解) (2)93)3(2-=-x x19.(本题8分)先化简,再求值:121441222+-÷-+-+-a a a a a a ,其中12+=a20.(本题8分)一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其它区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.21.(本题10分)2016年某校组织学生进行综合实践活动,准备从以下几个景点中选择一处进行参观。
2015-2016年山东省济宁市邹城八中八年级上学期期中数学模拟试卷和答案(1)
2015-2016学年山东省济宁市邹城八中八年级(上)期中数学模拟试卷(1)一、选择题(每题3分,共30分)1.(3分)以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.3.(3分)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2) C.(2,﹣1)D.(﹣2,1)4.(3分)从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1) C.(n﹣2) D.(n﹣3)5.(3分)平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣16.(3分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC7.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE9.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角10.(3分)如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540° D.720°二、填空题(每题3分,共24分)11.(3分)如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.12.(3分)若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.14.(3分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.16.(3分)已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=.17.(3分)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.18.(3分)图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是.三、解答题(共46分)19.(6分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.(6分)如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.21.(6分)如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.22.(7分)已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.23.(7分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.24.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.25.(7分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.2015-2016学年山东省济宁市邹城八中八年级(上)期中数学模拟试卷(1)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选:A.2.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.3.(3分)在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2) C.(2,﹣1)D.(﹣2,1)【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.4.(3分)从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1) C.(n﹣2) D.(n﹣3)【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.5.(3分)平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴 B.y轴 C.直线y=4 D.直线x=﹣1【解答】解:∵点A(﹣1,2)和点B(﹣1,6)对称,∴AB平行与y轴,所以对称轴是直线y=(6+2)=4.故选:C.6.(3分)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF 的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.7.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.8.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.9.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选:B.10.(3分)如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540° D.720°【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠2、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选:B.二、填空题(每题3分,共24分)11.(3分)如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.【解答】解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.12.(3分)若等腰三角形的两边长分别为3cm和8cm,则它的周长是19cm.【解答】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.13.(3分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.14.(3分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.15.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是31.5.【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,=S△OBC+S△OAC+S△OAB∴S△ABC=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.16.(3分)已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b= 6.【解答】解:∵点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),∴a=2,b=4,∴a+b=2+4=6,故答案为:6.17.(3分)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.18.(3分)图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是20:51.【解答】解:根据镜面对称的性质,因此12:05的真实图象应该是20:51.故答案为20:51.三、解答题(共46分)19.(6分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.20.(6分)如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°﹣30°﹣130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°﹣90°=40°,∴∠BAD=20°+40°=60°.21.(6分)如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.【解答】证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴DE=CE,OE=OE,在Rt△ODE与Rt△OCE中,,∴Rt△ODE≌Rt△OCE(HL),∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.22.(7分)已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.【解答】证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(ASA),∴AE=AD.23.(7分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.【解答】证明:连接AD,在△ACD和△ABD中,,∴ACD≌△ABD(SSS),∵DE⊥AE,DF⊥AF,∴∠AED=∠AFD=90°,∴在△ADE和△ADF中,,∴△ADE≌△ADF,∴DE=DF.24.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).25.(7分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2015-2016年山东省潍坊市八年级(上)期末数学试卷(解析版)
2015-2016学年山东省潍坊市八年级(上)期末数学试卷一、选择题(每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.)1.(3分)化简分式的结果是()A.B.C.D.a+12.(3分)下列四副图案中,不是轴对称图形的是()A.B.C.D.3.(3分)如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A.18°B.36°C.72°D.108°4.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5.(3分)如果=0,则x等于()A.±2B.﹣2C.2D.36.(3分)某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,957.(3分)下列命题中,是假命题的是()A.同角的余角相等B.一个三角形中至少有两个锐角C.如果a>b,a>c,那么b=cD.全等三角形对应角的平分线相等8.(3分)甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)9.(3分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形10.(3分)如图,在△ABC中,AB=AC,BD=BC,若∠A=40°,则∠BDC的度数是()A.80°B.70°C.60°D.50°11.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2B.3C.D.412.(3分)国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等二、填空题(每小题3分,共24分.只要求填写最后结果.)13.(3分)若3m=4n,则m:n=.14.(3分)命题“相等的角是对顶角”的条件是,结论是;它的逆命题是.15.(3分)若一组数据2,4,5,1,a的平均数为a,则a=;这组数据的方差S2=.16.(3分)如图,是根据四边形的不稳定性制作的边长均为15cm的可活动菱形衣架.若墙上钉子间的距离AB=BC=15cm,则∠1=度.17.(3分)若解分式方程产生增根,则m=.18.(3分)将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形,试写出其中一种四边形的名称.19.(3分)小明家去年的旅游,教育,饮食支出分别为3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小明家今年的总支出比去年增长的百分数是%.20.(3分)如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC n O n的面积为.三、解答题(本大题共8小题,共60分.要求写出必要的文字说明和说理过程.)21.(10分)计算与化简:(1);(2)先化简,再求值:,其中x=6.22.(6分)如图,(1)画出△ABC关于y轴对称的△A1B1C1;(2)写出△A1B1C1点的坐标:A1,B1,C1.23.(8分)阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,∠ADC=∠ABC,BE,DF分别平分∠ABC,∠ADC,且∠1=∠2.求证:∠A=∠C.证明:∵BE,DF分别平分∠ABC,∠ADC(已知),∴∠1=∠ADC,∵∠ABC=∠ADC(已知).∴∠ADC,∴∠1=∠3,又因为∵∠1=∠2,∴∠2=∠3.∴AB∥CD,∴∠A+∠ADC=180°,∠C+∠ABC=180°.∴∠A=∠C.24.(6分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:AD平分∠BAC.25.(7分)当今,青少年视力水平下降已引起了社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的条形图(长方形的高表示该组人数)如下:请解答下列问题:(1)本次抽样调查共抽测了多少名学生?(2)参加抽测学生的视力的众数在什么范围内?(3)若视力为4.9,5.0,5.1及以上为正常,试估计该校学生视力正常的人数约为多少?26.(7分)如图,在▱ABCD中,E为BC中点,AE的延长线与DC的延长线相交于点F.求证:(1)△ABE≌△FCE;(2).27.(7分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?28.(9分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.2015-2016学年山东省潍坊市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.)1.(3分)化简分式的结果是()A.B.C.D.a+1【解答】解:,故选:B.2.(3分)下列四副图案中,不是轴对称图形的是()A.B.C.D.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.3.(3分)如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A.18°B.36°C.72°D.108°【解答】解:∵AB∥CD,∴∠ABC+∠C=180°,把∠C=108°代入,得∠ABC=180°﹣108°=72°.又∵BE平分∠ABC,∴∠ABE=∠ABC=•72°=36°.故选:B.4.(3分)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.(3分)如果=0,则x等于()A.±2B.﹣2C.2D.3【解答】解:由题意可得|x|﹣2=0且x2﹣x﹣6≠0,解得x=2.故选:C.6.(3分)某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,95【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.7.(3分)下列命题中,是假命题的是()A.同角的余角相等B.一个三角形中至少有两个锐角C.如果a>b,a>c,那么b=cD.全等三角形对应角的平分线相等【解答】解:A、同角的余角相等,所以A选项为真命题;B、一个三角形中至少有两个锐角,所以B选项为真命题;C、a>b,a>c,若a=2,b=1,c=0,则b>c,所以C选项假真命题;D、全等三角形对应角的平分线相等,所以D选项为真命题.故选:C.8.(3分)甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)【解答】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.(1)(2)正确.故选:B.9.(3分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.10.(3分)如图,在△ABC中,AB=AC,BD=BC,若∠A=40°,则∠BDC的度数是()A.80°B.70°C.60°D.50°【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC,∴∠BDC=∠C,∵∠A=40°,∴∠BDC=∠C==70°,故选:B.11.(3分)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2B.3C.D.4【解答】解:在△ABC中,D、E分别是BC、AC的中点∴DE∥AB∴∠EDC=∠ABC∵BF平分∠ABC∴∠EDC=2∠FBD在△BDF中,∠EDC=∠FBD+∠BFD∴∠DBF=∠DFB∴FD=BD=BC=×6=3.故选:B.12.(3分)国家级历史文化名城﹣﹣金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法中错误的是()A.红花,绿花种植面积一定相等B.紫花,橙花种植面积一定相等C.红花,蓝花种植面积一定相等D.蓝花,黄花种植面积一定相等【解答】解:∵AB∥EF∥DC,BC∥GH∥AD∴GH、BD、EF把一个平行四边形分割成四个小平行四边形,∴一条对角线可以把一个平行四边形的面积一分为二,得S黄=S蓝,(故D正确)S绿=S红,(故A正确)S(紫+黄+绿)=S(橙+红+蓝),根据等量相减原理知S紫=S橙,(故B正确)S红与S蓝显然不相等.(故C错误)故选:C.二、填空题(每小题3分,共24分.只要求填写最后结果.)13.(3分)若3m=4n,则m:n=.【解答】解:两边都除以3n,得m:n=4:3,故答案为:4:3.14.(3分)命题“相等的角是对顶角”的条件是两个角相等,结论是这两个角是对顶角;它的逆命题是对顶角相等.【解答】解:命题“相等的角是对顶角”的条件是两个角相等,结论是这两个角是对顶角;它的逆命题是对顶角相等.故答案为两个角相等,这两个角是对顶角;对顶角相等.15.(3分)若一组数据2,4,5,1,a的平均数为a,则a=3;这组数据的方差S2=2.【解答】解:∵数据2,4,5,1,a的平均数为a,∴a=,解得:a=3,故S2=[(2﹣3)2+(4﹣3)2+(5﹣3)2+(1﹣3)2+(3﹣3)2]=2.故答案为:3,2.16.(3分)如图,是根据四边形的不稳定性制作的边长均为15cm的可活动菱形衣架.若墙上钉子间的距离AB=BC=15cm,则∠1=120度.【解答】解:如图,连接AB.∵菱形的边长=15cm,AB=BC=15cm∴△AOB是等边三角形∴∠ABO=60°,∴∠AOD=120°∴∠1=120°.故答案为:120.17.(3分)若解分式方程产生增根,则m=﹣5.【解答】解:方程去分母得:x﹣1=m,由题意将x=﹣4代入方程得:﹣4﹣1=m,解得:m=﹣5.故答案为:﹣5.18.(3分)将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形,试写出其中一种四边形的名称平行四边形或矩形.【解答】解:将一张等边三角形纸片沿着一边上的高剪开,按位置摆放的不同,可以拼成平行四边形、矩形.故答案为:平行四边形或矩形.19.(3分)小明家去年的旅游,教育,饮食支出分别为3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小明家今年的总支出比去年增长的百分数是23%.【解答】解:去年的支出总数=3600+1200+7200=12000元,则今年的增加的支出=3600×10%+1200×20%+7200×30%=2760元,∴小明家今年的总支出比去年增长的百分数=2760÷12000=23%.故答案为23.20.(3分)如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC n O n的面积为.【解答】解:后面的每一个平行四边形都与第一个矩形ABCD同底不同高,而第n个平行四边形的高是矩形ABCD的,所以平行四边形ABC n O n的面积为.三、解答题(本大题共8小题,共60分.要求写出必要的文字说明和说理过程.)21.(10分)计算与化简:(1);(2)先化简,再求值:,其中x=6.【解答】解:(1)原式=+=;(2)原式=•==x﹣4,当x=6时,原式=6﹣4=2.22.(6分)如图,(1)画出△ABC关于y轴对称的△A1B1C1;(2)写出△A1B1C1点的坐标:A1(3,2),B1(4,﹣3),C1(1,﹣1).【解答】解:所作图形如图所示:,A1(3,2),B1(4,﹣3),C1(1,﹣1).故答案为:(3,2),(4,﹣3),(1,﹣1).23.(8分)阅读并理解下面的证明过程,并在每步后的括号内填写该步推理的依据.已知:如图,∠ADC=∠ABC,BE,DF分别平分∠ABC,∠ADC,且∠1=∠2.求证:∠A=∠C.证明:∵BE,DF分别平分∠ABC,∠ADC(已知),∴∠1=∠ADC角平分线定义,∵∠ABC=∠ADC(已知).∴∠ADC等式性质,∴∠1=∠3等量代换,又因为∵∠1=∠2已知,∴∠2=∠3等量代换.∴AB∥CD内错角相等,两直线平行,∴∠A+∠ADC=180°,∠C+∠ABC=180°两直线平行,同旁内角互补.∴∠A=∠C等角的补角相等.【解答】证明:∵BE,DF分别平分∠ABC,∠ADC(已知),∴(角平分线定义),∵∠ABC=∠ADC(已知).∴(等式性质),∴∠1=∠3(等量代换),又因为∵∠1=∠2(已知),∴∠2=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行),∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补).∴∠A=∠C(等角的补角相等).故答案为:角平分线定义;等式性质;等量代换;已知;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补;等角的补角相等.24.(6分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.求证:AD平分∠BAC.【解答】证明:∵D是BC的中点∴BD=CD,又∵BE=CF,DE⊥AB,DF⊥AC,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴点D在∠BAC的平分线上,∴AD平分∠BAC.25.(7分)当今,青少年视力水平下降已引起了社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的条形图(长方形的高表示该组人数)如下:请解答下列问题:(1)本次抽样调查共抽测了多少名学生?(2)参加抽测学生的视力的众数在什么范围内?(3)若视力为4.9,5.0,5.1及以上为正常,试估计该校学生视力正常的人数约为多少?【解答】解:(1)抽测的学生数是:30+50+40+20+10=150;(2)众数在4.25~4.55内;(3)估计该校学生视力正常的人数约:3000×=600(人).答:估计视力正常的人数约是600人.26.(7分)如图,在▱ABCD中,E为BC中点,AE的延长线与DC的延长线相交于点F.求证:(1)△ABE≌△FCE;(2).【解答】证明:(1)在平行四边形ABCD中,AB∥CD,AD=BC,AB=CD,∴∠FAB=∠F,∵E为BC中点,∴BE=CE=AD,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)由(1)得:△ABE≌△FCE,∴AE=EF,BF=CE,AB=CD=CF,∴AD=2BE,DF=2AB,AF=2AE.∴.27.(7分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.28.(9分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.【解答】(1)解:四边形EFGH的形状是正方形.(2)解:①∠HAE=90°+α,在平行四边形ABCD中AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣α,∵△HAD和△EAB是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°﹣∠HAD﹣∠EAB﹣∠BAD=360°﹣45°﹣45°﹣(180°﹣a)=90°+α,答:用含α的代数式表示∠HAE是90°+α.②证明:∵△AEB和△DGC是等腰直角三角形,∴AE=AB,DG=CD,在平行四边形ABCD中,AB=CD,∴AE=DG,∵△AHD和△DGC是等腰直角三角形,∴∠HDA=∠CDG=45°,∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE,∵△AHD是等腰直角三角形,∴HA=HD,∴△HAE≌△HDG,∴HE=HG.③答:四边形EFGH是正方形,理由是:由②同理可得:GH=GF,FG=FE,∵HE=HG,∴GH=GF=EF=HE,∴四边形EFGH是菱形,∵△HAE≌△HDG,∴∠DHG=∠AHE,∵∠AHD=∠AHG+∠DHG=90°,∴∠EHG=∠AHG+∠AHE=90°,∴四边形EFGH是正方形.。
2015-2016年山东省济宁市微山县八年级(上)数学期中试卷及参考答案
2015-2016学年山东省济宁市微山县八年级(上)期中数学试卷一、精心选一选(本大题共10个小题,共30分,在每题所给出的四个选项中,只有一项是符合题意的额,把所选项前的字母代号填在卷Ⅱ的答题栏内,相信你一定能选对!)1.(3分)如图所示,图中三角形的个数共有()A.1个 B.2个 C.3个 D.4个2.(3分)已知△ABC≌△DEF,那么EF的对应边是()A.AB B.BC C.CA D.DE3.(3分)下面四省电视台标示图案中,属于轴对称图形的是()A.B.C.D.4.(3分)将一副三角板按图所示的摆放,那么∠1的度数等于()A.75°B.65°C.55°D.45°5.(3分)如果点P(a,2015)与点Q(2016,b)关于x轴对称,那么a+b的值等于()A.﹣4031 B.﹣1 C.1 D.40316.(3分)已知a,b,c是△ABC的三边长,其中a,b是二元一次方程组的解,那么c的值可能是下面四个数中的()A.2 B.6 C.10 D.187.(3分)如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是()A.B.C.D.28.(3分)将一个多边形按图所示减掉一个角,所得多边形的内角和为1800°,那么原多边形的边数是()A.10 B.11 C.12 D.139.(3分)已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④10.(3分)我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十边形至少再钉上()A.9根 B.8根 C.7根 D.6根二、细心填一填(本大题共有5小题,每小题3分,共15分,请把结果直接填在题中的横线上,只要你仔细运算,积极思考,相信你一定能填对!)11.(3分)在画三角形的三条重要线段(角平分线、中线和高线)时,不一定画在三角形内部的是.12.(3分)一个等腰三角形的两边分别为5和6,则这个等腰三角形的周长是.13.(3分)如图所示,BD是四边形ABCD的对角线,AD∥CB,请添加一个条件,使△ABD≌△CDB,这个添加的条件可以是.(只需填一个,不添加辅助线)14.(3分)如图,线段AB与线段CD关于直线L对称,点P是直线L上一动点,测得:点D与点A之间的距离为8cm,点B与点D之间的距离为5cm,那么PA+PB 的最小值是.15.(3分)已知:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F,那么线段BE,CE,AF三者之间的数量关系是.三、认真答一答(本大题共7题,满分55分,只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年山东省济宁市曲阜市八年级(上)期末数学试卷
一、选择题(共10小题,每小题3分,满分30分) 1.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是( )
A.(1,2) B.(3,0) C.(3,4) D.(5,2) 2.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是( )
A. B. C. D. 3.要使分式有意义,则x的取值应满足( ) A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2
4.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学
记数法表示正确的是( ) A.3.4×10﹣9 B.0.34×10﹣9 C.3.4×10﹣10 D.3.4×10﹣11
5.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°
,
则∠BFC=( )
A.118° B.119° C.120° D.121° 6.下列计算正确的是( ) A.a﹣1=﹣a B.aa2=a2 C.a6÷a2=a3 D.(2012贵阳)如
图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF 8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是( ) A.a(x﹣2)2 B.a(x+2)2 C.a(x﹣4)2 D.a(x+2)(x﹣2)
9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线
于点E.若∠E=35°,则∠BAC的度数为( )
A.40° B.45° C.60° D.70° 10.观察下列各式及其展开式: (a﹣b)2=a2﹣2ab+b2 (a﹣b)3=a3﹣3a2b+3ab2﹣b3 (a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4 (a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5 … 请你猜想(a﹣b)10的展开式第三项的系数是( ) A.﹣36 B.45 C.﹣55 D.66
二、填空题(共5小题,每小题3分,满分15分) 11.计算:3a3a2﹣2a7÷a2= . 12.如果一个正多边形的内角和是900°,则这个正多边形是正 边形. 13.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC= cm.
14.=+是物理学中的一个公式,其中各个字母都不为零且R1+R2≠0.用R1,R2表示
R,则R= .
15.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点
在同一直线上,连结BD,则∠BDE= 度.
三、解答题(共7小题,满分55分) 16.化简:( +)÷.
17.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相
等. (1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹); (2)连结AD,若∠B=37°,求∠CAD的度数. 18.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,
AM=2MB,AN=2NC.求证:DM=DN.
19.阅读:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例
如: ①am+an+bm+bn =(am+bm)+(an+bn) =m(a+b)+n(a+b) =(a+b)(m+n) ②x2﹣y2﹣2y﹣1 =x2﹣(y2+2y+1) =x2﹣(y+1)2 =(x+y+1)(x﹣y﹣1) 试用上述方法分解因式
(1)mx﹣2ny﹣nx+2my; (2)4x2﹣4x﹣y2+1.
20.如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中
点,FD与AB相交于点M. (1)求证:∠FMC=∠FCM; (2)AD与MC垂直吗?并说明理由. 21.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在
规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数; (2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
22.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的
解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,参考上面的方法,解答下列问题:
如图2,在非等边△ABC中,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,且AD,CE交于点F,求证:AC=AE+CD. 2015-2016学年山东省济宁市曲阜市八年级(上)期末数
学试卷 参考答案与试题解析
一、选择题(共10小题,每小题3分,满分30分) 1.在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是( )
A.(1,2) B.(3,0) C.(3,4) D.(5,2) 【考点】坐标与图形变化-平移.
【分析】将点P(3,2)向右平移2个单位后,纵坐标不变,横坐标加上2即可得到平移后点的坐标. 【解答】解:将点P(3,2)向右平移2个单位,所得的点的坐标是(3+2,2),即(5,2).
故选D. 【点评】本题考查了坐标与图形变化﹣平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.
2.12月2日是全国交通安全日,你认为下列交通标识不是轴对称图形的是( )
A. B. C. D. 【考点】轴对称图形.
【分析】根据轴对称图形的概念对各个选项进行判断即可. 【解答】解:A、B、D中的图案是轴对称图形, C中的图案不是轴对称图形, 故选:C. 【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称. 3.要使分式有意义,则x的取值应满足( ) A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2 【考点】分式有意义的条件. 【分析】根据分式有意义的条件是分母不等于零,可得x+2≠0,据此求出x的取值范围即可.
【解答】解:∵分式有意义, ∴x+2≠0, ∴x≠﹣2,
即x的取值应满足:x≠﹣2. 故选:D. 【点评】此题主要考查了分式有意义的条件,要熟练掌握,解答此题的关键是要明确:(1)分式有意义的条件是分母不等于零.分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.
4.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学
记数法表示正确的是( ) A.3.4×10﹣9 B.0.34×10﹣9 C.3.4×10﹣10 D.3.4×10﹣11 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:0.00000000034=3.4×10﹣10, 故选:C. 【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
5.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°
,
则∠BFC=( ) A.118° B.119° C.120° D.121° 【考点】三角形内角和定理. 【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.
【解答】解:∵∠A=60°, ∴∠ABC+∠ACB=120°,
∵BE,CD是∠B、∠C的平分线, ∴∠CBE=∠ABC,∠BCD=, ∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,
∴∠BFC=180°﹣60°=120°,
故选:C. 【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.
6.下列计算正确的是( ) A.a﹣1=﹣a B.aa2=a2 C.a6÷a2=a3 D.(a3)2=a6 【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.
【分析】根据负整数指数幂与正整数指数幂互为倒数,同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.
【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A错误; B、同底数幂的乘法底数不变指数相加,故B错误; C、同底数幂的除法底数不变指数相减,故C错误; D、幂的乘方底数不变指数相乘,故D正确;