某煤矿主排水设备选型设计
矿井主排水系统排水泵选型设计

****矿井主排水系统排水泵选型设计一.1120水平排水基本概况****年产0.3Mt/a,属瓦斯矿井,+1120水平井底与地面标高差(二水平井底标高进水口+1120m,地面出水口标高+1312m,再加上井底车场至水仓最低水位距离4m)194m。
正常涌水量:145m³/h,最大涌水量600m³/h,涌水PH值≤4.3,管路敷设斜架倾角约19°。
二.矿井1120水平排水方案从基本投资少、易于施工、操作简单和维修方面等方面加以综合考虑,+1120拟采用直接排水系统。
三.预选水泵的型号及台数根据《煤矿安全规程》的要求,矿井必须有工作、备用和检修的水泵。
工作水泵的能力,应能在20h内排出矿井24h的正常涌水量(包括充填水及其他用水)。
备用水泵的能力应不小于工作水泵能力的70%,工作泵和备用水泵的总能力,应能在20h内排出矿井24h的最大涌水量。
检修水泵的排水能力应当不小于工作水泵能力的25%。
水文地质条件复杂的矿井,可在主泵房内预留安装一定数量水泵的位置。
(1)水泵必须具备的总排水能力。
正常涌水期,工作水泵具备的总排水能力为:Q B≥24/20q z=1.2q z=1.2*145 m³/h= 174m³/h最大涌水期,工作和备用水泵具备的总排水能力为:Q Bmax≥24/20qmax=1.2q max=1.2*600 m³/h=720 m³/h(2)水泵所需扬程的估算。
H B=Hc/ηg(取0.77∽0.74)=(1312-1120+4)/0.77∽0.74=254∽244m(3)初选水泵。
列出负荷条件的泵的型号、级数、台数。
①水泵型号的选择。
依据计算出的工作水泵排水能力Q B= 174m³/h、估算出额所需扬程254∽244m和原始资料给定的矿井水物理化学性质PH值≤4.3,且矿井水泥砂含量较大,通过查找泵产品目录中选取MD型多级分段式离心泵,具体技术参数如表.1表.1②水泵级数的确定。
-矿井排水设备选型设计

设计题目:矿井排水设备选型设计综放工作面选型设计本次设计是根据煤矿的实际情况、环境条件而制定的。
好的煤矿机械设备选型设计和供电系统,对于企业来说,可以更好的利用和合理分配电力资源,促进安全生产和降低生产成本。
所有的设计方案都要以《煤矿安全规程》、《煤矿井下供电设计规范》、《煤矿电工手册》等为准则。
本设计介绍了矿井排水设备选型、综放工作面供电系统;排水设备选型主要介绍确定排水系统、选择排水设备、给出指标经济核算、绘制水泵房布置图、绘制管路系统图等;紧力及选用的电机功率的计算等;综放工作面供电系统主要是介绍采煤工作面供电系统拟定、电缆选型校验、低压供电系统开关整定校验、高压系统整定校验、接地保护系统、漏电保护系统。
总之,所有的煤矿机械设备选型和供电系统都是以井下安全生产所服务为目的。
设计一套完整、完善的煤矿机械设备选型设计和井下供电系统,对煤矿安全生产是必不可缺少的。
关键词:机械设备选型; 排水设备选型;选型设计;井下;综放工作面;供电。
目录目录 (2)绪论 (4)第一部分矿山固定设备选型设计 (6)矿井排水设备选型设计 (6)1. 概述 (6)2. 排水设备及系统的选择 (7)2.1设计的原始资料 (7)2.2水泵的型号及台数选择[6] (8)2.3 管路的选择 (8)3. 工况点的确定及校验 (10)3.1 管路系统 (10)3.2 校验计算 (12)4. 电耗计算................................................................................................. 错误!未定义书签。
4.1 年排水电耗................................................................................... 错误!未定义书签。
4.2 吨水百米电耗校验....................................................................... 错误!未定义书签。
塔然高勒煤矿主排水系统设备选型

塔然高勒煤矿主排水系统设备选型摘要:本文介绍了塔然高勒煤矿主排水系统设备选取的类型、结构特点及相关参数,通过选型计算、校验,所选设备能够满足矿井排水需求。
关键词:煤矿;主排水系统;设备选型引言井下主排水系统的任务就是把通过各种途径流入矿井的积水排送到地表,主排水系统设备在排水系统中起着至关重要的作用。
一旦设备故障,如果不能及时地将井下积水排送到井上,井下的生产可能受到阻碍,严重时可能存在淹井的风险。
因此,主排水系统设备的正确选择,对提高排水系统运行效率,保障井下安全具有重要意义。
塔然高勒煤矿属于水文地质条件复杂矿井,主排水采用直接排水系统,在副井井底车场+907.85m水平附近设有水仓及主排水泵房,排水管路2趟沿副立井、1趟沿主立井井筒敷设。
采区及部分巷道涌水排至盘区水泵房,然后由盘区水泵排至井底车场主水仓,最后由水泵房内主排水泵经主、副立井排至地面矿井水处理站。
1 主排水设备选型设计依据井口标高:+1493.5m;井底标高:+907.85m;排水高度:592.65m;矿井水处理站附加扬程:2m;地面部分管路长度:600m;正常涌水量Q正常:872m3/h;最大涌水量Q’最大:1046m3/h。
2 主排水设备选型方案根据矿井涌水量、井深等参数,选用5台矿用耐磨多级离心泵,水泵型号为MD600-70×9,额定流量为600m³/h,扬程为630m,配套电机功率1600kW。
正常涌水时2台工作,2台备用,1台检修;最大涌水时3台工作。
排水管路选用Ф377无缝钢管3趟,2趟工作,1趟备用,沿副立井井筒敷设两趟,沿主井敷设一趟。
水泵电机由相邻的井底车场中央变电所内的矿用防爆型高压开关柜供电,水泵采取电软起起动方式。
泵房内排水管路采用法兰连接,井筒内管路采用套管焊接连接。
为有效防止水锤冲击对水泵及管路的损害,泵房内采用微阻缓闭止回阀。
水泵采用无底阀排水,操作简单,便于实现自动化,并减少由于底阀而产生的各种故障。
煤矿排水设备选型计算

********** 煤矿排水设备选型计算机电部二〇一六年十一月一日*****煤矿*****水平排水设备选型计算*****煤矿在+*****m 水平安装有MD155-67×5(P) 型矿用自平衡耐磨水泵3台,排水管为φ194×8无缝钢管和煤矿用钢丝骨架聚乙烯复合管 ,吸水管为φ219×8无缝钢管。
MD155-67×5(P) 型矿用自平衡耐磨水泵主要技术规格如下:额定流量Q=155m3/h 、额定扬程H=335m 、必需汽蚀余量Hs=5.0m 、额定效率η=75.5%、n=2950r/min 、N=220KW 、电压10kV,设备选型计算如下:一、水泵选型 1、校核依据①矿井设计生产能力为45万t/a 。
②主排水泵房标高: +*****.00m ;暗副斜井标高:+940.00m ;井筒倾角:β=22°、18°、12°、10°、9°。
③水泵房正常涌水量: ④水泵房最大涌水量: 2、水泵选型计算①正常涌水量时水泵必须的排水能力h m Q Q r Br /56.74202413.6220243=⨯=⨯=① 最大涌水量时水泵必须的排水能力h m QQ rmBm /84.11120242.9320243=⨯=⨯=② 水泵扬程的估算m h H K H x p B 54.29074.0/5730940=+-=+=)()(根据校核计算,+*****m 水平已安装的MD155-67×5(P) (额定流量Q=155m 3/h 额定扬程H=335m )型矿用自平衡耐磨水泵3台,能满足矿井排水要求。
(3)排水管路校核计算 ①排水管管径mm m Q d pBp 174174.021550188.00188.0==⨯==υ 式中:B Q ――排水泵流量;p d ――排水管内经济流速,一般取s m d p /2.2~5.1=。
②吸水管管径mm d d p x 199025.0174.0025.0=+=+=3、排水管趟数的确定根据设计规范要求,确定设置2趟管路,1趟工作,1趟备用。
排水设备的选型与设计

排水设备的选型与设计1. 原始参数正常涌水量:100m^3/h ,最大涌水量:250m^3/h ,排水高度:150m ,排水管敷设倾角:8°,年正常涌水天数:300天,年最大涌水天数:60天,PH 值:7,矿水容重:10000N/m^3,流量为零时的扬程:0,矿井年产量:200万吨。
2. 初选水泵2.1. 水泵最小排水能力的确定正常涌水时,工作水泵的最小排水能力应为:r B Q Q ⨯=2.1式中:r Q ………由本水泵房担负的矿井正常涌水量 m 3/h最大涌水时,工作水泵的最小排水能力应为:rm m B Q Q ⨯=2.1 其中:rm Q ………由本水泵房担负的矿井正常涌水量 m 3/h 正常涌水时:Q = 1.2×100 = 120m^3/h最大涌水时250 = 300m^3/h2.2. 水泵的扬程的计算 水泵的扬程:g sp B H H H η+= , m式中:p H ………排水高度,ms H ………吸水高度,初选H S = 5~5.5米g η………管道效率,与排水管敷设倾角a 角有关,当a= 90。
g η= 0.89~0.9;90。
> a ≥30。
, g η= 0.80~0.83;30。
>a ≥20。
g η=0.77~0.80;a<20。
g η=0.74~0.77;水泵的扬程H = (150+5)/0.76 = 204m 。
2.3. 水泵型号及台数的确定根据B Q 及B H 选择额定值接近所需值的高效水泵,并确定工作台数及级数。
HB Q Q n =1,取偏大整数 kB H H i =1,取偏大整数 HB Q Q n 7.02=,取偏大整数 H B Q Q n 25.03=,取偏大整数 Hm B Q Q n =4,取偏大整数 式中:H Q ………所选水泵额定流量,m 3/h ; k H ………所选水泵单级额定扬程,m ;1n ………正常涌水时。
工作水泵台数;1i ………初选水泵级数;2n ………备用水泵台数;3n ………检修水泵台数;4n ………最大涌水时,工作水泵台数;水泵总台数n = 1n +2n +3n ;根据正常涌水时排水能力和水泵的扬程,初选水泵,水泵的型号为200D43×6额定容量:288m^3/h ,单级额定扬程:43m ,允许吸程:5.7m ,最高效率:0.8正常涌水时水泵工作台数:n1 = 120/288 = 1水泵级数:i = 204/43 = 5级备用水泵台数:n2 = 0.7×120/288 = 1台最大涌水时工作台数:n4 = 300/288 = 2台检修台数:n3 = 0.25×120/288 = 1台水泵总台数:n = n1 + n2 + n3 = 1 + 1 + 1 = 3台3. 管路的确定3.1. 管路趟数及泵房内管路布置的确定《煤矿安全规程》规定,必须有工作和备用的水管,其中工作水管的能力应配合工作水泵在20h 内排出矿井24h 的正常涌水量。
矿井排水设备设计(排水设备选型) (1)

矿井排水设备设计一、主排水设备1、设计依据本次技改,在主井底做中央泵房,排水管路从管子道,沿主立井敷设,将矿井涌水直接排到地面。
矿井正常涌水量: 20m 3/h矿井最大涌水量: 40m 3/h排水高度: 150m (包括水处理高度、吸水高度)水泵扬程估算:167m2、设备选型(1).水泵型号、台数水泵必须的排水能力:正常涌水时排量:Q=1.2×20=24m 3/h最大涌水时排量:Q max =1.2×40=48m 3/h根据所需排量、排水高度及《煤矿安全规程》的要求,选用3台MD46-30×6型离心水泵,技术参数:流量46 m 3/h ,扬程180m ,配电动机功率45kW 。
正常涌水时,一台MD46-30×6型水泵工作;最大涌水时,两台水泵工作。
(2)排水管路所需排水管直径:d P =0.0188×p H v Q =s m v m p /209.0246==,取 因井深小于400m ,选管壁最薄的无缝钢管,排水管外径102 mm ,壁厚5 mm , 内径92mm 。
吸水管选用Φ127×5mm 。
(3).水泵工作工况排水管路(管路淤积后)特性方程为:H=150+0.016304Q2在水泵工作特性曲线上作管路特性曲线得水泵工况点M1(见图6-3-1),则单台泵工作工况:Q m=43.3m3/h,H m=180.6m,ηm=70.7%。
(4).电动机校验管路未淤积情况下排水管路特性方程为:H' =150+0.0096Q2在水泵工作特性曲线上作管路特性曲线得水泵工况点M2 (见图6-3-1)工作参数:Q'm=48.2m3/h,H'm=172.3m,η'm=70.6%,则电机所需功率为:1030×48.2×172.3P'= ——————————×1.2=39.6kW102×3600×0.706水泵所配电动机YB225M-2隔爆型电动机,45kW,2970r/min。
矿井排水设备选型设计例题
集中排水系统 分段排水系统 直接排水系统
水泵选型
Q 1.2 700 840m / h
3 B
Q 1.2 1100 1320m / h
3 max
水泵扬程的估算
500 18.5 4 H 580.5m 0.9
B
选型号D450-60X10,
额定流量Qe=450m3/h,额定扬程He=600m
140 4~32
146 4.5~36
152 4.5~36
159 4.5~36
168 4.5~36
180 5~(45)
外径 壁厚
194 5~(45)
203 6~50
219 6~50
245 6.5~50
273 6.5~50
299 7.5~75
325 7.5~75
351 8~75
377 9~75
外径 壁厚
正常涌水时,水泵每天工作的时间
24q T2 n1QM 2
≤20h
最大涌水时,水泵每天工作的时间
T2max 24qmax (n1 n2 )QM 2
≤20h
电动机容量的验算 电耗计算
排水管内径
dp
/
p /
4Qe
dp
p/
/
——排水管内径,m;
——排水管经济流速,一般取
p/
=1.5~2.2m/s
吸水管内径
d x / d p / 0.025
热轧结构用无缝钢管(GB9162—87)
外径 壁厚
32 2.5~8
38 2.5~8
42 2.5~10
45 2.5~10
2、管路在泵房内的布置
管路在泵房内的布置形式应根据水泵台数和所选管路 的趟数确定。如图所示,为常见矿井排水管路在泵房 内布置示意图。图(a)为三台水泵两趟管路的布置方 式,(b)为四台水泵三趟管路布置方式。另外,也有 五台泵三趟或四趟管路的布置方式等。但是,不论采 用哪种布置方式,都应使任意一台水泵能用任何一趟 管路排水。
矿山排水设备选型
某矿山排水设备的选型设计目录某矿山排水设备的选型设计( 一) 矿山排水系统一. 排水系统的确定 (3)二. 矿井排水简图 (3)( 二) 矿山排水设备的选型计算<一>. 第一水平主排水设备和输水管等设计选择计算 (4)一. 资料 (4)二. 水泵的选择计算 (5)三. 管路的选择确定 (6)四. 管路阻力损失的计算 (8)五. 水泵工作点的确定 (10)六.吸水高度的验算 (11)七. 排水时间及水管中流速的验算 (12)八. 电动机容量的计算 (12)九. 电耗量的计算 (13)十. 水泵房的布置 (14)十一. 水仓 (15)<二> 第二水平排水设备和输水管等设计选择计算一. 资料 (15)二. 水泵的选择计算 (16)三. 管路的选择确定 (16)四. 管路阻力损失的计算 (18)五. 水泵工作点的确定 (20)六. 吸水高度的验算 (22)七. 排水时间及水管中流速的验算 (22)八. 电动机容量的计算 (23)九. 电耗量的计算 (23)某矿山排水设备的选型设计( 一) 矿山排水系统一.排水系统的确定:该矿是多水平开采, 第一水平标高-50M, 第二水平标高为-200M, 因此确定该矿为分段排水. 在-200M水平设置主排水设备, 将该水平涌水沿管道上山排至-50M水平, 在-50M水平大巷内设有排水沟, -50M水平的涌水和由-200M水平排至-50M水平的水经排水沟流到井底水泵房附近的内水仓和外水仓. 然后由主排水设备沿副井将该矿井的全部涌水排至地面+263.二.矿井排水简图如下:. -200第二水平-50第一水平50度副井井口+26335度**矿井排水系统简图( 二) 矿山排水设备的选型计算矿山固定排水设备是矿山重要设备, 根据该矿具体条件和安全经济可靠的原则, 对水泵机组和输水管路选择如下:因为该矿为分段排水, 因此必须对第一水平和第二水平排水设备和排水管路分别进行选择计算, 先对第一水平进行计算选择.<一>: 第一水平主排水设备和输水管等设计选择计算:根据设计规范规定: 排水设备的选择, 应能使工作水泵总能力在20小时内排出矿井24小时的正常排水量; 工作水泵和备用水泵的总能力应能在20小时内排出矿井24小时的最大涌水量; 检修水泵台数按工作水泵或备用水泵二者中的最多台数的25%设置, 但不少于一台. 所有水泵具有同等能力. 当工作水泵一台时, 对于正常涌水量为50m3/小时或50m3/小时以下时, 而且最大涌水量不超过正常涌水量一倍的矿井可选用二台水泵, 其中一台工作, 一台备用(包括检修). 对于正常涌水量大于50m3/小时(包括充填水和其他用水), 而且最大涌水量与正常涌水量相差不多时, 应选用三台水泵, 其中一台工作, 一台备用, 一台检修.该矿第一水平正常涌水量为50m3/小时, 而且最大涌水量为160m3/小时. 每年正常涌水量时间大约7个月(213天), 最大涌水量大约5个月(152天), 根据以上情况, 决定在该水平设置主排水水泵6GD67-6型三台, 正常涌水时期, 一台工作, 最大涌水时二台工作, 一台备用(包括检修), 一台工作时, 一台备用, 一台检修.根据<<规范>>规定: 主排水管至少设两条, 其中一条出现故障时, 其余管路应能在20小时内排出矿井24小时的正常涌水量. 正常涌水量为50m3/小时及以下, 而且最大涌水量为100m3/小时及以下的斜井, 可敷设一条管路, 其能力应在20小时内排出矿井24小时的最大涌水量. 根据该矿实际条件和具体情况, 结合以上规定, 决定设置二趟管路, 矿井正常涌水量时一趟管路排水, 矿井最大涌水量时二趟管路排水.一: 资料1.第一水平标高-50M, 管路沿副井井筒敷设. 副井井口标高+263M.2.矿井正常涌水量40 m3/小时, 涌水时间213天; 矿井最大涌水量160 m3/小时,涌水天数152天.3.水泵房水仓及井底车场布置图如下:泵泵副井地面4.矿井涌水的重量r=1080Kg/m3. PH=7是中性水.5.矿井年产量35万吨/年二: 水泵的选择计算1.正常涌水量时水泵必须的排水能力:Q B =24 Q H/20 =1.2 Q HQ H------矿井正常涌水量40 m3/小时Q B =1.2×50 =60m3/小时2.最大涌水量时水泵必须的排水能力:Q B′=24Q max÷20=1.2 Q max =192 m3/小时Q max------矿井最大涌水量160 m3/小时3. 水泵扬程的估算:Hg = K(Hp+Hx)K------管路损失系数. 斜井倾角α>30°K=1.2—1.25 这里K取1.2 Hp------排水高度为263+50等于313米Hx------吸水高度约为4—5米这里取5米代入计算:Hg =1.2(313+5)=381.6米4. 水泵的选取及总系数的确定:据Q B =60m3/小时Q B′=192 m3/小时Hg = 381.6米和PH=7从水泵设备手册中选取6GD67-6型水泵, 其技术特性如下:Qn=100m3/h H=450m n=2980 r/mHs=6.3m η=0.64 N轴=192KWN=290KW D(叶轮直径)=235mm 重744Kg如前所定: 正常涌水时, 一台工作, 一台备用, 一台检修; 最大涌水时, 二台工作, 一台备用(包括检修).三: 管路的选择确定1.排水管趟数的确定:如前所定, 矿井正常涌水量时一趟管路排水, 矿井最大涌水量时二趟管路排水.排水系统管路布置图如下:泵2. 管材的选择:该矿井为超级瓦斯矿井, 不许在井下电焊, 因此选择热轧无缝钢管.3.管径计算:按经济流速计算:d p′= (Q n/900πU p′)开平方根Q n------所选水泵的额定流量. 为100m3/hU p′------排水管的经济流速. 一般U p′为1.5—2.2m/s. 这里取1.8 m/s 代入:d p′=140mmd x′= d p′+0.025m =0.165m = 165mm4.管壁厚度的计算:δg′=0.5 d p′()+δfτn-------管材许用应力热轧无缝钢管为800㎏/C㎡P ------管内水流压力P = 0.11 HsyH sy------测地高度H sy = H p + H x = 318 mP = 0.11×318 = 34.98 ㎏/C㎡δf------附加厚度取0.15代入:δg′= 0.447cm = 4.47 mm据以上计算值d p′= 140mm d x′= 165mm δg′ = 4.47 mm选取标准管子:排水管:d p=158mm Dp = 168mm δg = 5mm 42.59㎏/m吸水管:d x = 165mm D x = 203mm δg = 6mm 52.08㎏/m5.排水管流速的计算:U p = Q n /(900π×d p×d p) = 100/(900×3.14×0.158×0.158) ≈ 1.5m/s6. 吸水管流速的计算:U x = Q x /(900π×d x×d x) = 100/(900×3.14×0.191×0.191) ≈ 1 m/s四.管路阻力损失的计算:1. 排水管的计算:H p = λp×(L p/d p)×U p×U p/2g + ∑ξp(U p×U p/2g)λp------沿程阻力损失系数. 据书表4-1取0.0327d p 为0.158mU p为1.5m/sL p------排水管总长度L p = l1+l2+l3+l4l1------水流经泵房排水管的长度取30米l2------管子道中的管子长度, 根据该矿管子道较长实际情况取40米l3------副井井筒斜长l3 = H/Sin35°= 313/ Sin35°= 546ml4 = 井口出水管长度. 一般为15—20米. 这里取20米故L p = l1+l2+l3+l4=30+40+546+20=636米∑ξp------排水管路附件局部阻力损失系数之和管路附件见<<排水系统管路布置简图>>选取:排水管路设有闸板阀二个ξ1 = 2×17逆止阀一个ξ2 =30三通阀三个ξ3 =2×0.1+1×0.13弯头五个(直角二个)ξ4 =2×0.294+3×0.74异径管一个ξ5 = 0.286∑ξp =ξ1+ξ2+ξ3+ξ4+ξ5=2×17+30+2×0.1+1×0.13+2×0.294+3×0.74+0.286=67.63代入H p = λp×(L p/d p)×U p×U p/2g + ∑ξp(U p×U p/2g)=0.0327×(636/0.158)×1.5×1.5/2×9.8 + 67.63(1.5×1.5/2×9.8) 23.732.吸水管流动阻力损失系数计算:H x = λx×(L x/d x)×U x×U x/2g + ∑ξx(U x×U x/2g)L p------吸水管总长度取8米λx------吸水管沿程阻力损失系数.据书表4-1取0.03083d x -------吸水管内径为0.158mU x-----吸水管流速为1 m/s∑ξp------吸水管路附件局部阻力损失系数之和吸水管路中设置过滤器一个ξ1 =6.6弯头一个ξ2 =0.294异径管一个ξ3 = 0.09∑ξp =ξ1+ξ2+ξ3=6.6+0.294+0.09=0.53代入H x = λx×(L x/d x)×U x×U x/2g + ∑ξx(U x×U x/2g)=0.031×(8/0.191)×1×1/2×9.8 + 7.8(1×1/2×9.8)=0.533.输水管路总损失的计算:H w = (H p+H x+ U p×U p/2g) ×1.7H w-----输水管路总损失1.7-----考虑管路使用日久后在管子内壁积有沉淀物而使阻力增加的附加阻力损失故H w =(23.73+0.53+ 1.5×1.5/2×9.8) ×1.7=42米五. 水泵工作点的确定H =H sy + R Q×QR =(H - H sy )/ Q×Q= H w/ Q×Q=42/ 100×100=0.0042R-----管网常数Q------所选水泵的流量, 该水泵为100m3/h根据管路特性曲线方程式H =H sy + R Q×Q=318+0.0042×Q×Q取不同的Q值列表, 求对应点的H值把水泵特性曲线和管路特性曲线用同一比例尺画在同一的H-Q坐标上, 其交点M为水泵的工作点.60120 180240 300 360 420 480540 600 50100150200Qm3/h Hm HmQmηmMH = f(Q)η = f(Q)H = Hsy + RQ×RQ705060102030405060708090100工作扬程 H M = 420m 工作流量 Q M = 153 m3/h 工作效率 ηM = 0.73工作点所对应的流量Q M 不得少于水泵的额定流量:Q M = 153 m3/h > Q = 100 m3/h 故满足要求工作点所对应的扬程 H M 应小于0.9—0.95倍水泵额定扬程: 工作扬程 H M = 420m < 0.95H = 0.95×450 = 428米, 故满足要求 工作效率 ηM 不少于最高效率的0.85倍:ηM = 0.73 > η= 0.85×0.74 = 0.63, 故满足要求六. 吸水高度的验算: H X = H S – hx –Ux ×U x/2g H S-------所选水泵样本上规定的吸水高故H X = 6.3 – 0.53–1×1/2×9.8 = 5.72米 > 5.0米故可以采用吸水高度5.0米七. 排水时间及水管中流速的验算:1.T H =24Q H/Z H Q m ≦ 20小时Z H------正常涌水时工作水泵台数1台代入T H = 24Q H/Z H Q m = 24×50/1×153 = 7.8小时 < 20小时故满足要求2.最大涌水量时水泵每天工作小时数Tmax = 24Q max/Z max Q m ≦ 20小时Z max-------最大涌水量时水泵台数2台代入T H = 24Q max/Z max Q m = 24×160/2×153 = 12.5小时 < 20小时3.排水管中实际水流速度:U p′= Q m /(900π×d p×d p)规定U p′之值应在1.5—2.2m/sU p′= 153 /(900×3.14×0.158×0.158)=2.17 m/s故满足要求4.吸水管中实际水流速度:U x′= Q m /(900π×d x×d x)规定U x′之值应在0.8—1.5m/sU x′= 153 /(900×3.14×0.191×0.191)=1.484 m/s故满足要求八. 电动机容量的计算:N d = 1.1×r Q m H m/(3600×102×ηm×ηc)1.1------备用系数在1.1—1.15之内取1.1Q m H mηm----------分别为水泵工作点的流量扬程效率ηc-------传动效率取0.98故N d = 1.1×1080×153r×420/(3600×102×0.73×0.98)=290 KW根据计算所得功率及所选水泵的转速确定选用JK-133-2型电机, 参数如下:额定功率为290 KW转速为2960 r/s效率为0.94电压为6KV电流为34.5A功率因数为0.88λ为1.8JK-133-2型电机尺寸:长宽高为1700×1200×1125九.电耗量的计算:1.年电耗量的计算:W= 1.05×r Q m H m/(102×3600×102×ηm×ηc×ηd×ηw)×(Z H N H T H + Z max N max T max )式中:Ηw------电网效率一般取0.95—0.98 这里取0.95Ηd--------电机效率为0.94N H-------矿井每天正常涌水天数213天N max------矿井每年最大涌水天数152天代入:W= 1.05×1080×153×420/(102×3600×102×0.73×0.98×0.94×0.95)×(213 ×7.84. + 2×152 ×12.5)=1699361 KWh2.吨煤排水电耗:W dm = W/AA------矿井年产量35万吨/年W dm = W/A=1699361/350000=4.85度/吨十. 水泵房的布置:该矿主水泵房设置在井底车场附近, 为了减少水泵房的宽度, 水泵房内沿泵房长度布置水泵. 水泵房的布置如图所示.泵房的长度, 宽度和有效长度计算如下:1.泵房长度:L = n2×L i+A(n2+1)式中:n2------水泵总台数3台L i------水泵基础长度查产品手册可知: L5 =525mm L4 = 835mm查电机手册可知: 电机总长度L电机 = 1.7mL i = L5 + L4 + L电机 = 525 + 835 + 1700 = 3060mm = 3.06mA------水泵基础之间的距离一般为1.5—2米取2米故L = n2×L i+A(n2+1)=3×3.06+2(3+1)=17.2米2.泵房的宽度B = b j + b g + b c式中:b j ------水泵基础宽度取电机宽度b g------水泵基础边到轨道侧墙壁的距离, 一般取1.5—2米, 这里取2米b c------水泵基础另一边边到吸水井一侧墙壁的距离, 一般取0.8—1.0米, 这里取1米故B = b j + b g + b c= 1.2 + 2 + 1= 4.2米3.泵房的高度依据水泵叶轮直径D2的大小估算, D < 350mm 取3米. 该矿选用6GD67-6型水泵直径(叶轮)为235mm, 因此取泵房高度为3米. 泵房内设置有起重梁.为了使井下涌水突然增加或某种事故水泵短期不能输时, 涌水可以充满整个水仓, 并从水仓流到井底车场和运输大巷而不至于淹没高于井底车场的水泵房, 泵房地面较井底车场钢轨面高0.5米, 管子道水平设置, 排水管经管子道到副井井筒经排水管排水至地面.十一. 水仓为了减少水流速度, 便于矿井水中的泥沙得到沉淀, 有利于水泵的排水工作, 并在涌水量不均匀和排水设备发生故障后起调节作用设计水仓, 水仓是能够储水的巷道, 形状与普通运输巷道相同, 它比井底车场低3.米. 水仓的容量按设计规范规定必须能够容纳全矿井8小时的正常涌水量. 因此该矿水仓400m3全矿井的涌水量最后全部汇集于此水仓中, 经水泵排至地面.该水仓设有内外两水仓, 以方便轮换清理水仓. 水仓在使用期间, 必须定期清理. 每年雨季之前把两个水仓轮换全部清理干净, 并在水仓的进水口处设置笼子.<二>: 第二水平排水设备和输水管等设计选择计算:根据设计规范规定: 排水设备的选择, 应能使工作水泵总能力在20小时内排出矿井24小时的正常排水量; 工作水泵和备用水泵的总能力应能在20小时内排出矿井24小时的最大涌水量; 检修水泵台数按工作水泵或备用水泵二者中的最多台数的25%设置, 但不少于一台. 所有水泵具有同等能力. 当工作水泵一台时, 对于正常涌水量为50m3/小时或50m3/小时以下时, 而且最大涌水量不超过正常涌水量一倍的矿井可选用二台水泵, 其中一台工作, 一台备用(包括检修). 对于正常涌水量大于50m3/小时(包括充填水和其他用水), 而且最大涌水量与正常涌水量相差不多时, 应选用三台水泵, 其中一台工作, 一台备用, 一台检修.该矿第二水平正常涌水量为20m3/小时, 而且最大涌水量为40m3/小时. 每年正常涌水量时间大约7个月(213天), 最大涌水量大约5个月(152天), 根据以上情况, 决定在该水平设置主排水水泵80D30-8型二台, 正常涌水时期和最大涌水时皆为一台工作, 一台备用(包括检修).根据<<规范>>规定: 主排水管至少设两条, 其中一条出现故障时, 其余管路应能在20小时内排出矿井24小时的正常涌水量. 正常涌水量为50m3/小时及以下, 而且最大涌水量为100m3/小时及以下的斜井, 可敷设一条管路, 其能力应在20小时内排出矿井24小时的最大涌水量. 根据该矿实际条件和具体情况, 结合以上规定, 决定在该矿第二水平至第一水平排水管路设置一趟, 第二水平的涌水经管路上山输送到第一水平排水沟内, 流向第一水平水仓.一: 资料1.第二水平标高-200M, 管路山输送到第一水平排水沟内.矿井第二水平正常涌水量20 m3/小时, 涌水时间213天; 矿井最大涌水量40 m3/小2.时,涌水天数152天.3.矿井涌水的重量r=1080Kg/m3. PH=7是中性水.4.矿井年产量35万吨/年二: 水泵的选择计算1.正常涌水量时水泵必须的排水能力:Q B =24 Q H/20 =1.2 Q HQ H------矿井正常涌水量20 m3/小时Q B =1.2×0 =24m3/小时2.最大涌水量时水泵必须的排水能力:Q B′=24Q max÷20=1.2 Q max =48 m3/小时Q max------矿井最大涌水量40 m3/小时3. 水泵扬程的估算:Hg = K(Hp+Hx)K------管路损失系数. 斜井倾角α>30°K=1.2—1.25 这里K取1.2Hp------排水高度为.-50 + 200等于150米Hx------吸水高度约为4—5米这里取5米代入计算:Hg =1.2(150+5)=186米4. 水泵的选取及总系数的确定:据Q B =24m3/小时Q B′=48 m3/小时Hg = 186米和PH=7从水泵设备手册中选取80D30-8型水泵, 其技术特性如下:Qn=50m3/h H=212.8m n=2950 r/mHs=5m η=0.655 N轴=44.4KWN=55KW D(叶轮直径)=166mm .如前所定: 正常涌水时期和最大涌水时皆为一台工作, 一台备用(包括检修).三: 管路的选择确定1.排水管趟数的确定:如前所定, 设置一趟2. 管材的选择:该矿井为超级瓦斯矿井, 不许在井下电焊, 因此选择热轧无缝钢管.2.管径计算:按经济流速计算:d p′= (Q n/900πU p′)开平方根Q n------所选水泵的额定流量. 为50m3/hU p′------排水管的经济流速. 一般U p′为1.5—2.2m/s. 这里取1.8 m/s 代入:d p′=99mmd x′= d p′+0.025m =0.165m = 165mm6.管壁厚度的计算:δg′=0.5 d p′()+δfτn-------管材许用应力热轧无缝钢管为800㎏/C㎡P ------管内水流压力P = 0.11 HsyH sy------测地高度H sy = H p + H x = 155 mP = 0.11×155 = 17 ㎏/C㎡δf------附加厚度取0.15代入:δg′= 0.256cm = 2.56 mm据以上计算值d p′= 99mm d x′= 165mm δg′ = 2.56 mm选取标准管子:排水管:d p=106mm Dp = 114mm δg = 4mm .吸水管:d x = 131mm D x = 140mm δg =4.5mm .7.排水管流速的计算:U p = Q n /(900π×d p×d p) = 100/(900×3.14×0.106×0.106) ≈ 1.575m/s6. 吸水管流速的计算:U x = Q x /(900π×d x×d x) = 100/(900×3.14×0.131×0.131) ≈ 1.02 m/s四. 管路阻力损失的计算:1. 排水管的计算:H p = λp×(L p/d p)×U p×U p/2g + ∑ξp(U p×U p/2g)λp------沿程阻力损失系数. 据书表4-1取0.0378d p 为0.106mU p为1.58m/sL p------排水管总长度L p = l1+l2+l3+l4l1------水流经泵房排水管的长度取25米l2------管子道中的管子长度, 根据该矿管子道较长实际情况取15米l3------管子道出口到管道上山长度140米l4------管子道上山斜长= H/Sin35°= 150/ Sin35°= 196ml5 ------管子道在第一水平出水长度. 这里取20米故L p = l1+l2+l3+l4=25+15+196+12=388米∑ξp------排水管路附件局部阻力损失系数之和-50m水平管道上山 50度 196米140米泵泵管路见上图选取情况如下:排水管路设有闸板阀二个ξ1 = 2×17逆止阀一个ξ2 =30三通阀2个ξ3 =1×0.1+1×0.13 =0.26弯头五个.ξ4 =5×0.364 =1.82异径管一个ξ5 = 0.364∑ξp =ξ1+ξ2+ξ3+ξ4+ξ5=9.32代入H p = λp×(L p/d p)×U p×U p/2g + ∑ξp(U p×U p/2g)=0.0378×(388/0.106)×1.58×1.58/2×9.8 + 9.32(1.58×1.58/2×9.8) = 18.84.吸水管流动阻力损失系数计算:H x = λx×(L x/d x)×U x×U x/2g + ∑ξx(U x×U x/2g)L p------吸水管总长度取8米λx------吸水管沿程阻力损失系数.据书表4-1取0.0378d x -------吸水管内径为0.131mU x-----吸水管流速为1.02 m/s∑ξp------吸水管路附件局部阻力损失系数之和吸水管路中设置过滤器一个ξ1 =6.5弯头一个ξ2 =0.294异径管一个ξ3 = 0.8∑ξp =ξ1+ξ2+ξ3=6.5+0.294+0.8=7.6代入H x = λx×(L x/d x)×U x×U x/2g + ∑ξx(U x×U x/2g)=0.038×(8/0.131)×1.02×1.02/2×9.8 + 7.6(1.02×1.02/2×9.8)=0.535.输水管路总损失的计算:H w = (H p+H x+ U p×U p/2g) ×1.7H w-----输水管路总损失1.7-----考虑管路使用日久后在管子内壁积有沉淀物而使阻力增加的附加阻力损失故H w =(18.8+0.53+ 1.58×1.58/2×9.8) ×1.7=33米五. 水泵工作点的确定H =H sy + R Q×QR =(H - H sy )/ Q×Q= H w/ Q×Q=33/ 50×50=0.0132R-----管网常数Q------所选水泵的流量, 该水泵为50m3/h 根据管路特性曲线方程式H = H sy + R Q ×Q=155+0.0132×Q ×Q取不同的Q 值列表, 求对应点的H 值把水泵特性曲线和管路特性曲线用同一比例尺画在同一的H-Q 坐标上, 其交点M 为水泵的工作点.Qm3/hHHmQmηmMH = f(Q)η = f(Q)H = Hsy + RQ×RQ1020304032024016080183654633040506070η工作扬程 H M = 192m 工作流量 Q M = 55 m3/h 工作效率 ηM = 0.66工作点所对应的流量Q M 不得少于水泵的额定流量:Q M = 55 m3/h > Q = 50 m3/h 故满足要求工作点所对应的扬程H M应小于0.9—0.95倍水泵额定扬程:工作扬程H M = 192m < 0.95H = 0.95×212.8 = 202.16米, 故满足要求工作效率ηM不少于最高效率的0.85倍:ηM = 0.66 > η= 0.85×0.68 = 0.578, 故满足要求六.吸水高度的验算:H X = H S– hx –Ux×U x/2gH S-------所选水泵样本上规定的吸水高度6.3米故H X =5 – 0.53–1.02×1.02/2×9.8 = 4.42米故可以采用吸水高度5.0米七.排水时间及水管中流速的验算:5.T H =24Q H/Z H Q m ≦ 20小时Z H------正常涌水时工作水泵台数1台代入T H = 24Q H/Z H Q m = 24×20/1×55 = 8.73小时 < 20小时故满足要求6.最大涌水量时水泵每天工作小时数Tmax = 24Q max/Z max Q m ≦ 20小时Z max-------最大涌水量时水泵台数1台代入T H = 24Q max/Z max Q m = 24×40/1×55 = 17.5小时 < 20小时7.排水管中实际水流速度:U p′= Q m /(900π×d p×d p)规定U p′之值应在1.5—2.2m/sU p′= 55 /(900×3.14×0.106×0.106)=1.732 m/s故满足要求8.吸水管中实际水流速度:U x′= Q m /(900π×d x×d x)规定U x′之值应在0.8—1.5m/sU x′= 55 /(900×3.14×0.131×0.131)=1.12 m/s故满足要求八.电动机容量的计算:N d = 1.1×r Q m H m/(3600×102×ηm×ηc)1.1------备用系数在1.1—1.15之内取1.1Q m H mηm----------分别为水泵工作点的流量扬程效率ηc-------传动效率取0.97故N d = 1.1×1080×55×192/(3600×102×0.66×0.97)=53.4 KW根据计算所得功率及所选水泵的转速确定选用J2-81-2型电机, 参数如下:额定功率为55 KW转速为2950 r/s电压为380V电流为99.8A功率因数为0.92九.电耗量的计算:3.年电耗量的计算:W= 1.05×r Q m H m/(102×3600×102×ηm×ηc×ηd×ηw)×(Z H N H T H + Z max N max T max )式中:Ηw------电网效率一般取0.95—0.98 这里取0.95Ηd--------电机效率为0.94N H-------矿井每天正常涌水天数213天N max------矿井每年最大涌水天数152天代入:W = 1.05×1080×55×192/(102×3600×0.66×0.95×0.9×0.95)×(213 ×8.73 + 152×17.5)=262131 KWh4.吨煤排水电耗:W dm = W/AA------矿井年产量35万吨/年W dm = W/A=262131/350000=0.748度/吨致谢在完成设计的过程中得到了***老师及***老师的精心指导,两位老师严谨求实的治学态度,给我留下了深刻的印象,也深深地影响了我在做设计过程中的态度,他们及时的点拨和解答疑难,常常使我茅塞顿开,不仅仅帮助我顺利的完成了毕业设计,而且大大开拓了我视野,也必将使我在日后的学习和工作过程中受益匪浅,在这里向两位老师致以最真诚的谢意。
煤矿排水设备选型设计
煤矿排水设备选型设计摘要:矿井水灾害是当今煤矿事故的主要灾害之一,时刻威胁着井下矿工的生命安全,一旦发生,给企业、国家带来巨大损失。
因此,针对矿井实际水文地质情况,建立合适的煤矿排水系统,选择与排水系统相适应的排水设备,对井下安全生产至关重要。
以山西柳林王家沟煤业排水设备选型为研究背景,通过探讨,为该矿排水设备选型提供了科学合理的建议。
关键词:煤矿排水;设备选型;设计1矿井状况山西柳林王家沟煤矿在上组煤副立井井底附近已建有一座主排水泵房。
矿井下组煤延深后,设计在下组煤大巷西端新建下组煤主排水泵房及下组煤井底水仓。
由于本井田各批采煤层均分布奥灰带压区,当有隐伏构造沟通时,存在奥灰突水可能性,而且井田4、5号煤层存在大面积采空区,已探明5号煤有8处积水区,下组煤开采存在采空区突水的隐患,为保证矿井安全生产,笔者以王家沟煤矿的地质条件及开采条件为工程背景,对下组煤排水设备进行选型设计,设置应急抗灾排水系统。
2排水设备选型方案2.1上组煤主排水设备本矿井正常涌水量为40m3/h,最大涌水量50m3/h。
矿井副立井井底已建有一座主排水泵房,站内安装3台MD85-45×4型矿用耐磨多级离心泵,配套隔爆电动机75kW、660V。
正常涌水时,一台工作,一台备用,一台检修ꎻ最大涌水时,两台工作,一台检修。
主排水管路为D159×4.5无缝钢管,两趟,排水管路沿副立井井筒敷设。
正常涌水时,一趟管路工作,一趟管路备用ꎻ最大涌水时两趟管路工作。
矿井下组煤延深后,矿井涌水量未发生变化,现有上组煤主排水系统满足使用要求。
2.2下组煤主排水设备(1)设计依据矿井正常涌水量:40m3/hꎻ矿井最大涌水量为:50m3/hꎻ下组煤泵站底板标高:+492mꎻ上组煤泵站底板标高:+730mꎻ副斜井井口标高:+888m。
(2)方案比选水泵必需的排水能力:Q正常≥1.2×40=48m3/hQ最大≥1.2×50=60m3/h根据涌水量及排水高度,设计对下组煤排水设备的选型设计考虑了以下三个方案:方案一:下组煤涌水经8煤辅运大巷排至上组煤主排水泵房,再由上组煤主排水泵房现有排水设备将涌水排至地面。
煤矿主排水设备选型设计毕业论文
煤矿主排水设备选型设计毕业论文目录第一章绪论 (4)1.1对排水系统的要求 (4)1.2对排水设备的要求 (5)1.3离心式水泵的分类 (5)第二章矿井排水系统的确定 (7)2.1分析本矿井特点 (7)2.2方案一直接排水系统 (7)2.3 方案二分段排水系统 (8)第三章水泵的选型及台数计算 (9)3.1排水系统对水泵的要求 (9)3.2初选水泵型号 (10)3.3所需水泵的台数 (12)第四章排水管道选型计算及管道的布置 (14)4.1排水管选择计算 (14)4.2管路趟数及布置方式的选择 (16)第五章吸水管道选型计算及管道的布置 (18)5.1吸水管道选型计算 (18)5.2绘制管道系统图 (19)第六章管道特性曲线的绘制及工况点的确定 (20)6.1 求管路特性方程式并绘制管路特性曲线 (20)6.2确定工况点 (24)第七章水泵工作合理性校验 (25)7.1校验水泵稳定性 (25)7.2校验排水时间 (25)第八章水泵电动机的选型计算 (26)第九章主排水经济指标的计算 (27)9.1电费 (27)9.2设备购置费 (28)9.3安装工程费 (28)9.4井巷工程费 (29)第十章水泵房、水仓的布置尺寸确定 (29)10.1泵房尺寸 (29)10.2水仓尺寸 (32)参考文献 (33)第一章绪论1.1对排水系统的要求在矿井建设和生产过程中,随时都有各种来源的水涌入矿井。
只有极少数例外的矿井是干燥。
将涌入矿井的水排出,只是和矿水斗争的一方面,另一方面是采取有效措施,减少涌入矿井的水量。
特别是防止突然涌水的袭击,对保证矿井生产有重要意义。
矿井排水设备不仅要排除各时期涌入矿井的矿水,而且在遭到突然涌水的袭击有可能淹没矿井的情况下,还要抢险排水。
在恢复被淹没的矿井时,首要的工作就是排水。
排水设备始终伴随着矿井建设和生产而工作,直至矿井寿命截止才完成它的使命。
因此,排水设备是煤矿建设和生产中不可缺少的,它对保证矿井正常生产起着非常重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1排水系统的要求
由于煤矿特殊的自然环境,对排水设备的要求相对于其他生产条件要严格的多。不仅要考虑防火,防爆,通风;还要考虑水文地理条件,水的酸碱性等问题,设计选用合理的设备,充分发挥设备的生产能力,是选型设计的关键。
(1)必须有工作水泵,备用水泵和检修水泵。
(2)工作水泵的排水能力,应能在20小时内排除矿井24小时的正常涌水量;备用水泵的排水能力,应不小于工作水泵的排水能力的70%,并且工作和备用水泵的总能力,应能再20小时内排出矿井24小时的最大涌水量;检修水泵的能力,应不小于工作水泵的排水能力的25%。
安徽矿业职业技术学院
毕业设计说明书
设计题目某煤矿主排水设备选型设计
作者姓名叶德伍
学 号************
系 部机电工程系
专 业矿山机电
指导教师张丽芳老师
2013年3月28日
摘要
本次论文设计是基于煤矿流体机械选型设计,完成煤矿主排水设备水泵的型及设计。
本文根据安全和工作能力的要求,选取相应的水泵,以及对应的电动机。并且根据煤矿需要,计算年耗电量,进行基本的生产成本算。
矿井水中会有各种矿物质,故矿井水的密度比清水大,酸性水对排水设备的非耐酸金属零件产生腐蚀作用,减少排水设备正常使用年限。
矿水中含有的悬浮状固体颗粒进入水泵后加速金属表面的磨损。对于矿水中的悬浮颗粒应在水泵前加以沉淀,而后再经泵排出矿井。
1.2矿山排水设备的组成
矿山排水设备一般由启动设备、电动机、水泵、管路、管路附件和仪表等组成。
根据计算选用MD450-60×10系列矿用多级离心泵。
型号
级
数பைடு நூலகம்
流量
扬程
H
(m)
转速
n
(r/min)
功率P(KW)
效率
%
泵重
(kg)
(m3/h)
(L/s)
轴功率
Pa
电动机
功率
MD450-60X10
10
450
125
600
1480
560
690
80
8439
3.4确定水泵的级数
若采用分段水泵,当流量能满足要求时,水泵必须的级数为:
1.1矿水
矿井排水设备不仅要排除各时期涌入矿井的矿水,而且在遭到突然涌水的袭击有可能淹没矿井的情况下,还要抢险排水。在恢复被淹没的矿井时,首要的工作就是排水。排水设备始终伴随着矿井建设和生产而工作,直至矿井寿命截止才完成它的使命。因此,排水设备是煤矿建设和生产中不可缺少的,它对保证矿井正常生产起着非常重要的作用。
2.2矿井排水系统的确定………………………………………………………………………5
2.3矿井主排水系统的设计……………………………………………………………………6
第三章、水泵的选型及台数计算…………………………………………………7
3.1设备最小能力计算…………………………………………………………………………7
本文主要是煤矿用排水设备的选型,通过对以上设备的合理选型及设计,使工人的工作条件得到一定的改善,实现最大的经济效益。
选型设计中,根据《煤矿安全规程》的有关规定,在保证及时排除矿井涌水的前提下,使排水总费用最小,因而选择最优方案。
根据设计任务书所提供资料,以严格遵守《矿井安全规程》所规定的有关条款为依据,以安全可靠为根本,投入少、运行费用低为原则的设计指导思想,在煤矿生产中,单水平和两个水平开采,应根据矿井的具体情况进行具体分析,综合基建投资,施工,操作和维修管理等因素,在确定最合理的排水系统。
最大涌水量时,工作水泵+备用水泵必须的排水能力
Q2=1.2×850=1020m3/h
式中: ——矿井正常涌水量,m3/h
——矿井最大涌水量, m3/h
3.2水泵扬程
矿井排水垂直高度:
Hc=井深+井底车场与最低吸水面标高差+出口高出井口高度
=522m+5m+3m=530m
水泵扬程:
H ≥ =530/0.9=589m
2.排水系统方案
根据本矿井的布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案,主排水泵房设置在大巷最低点,排水管路沿副井井筒敷设,将矿井涌水排至地面工业场地,在工业场地设置水处理站。该方案排水管路相对较短,降低了管路投资。
经上述综合分析比较,设计推荐本矿井排水系统采用布置合理,综合运营费用低的,即主排水泵房设置在大巷最低点,井下涌水由副井排出方案。
第三章、水泵的选型及台数计算
选择水泵的型式和台数应符合《煤矿安全规程》和《规范》的规定。若有两种或两种以上符合要求时,应选其中尺寸小,效率高的水泵,而且水泵的台数应尽可能少。只有在不得已的情况下,才采用两台水泵并联排水。
3.1设备最小能力计算
正常涌水量时,确定工作水泵必须的排水能力
Q1=1.2×500=600m3/h
按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜排水系统。根据本矿井开拓方式,结合现有产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。
2.3井主排水系统的设计
1.设计依据
地质报告提供矿井正常涌水量450m3/h,最大涌水量为800m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量500m3/h,最大涌水量为850m3/h计算;矿井水处理所需要增加15m扬程。
由 ,故选择水泵级数为10级。
式中: ——水泵必须的扬程,m;
初步选择排水方案,进行设备选型以及相关计算,确定设备工况,校验水泵的稳定工作条件、经济运行条件,排除不合理方案。对所剩方案进行经济核算,根据各设备外形尺寸及安装要求,并考虑其运行条件,最终确定泵房及管路的布置图。
关 键 词:矿井涌水; 水泵; 工况点; 设备布置;
修改建议:
1、目录从第1页开始
2、7.4设备购置费7.5安装工程费这两部分去掉
矿山排水设备是煤矿大型固定设备之一,为确保矿井设备安全生产,要求排水设备在矿井服务年限内,必须安全、经济、可靠、合理的工作。
选择的矿山排水设备及其布置方式必须符合《矿井安全规程》和《煤矿工业设计规范》以及国家有关的技术规定;同时,在技术合理的前提下,应尽可能提高设备的装备效率和设备本身的完好率,充分发挥设备的潜力。
3.矿井主排设备系统方案的确定
根据上述内容确定的排水系统方案,本矿井采用集中性排水系统,主排水泵房设置在水平副井井底车场附近的大巷最低点,排水管路经管子道、沿副井井筒敷设至地面。
地质报告提供矿井正常涌水量450m3/h,最大涌水量为800m3/h,考虑矿井井下洒水和黄泥灌浆渗水增加水量50m3/h,因此在设备选型时按正常涌水期排水量500m3/h,最大涌水期排水量为850m3/h计算;大巷最低点标高+205m,副井井口标高+522m,排水垂高530m,考虑矿井水处理所需要增加的15m扬程后,排水总垂高为545m,排水管路敷设长度约610m。
4.2主排水管路连接……………………………………………………………………………10
4.3管路支承梁计算……………………………………………………………………………10
4.4管径计算……………………………………………………………………………………11
4.5确定管路壁厚………………………………………………………………………………11
2.2矿井排水系统的确定
本矿井采用主、副立井、回风立井综合开拓方式,主井井口标高为+792m,副井、回风井井口标高均为+522m,大巷最低点标高为+530m。
根据地质报告,本矿井正常涌水量450m3/h,最大涌水量为800m3/h,因为正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。
第一章、绪论………………………………………………………………………1
1.1矿水…………………………………………………………………………………………4
1.2矿山排水设备的组成………………………………………………………………………4第二章、矿井排水系统的确定及要求……………………………………………5
2.1排水系统的要求……………………………………………………………………………5
为了使排水设备能在安全、可靠和经济的状况下工作,必须做好确定排水方案,选择排水设备,进行布置设计,直到正常运行各环节的工作。
矿井水的来源分为地面水和地下水,地面水是江、河、湖、溪、池塘的存水及雨水、融雪和山洪等,如果有巨大裂缝与井下沟通时,就会造成水灾。地下水包括含水层水、断层水和老空水。地下水在开采过程中不断涌出。
5.1校验排水时间……………………………………………………………………………14
第六章、水泵电动机的选型计算…………………………………………………15
6.1水泵电动机的选型要求……………………………………………………………………15
6.2电动机结构型式的选择……………………………………………………………………15
参考文献致…………………………………………………………………………24
致谢…………………………………………………………………………………25
第一章、绪论
在矿井建设和生产过程中,随时都有各种来源的水涌入矿井。只有极少数例外的矿井是干燥。将涌入矿井的水排出,只是和矿水斗争的一方面,另一方面是采取有效措施,减少涌入矿井的水量。特别是防止突然涌水的袭击,对保证矿井生产有重要意义。
第八章、水泵房、水仓的布置尺寸确定…………………………………………20
8.1水泵房的布置及尺寸的确定………………………………………………………20