4.6角训练

合集下载

七年级数学上 4.6角华师大版

七年级数学上 4.6角华师大版

4.6 角1. 角观察下面的图形,你发现什么共同的特点吗?这些图形都给了我们角的形象.角(angle)可以看成是由一条射线绕着它的端点旋转而成的图形(如图).起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.图角有以下几种表示方法(如图)图如果终边继续旋转,从图中可以观察到两种特殊情况:第一种情况是绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角(straight angle);第二种情况是绕着端点旋转到终边和始边重合,这时所成的角叫做周角(perigon).图请向同桌同学说明如何使用量角器测量角的大小.我们已经知道如果把周角分成360等份,每一份就是一度,记作1°.但是一个角并不正好是整数度数,与长度单位一样,考虑用更小一些的单位.把一度分成60等份,每一份就是1分,记作1′;而把一分再分成60等份,每一份就是1秒,记作1".这样,角的度量单位度、分、秒有如下关系:1°=60′,1′=60"例1 把18°15′化为用度表示的角.解先把15′化成度,即°,所以18°15′°还记得图八个方向吗?但在日常生活中,八个方向是不够用的,这只是一种大致的方向.如果要准确地表示方向,那就要借用角度的表示方式.图例2 如图,OA是表示北偏东30°方向的一条射线,仿照这条射线画出表示下列方向的射线:图(1) 南偏东25°;(2) 北偏西60°;解(1)以南方向的射线为始边,向东方向旋转25°所成的角,即为所求.(2)以北方向的射线为始边,向西方向旋转60°所成的角,即为所求.练习填空:(1) 正东和正西方向所成的角是_______度;(2) 正南和西南方向所成的角是_______度;(3) 西北和东北方向所成的角是_______度;(4) 正西和东南方向所成的角是_______度;°、45°、60°、120°的角.随后用量角器测一测,比一比谁最为接近.3. 请估计下面角的大小,然后再用量角器测量.角是有大小的,如何比较两个角的大小呢?观察如图的三个角,哪一个最大?图从上图我们可以发现,∠DEF明显比∠AOB和∠CBA小,但∠AOB和∠CBA的大小关系不太明显.如果想得到准确的结果的话,可以采用下面的方法:图可以把一个角放到另一个角上,使它们的顶点重合,其中的一边也重合,这两个角的另一边都在这一条边的同侧,如图:这时,角的大小关系就比较明显了,可以简单的记为∠AOB>∠DEF,或∠DEF<∠AOB.当然,书上的角不能剪下来,我们可以把一个角画到一X描图纸上,放在另一个角上面比较比较角的大小,也可以用量角器分别量出角的度数,然后加以比较.三角板上的角是一些常用的角,除了可以用它们直接作出30°、45°、60°和90°的角之外,还可以作出其它一些特殊的角.想一想:用一副三角板还可以作出哪些特殊的角?三角板如下图所示放置,可以画出75°和15°的角.我们可以对角进行简单的加减运算,如:(1) 34°34′+21°51′=55°85′=56°25′(2) 180°-52°31′=179°60′-52°31′=127°29′做一做:用量角器和直尺在纸上画一个角∠AOB=84°,如图,然后沿O点对折,使边OB和OA重合,那么这条折痕把这个角分成了大小相等的两部分.图从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.练习1.两个直角的和是什么角?是否正确.(1) (2)3. 请用三角板中各角来估计下列角的度数,并按大小次序用“>”符号连结这四个角.在我们所用的三角板中,有一个角是90°,其它两个角,一块是30°与60°,另一块都是45°,它们的和都是90°.在图中,用量角器量一量如下两组图中各角的大小,发现也有这样的特殊关系.(1) (2)图这两组角间有一种特殊的关系,是什么呢?两个角的和等于90°,就说这两个角互为余角,简称互余(plementary angle).另外,如果∠1+∠2=90°,也可以说∠1是∠2的余角,∠2也是∠1的余角.图同样,如果两个角的和等于一平角(180°),就说这两个角互为补角,简称互补(suppleme ntary angle).图如图,∠3+∠4=180°,所以∠3,∠4互为补角.∠3是∠4的补角,∠4也是∠3的补角.想一想如果∠1与∠2都是∠3的余角,∠1和∠2有什么关系?∠4和∠5都是∠6的补角,∠4和∠5又有什么关系?例4 已知∠α=50°17',求∠α的余角和补角.解:∠α的余角=90°-50°17'=39°43',∠α的补角=180°-50°17'=129°43',两直线相交形成了∠1、∠2、∠3和∠4(如图),我们把其中的∠1和∠3叫做对顶角,∠2和∠4也是对顶角.同角的余角相等;同角的补角相等.图例5 在图中,∠1=30°,那么∠2、∠3和∠4各等于多少度?解图因为∠2=180°-∠1=180°-30°=150°,∠3=180°-∠2=180°-150°=30°,∠4=180°-∠3=180°-30°=150°,所以有∠1=∠3,∠2=∠4.其实,任意两个对顶角,由于它们都有一个相同的补角,如上图中∠1和∠3都和∠2互补,所以它们是相等的.如果两个角是对顶角,那么这两个角相等.练习∠AOB,用直尺和量角器画出∠AOB的余角,∠AOB的补角及∠AOB的角平分线.2.说出下列各图中的对顶角3.有两堵围墙OA、OB,有人想测量地面上所形成的角∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?1.填空:(1) 77°42'+34°45'= ;(2) 108°18'-56°23'= ;(3) 180°-(34°54'+21°33')= .2.时钟的分针,1分钟转了度的角,1小时转了度的角.3.如图,如果∠1=65°15',∠2=78°30',∠3是多少度?∠AOB,在∠AOB的内部引射线OC、OD,这时图中共有几个角?分别把它们表示出来.5.两个相等的钝角有一个公共顶点和一条公共边,并且角的其它两边所成的角为90°,画出该图形,并求出钝角的大小.6.如图,OA表示北偏东40°方向的一条射线,仿照这条射线画出表示下列方向的射线(1)北偏东60°(2)北偏西70°(3)东北方向(即北偏东45°)°20'的角的余角等于;25°31'的角的补角等于.8.在图中,EF,EG分别示∠AEB、∠BEC的平分线,求∠GEF的度数和∠BEF的余角.。

华东师大版七年级数学上册教案:4.6角-教学文档

华东师大版七年级数学上册教案:4.6角-教学文档

课题角【学习目标】1.让学生认识角是一种基本的图形,理解角的概念,学会角的表示方法;2.让学生认识角的度量单位:度、分、秒,会进行简单的换算和角度计算;3.让学生正确理解方位角,能画出方位角所表示方向的射线;4.经历从现实生活中认识角的过程,提高学生的识图能力,学会用不同的观点看问题.【学习重点】会用不同的方法表示一个角,会进行简单的计算.【学习难点】角的表示与角度的换算.行为提示:创设问题,情境导入,结合生活中的实际例子,充分调动学生的积极性,激发学生求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,率先做完的小组内互查,大部分学生完成后,进行小组交流.知识链接:一个角的大小不能放大或缩小,角的大小与角的两边的长短没有关系.行为提示:表示角的方法有四种,有大写字母时端点居中,用阿拉伯数字或希腊字母时,该端点处只有一个角.情景导入生成问题线段是一种基本的几何图形,角也是一种基本的几何图形.在以前的学习过程中我们对角有了一些粗浅的认识,本节我们将在已有的知识基础上,对角做进一步的研究.自学互研生成能力知识模块一角的定义阅读教材P145~P146“图4.6.2”以前的部分,完成下面的内容.归纳:(1)定义:如图1,角是由两条有公共端点的射线组成的图形;(2)角也可以看成是由一条射线绕着它的端点旋转而成的图形;(3)两种特殊情况:①如图2,射线绕着端点旋转到角的终边和始边成一条直线,形成__平__角;②如图3,射线绕着端点旋转到终边和始边再次重合,形成__周__角.图1图2图3 范例:下列语句正确的是(D)A.两条射线组成的图形叫做角B.一个角的两边越长,这个角越大C.一条直线就是一个平角D.角可以看作由一条射线绕它的端点旋转而成的图形知识模块二角的表示方法阅读教材P146“图4.6.3”,完成下面的内容.图1图2图3图4归纳:角的表示方法:(1)用三个大写英文字母表示角,角的顶点必须写在正中间.如图1,记作__∠AOB__;(2)用一个大写英文字母表示角(角的顶点处只有一个角).如图2,记作__∠O__;(3)用一个阿拉伯数字或希腊字母(α、β、γ)表示角时,应在角的顶点附近画一个小括弧,再标注上阿拉伯数字或希腊字母.如图3与图4,记作__∠1、∠α__.学法指导:1.角度换算是60进制,但计算符合十进制;2.大单位化小单位用乘法,小单位化大单位用除法;3.度分秒化成度数时,一般应遵循秒→分→度数.知识链接:方位角的四个方向东南西北的标记与地理中的一样:上北下南,左西右东.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评分.展示目标:知识模块一展示重点在于让学生理解角的定义;知识模块二展示重点在于让学生掌握角的表示方法,并会灵活运用;知识模块三展示重点在于让学生理解周角、平角、直角之间的关系,并会把度、分、秒熟练地转化;知识模块四展示重点在于让学生理解方位角在生活中的作用,学会画方位角.范例:如图,下列说法错误的是(C)A.∠DAE也可表示为∠A B.∠1也可表示为∠ABCC.∠BCE也可表示为∠C D.∠ABD是一个平角范例图仿例图仿例:如图所示,从点O出发分别作射线OA、OB、OC,则这三条射线可形成__3__个角,其中∠AOB用数字表示是__∠1__,∠2用三个字母表示是∠BOC.知识模块三 角的度量及换算阅读教材P 146最后一段~P 147例1,完成下面的内容.归纳:(1)1周角=__360°__;1平角=__180°__;1°=__60′__;1′=__60″__;(2)1′=__⎝⎛⎭⎫160°__;1″=__⎝⎛⎭⎫160′__=__⎝⎛⎭⎫13600°__.范例:计算:108°42′=__108.7__度;35.28°=__35__度__16__分__48__秒.仿例:56平角=__150__度;15°=__112__平角;18°15′=18.25°(用度表示). 知识模块四 方位角阅读教材P 147~P 148,完成下面的内容.归纳:(1)轮船、飞机等物体运动的方向与正北方向之间的夹角称为方位角;(2)有时以正北、正南方向为基准,描述物体的运动方向.如“北偏东30°”“南偏东25°”“北偏西60°”等.范例:如图,在图中表示下列方向的射线.(1)北偏东30°;(2)西北方向;(3)南偏西60°.解:如图:交流展示 生成新知1.各小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问题相互释疑;2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的展示方案在黑板上进行展示.知识模块一 角的定义知识模块二 角的表示方法知识模块三 角的度量及换算知识模块四 方位角检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

4.6.3角的特殊关系

4.6.3角的特殊关系

等角的补角相等
判断:(正确的打“√”,错误的打“╳”。) ①一个角的余角一定是锐角( √ )

②一个角的补角一定是钝角(

③若∠1+∠2+∠3=90°,那么∠1、∠2、∠3

互为余角(

两直线相交形成了∠1、∠2、∠3和∠4 , 其中的∠1和∠3叫做对顶角,∠2和∠4也是
对顶角.
练一练
下列各图中,∠1与∠2是对顶角的是(D )
∠1、∠2还是邻补角吗?
1
2
1
2
∠1、∠2的和是多少度? 邻补角是有特 ∠1和∠2还是补角吗? 殊位置关系的 两个互补的角。 ∠1和∠2还是邻补角吗?
练习:
1 、如图所示,三条直线 AB 、 A CD、EF相交于一点O,∠AOC C 的对顶角是 ,∠COF 的对顶角是 E ∠COB的邻补角是 。
1、如图 ∠1+∠2=90°,
⑴∠1与∠2互为 余角 ;
⑵∠1的余角是 ∠2
⑶∠2的余角是 ∠1


2
2 、已知∠1=27°48’,则它的余角等于 62° 12’
∠1与∠2互余
1
2
画出∠COB的余角
A C
O
B
D
A C
∠1与∠COB互 余, ∠ 2与∠COB互 余 根据图形:
1 O 2 D B
⑴猜一猜: ∠1 与∠2相等吗?
1 2 A B 1 2
2
2 1
1
C
D
如果两个角是对顶角, 那么这两个角相等吗?
对顶角相等
考考你:相等的两个角是对顶角吗?
2、邻补角的概念
∠1和∠2与对顶角相比,有什么相同 点和不同点?

北师大版九年级上册数学 4.6 利用相似三角形测高 同步练习(含解析)

北师大版九年级上册数学 4.6 利用相似三角形测高 同步练习(含解析)
参考答案
1.解:设长臂端点升高x米,
则 ,
∴x=8.
故选:D.
2.解:由相似三角形的性质,设树高x米,
则 = ,
∴x=5.1m.
故选:B.
3.解:∵AB⊥BC,CD⊥BC,
∴∠ABE=∠DCE=90°,
又∵∠AEB=∠DEC(对顶角相等),
∴△ABE∽△DCE,
∴ = ,
即 = ,
解得:AB=70m.
故选:D.
4.解:∵∠DEF=∠BCD=90°∠D=∠D
∴△DEF∽△DCB
∴ =
∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,
∴由勾股定理求得DE=40cm,
∴ =
∴BC=15米,
∴AB=AC+BC=1.5+15=16.5米,
故选:D.
5.解:如图所示,过A作AG⊥DE于G,交BC与F,
∴ ,
∴ = ,
∴CD=16.8m,
故答案为:16.8.
14.解:过D作DG⊥AB于G,过C作CH⊥AB于H,
则DG∥CH,
∴△ODG∽△OCH,
∴ = ,
∵栏杆从水平位置AB绕固定点O旋转到位置DC,
∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,
∴OC=0.5m,
∴ = ,
∴DG=1.8m,
∴HF=(10+80 )cm.
故答案为:80 ,(10+80 );
12.解:由题意得:CD∥AB,
∴ = ,
∵AB=3.5cm,BE=5m,DE=3m,
∴ ,
∴CD=2.1cm,
故答案为:2.1cm.
13.解:∵AB⊥BD,CD⊥BD,

华师大版初中数学七年级上册《4.6.2 角的比较和运算》同步练习卷(含答案解析

华师大版初中数学七年级上册《4.6.2 角的比较和运算》同步练习卷(含答案解析

华师大新版七年级上学期《4.6.2 角的比较和运算》同步练习卷一.解答题(共30小题)1.附加题(本题满分10分,不计入总分)如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与点O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒5°的速度沿顺时针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒8°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,OE平分∠AOB?②OE能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.2.已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=∠AOC.(1)如图①,求∠AOC的度数;(2)如图②,在∠AOD的内部作∠MON=90°,请直接写出∠AON与∠COM之间的数量关系;(3)在(2)的条件下,若OM为∠BOC的角平分线,试说明∠AON=∠CON.3.已知点O是AB上的一点,∠COE=90°,OF平分∠AOE.(1)当点C,E,F在直线AB的同侧(如图1所示)时,若∠AOC=40°,求∠BOE 和∠COF的度数,∠BOE和∠COF有什么数量关系?(2)当点C,E,F在直线AB的异侧(如图2所示)时,若∠AOC=β,那么(1)中∠BOE和∠COF的数量关系的结论是否仍然成立?请给出你的结论,并说明理由;(3)将图2中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD.设∠AOC=n°,若∠BOD=(60﹣n)°,则∠DOE的度数是多少?(请用含n的式子直接写出结果)4.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM 与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=(直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;(3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.5.如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=;若∠AOC=120°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.7.已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD 内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD绕O点以每秒2°的速度逆时针旋转t秒,如图3,若∠AOM:∠DON=2:3,求t的值.8.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC 和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).9.如图①,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=40°,求∠DOE的度数;(2)如图①,若∠AO C=α,直接写出∠DOE的度数(用含α的代数式表示)(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,OE平分∠BOC.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF与∠DOE的度数之间的关系,说明理由.10.如图1所示:已知,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)∠MON═;(2)如图2,∠AOB=90°,∠BOC=x°,仍然分别作∠AOC、∠BOC的平分线OM、ON,能否求出∠MON的度数若能,求出其值;若不能,说明理由.(3)如图3,若∠AOB=α,∠BOC=β(α、β均为锐角,且α>β),仍然分别作∠AOC、∠BOC的平分线OM、ON,能否求出∠MON的度数.若能,求∠MON 的度数.(4)从(1)、(2)、(3)的结果中,你发现了什么规律?11.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.12.如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数.(2)若将题干中的∠AOB=90°改为∠AOB=α,其余条件不变,求∠MON的度数;(3)若将题干中的∠BOC=30°改为∠BOC=β(β为锐角),其余条件不变,求∠MON的度数.(4)从前面的结果中,你能得出什么结论?13.已知直线AB经过点O,∠COD=90°,OE是∠BOC的平分线.(1)如图1,若∠AOC=50°,则∠DOE=;(2)如图1,若∠AOC=α,则∠DOE=;(用含α的式子表示)(3)将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其它条件不变,(2)中的结论是否还成立?试说明理由;(4)将图1中的∠COD绕顶点O逆时针旋转到图3的位置,其它条件不变,则∠DOE=(用含α的式子表示)14.(1)如图1,射线OC在∠AOB的内部,OM平分∠AOC,ON平分∠BOC,若∠AOB=110°,求∠MON的度数;(2)射线OC,OD在∠AOB的内部,OM平分∠AOC,ON平分∠BOD,若∠AOB=100°,∠COD=20°,求∠MON的度数;(3)在(2)中,∠AOB=m°,∠COD=n°,其他条件不变,请用含m,n的代数式表示MON的度数(不用说理).15.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.16.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.17.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB 的奇妙线.(1)一个角的角平分线这个角的奇妙线.(填是或不是)(2)如图2,若∠MPN=60°,射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当∠QPN首次等于180°时停止旋转,设旋转的时间为t(s).①当t为何值时,射线PM是∠QPN的奇妙线?②若射线PM同时绕点P以每秒6°的速度逆时针旋转,并与PQ同时停止旋转.请求出当射线PQ是∠MPN的奇妙线时t的值.18.(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.19.回答问题:(1)已知∠AOB的度数为54°,在∠AOB的内部有一条射线OC,满足∠AOC=∠COB,在∠AOB所在平面上另有一条射线OD,满足∠BOD=∠AOC,如图1和图2所示,求∠COD的度数.(2)已知线段AB长为12cm,点C是线段AB上一点,满足AC=CB,点D是直线AB上满足BD=AC.请画出示意图,求出线段CD的长.20.如图①,已知线段AB=20cm,点C为AB上的一个动点,点D,E分别是AC 和BC的中点(1)若点C恰好是AB中点,则DE的长是多少?(直接写出结果)(2)若BC=14cm,求DE的长(3)试说明不论BC取何值(不超过20cm),DE的长不变(4)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试求出∠DOE的大小,并说明∠DOE 的大小与射线OC的位置是否有关?21.如图1,点O为直线AB上的一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针旋转一周,在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转至图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.22.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=°,∠DOE=°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=°,∠DOE=°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.23.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.25.已知,∠AOD=160°,OB、OM、ON 是∠AOD内的射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,则∠MON=°(2)如图2,OC是∠AOD内的射线,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当射线OB在∠AOC内时,求∠MON的大小;(3)如图2,在(2)的条件下,当∠AOB=2t°时,∠AOM:∠DON=2:3,求t 的值.26.点O为直线AB上一点,过点O作射线OC,使∠BOC=60°,将一直角三角板如图①摆放(∠MON=90°).(1)将图①中的三角板绕点O按每秒10°的速度逆时针方向旋转一周.在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求t的值?(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.27.如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,∠MON=°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<120),则n=时,∠MON=2∠BOC.28.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?29.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.现将图25﹣1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,若经过t秒后,线段OM恰好平分∠BOC,此时∠COM=°;∠AON=°;t=秒;(2)在(1)的条件下,线段ON是否平分∠AOC?请说明理由;(3)如图3,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MON?30.已知∠AOB=150°,OC为∠AOB内部的一条射线,∠BOC=60°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠COD=∠BOD,求∠DOE的度数;(2)如图2,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF绕着O点从OB开始以5度秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值:(3)若射线OM绕着O点从OA开始以15度秒的速度逆时针旋转至OB结束,在装转过程中,ON平分∠AOM,试问2∠BON一∠BOM在某时间段内是否为定值,若不是,请说明理由;若是请补全图形,求出这个定值并写出t所在的时间段.(本题中的角均为大于0°且小于180°的角)华师大新版七年级上学期《4.6.2 角的比较和运算》同步练习卷参考答案与试题解析一.解答题(共30小题)1.附加题(本题满分10分,不计入总分)如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与点O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒5°的速度沿顺时针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒8°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,OE平分∠AOB?②OE能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.【分析】(1)根据:角度=速度×时间进行计算,由等量关系:直角边OB恰好平分∠NOE,列出方程求解即可.(2)①由于OE的旋转速度快,需要考虑2种情形列方程解决.②通过计算分析,OE,OB的位置,需要考虑2种情形列方程解决.【解答】解:(1)∵当直角边OB恰好平分∠NOE时,∠NOB=∠NOE=(180°﹣30°)=75°,∴90﹣5t=75,解得:t=3,此时∠MOA=5°×3=15°=∠MOE,∴此时OA平分∠MOE.(2)①若OE平分∠AOB,由题意得30+8t﹣5t=90÷2,解得t=5;②若OE平分∠NOB上面,由题意得180﹣(30°+8t)=(90﹣5t),解得t=.【点评】本题目考查了角平分线的定义,旋转的速度,角度,时间的关系,应用方程的思想是解决问题的关键,还需要通过计算进行初步估计位置,掌握分类思想,注意不能漏解.2.已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=∠AOC.(1)如图①,求∠AOC的度数;(2)如图②,在∠AOD的内部作∠MON=90°,请直接写出∠AON与∠COM之间的数量关系∠AON+20°=∠COM;(3)在(2)的条件下,若OM为∠BOC的角平分线,试说明∠AON=∠CON.【分析】(1)由题意可知:∠AOD=∠AOC+∠COD,即∴∠AOC+∠AOC=150°,即可求解;(2)由图可见:∠AON+20°=∠COM;(3)OM是∠BOC的角平分线,可以求出∠CON=∠MON﹣∠COM=35°,而∠AON=∠AOC﹣∠CON=35°,∴∠AON=∠CON.【解答】解:(1)由题意可知:∠AOB=180°,∠BOD=30°,∠AOD=∠AOB﹣∠BOD=150°,∵∠AOD=∠AOC+∠COD,∠COD=∠AOC,∴∠AOC+∠AOC=150°,∴∠AOC=70°;(2)由图可见:∠AON+20°=∠COM,故:答案为:∠AON+20°=∠COM;(3)证明:∵∠AOC=70°,∠AOB=180°,∴∠BOC=∠AOB﹣∠AOC=110°,∵OM是∠BOC的角平分线∴∠COM=∠BOC=55°,∵∠MON=90°,∴∠CON=∠MON﹣∠COM=35°,∵∠AOC=70°,∴∠AON=∠AOC﹣∠CON=35°,∴∠AON=∠CON.【点评】本题主要考查的是角的计算,角平分线的定义,根据OD的位置进行分类讨论是解题的关键.3.已知点O是AB上的一点,∠COE=90°,OF平分∠AOE.(1)当点C,E,F在直线AB的同侧(如图1所示)时,若∠AOC=40°,求∠BOE 和∠COF的度数,∠BOE和∠COF有什么数量关系?(2)当点C,E,F在直线AB的异侧(如图2所示)时,若∠AOC=β,那么(1)中∠BOE和∠COF的数量关系的结论是否仍然成立?请给出你的结论,并说明理由;(3)将图2中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD.设∠AOC=n°,若∠BOD=(60﹣n)°,则∠DOE的度数是多少?(请用含n的式子直接写出结果)【分析】(1)求出∠BOE和∠COF的度数即可判断;(2)结论:∠BOE=2∠COF.根据角的和差定义即可解决问题;(3)如图3中,根据∠DOE=180°﹣∠AOE﹣∠BOD计算即可;【解答】解:(1)∵∠COE=90°,∠AOC=40°,∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣40°﹣90°=50°,∠AOE=∠AOC+∠COE=40°+90°=130°,∵OF平分∠AOE,∴∠EOF=∠AOE=×130°=65°,∴∠COF=∠COE﹣∠EOF=90°﹣65°=25°,∴∠BOE=2∠COF.(2)∠BOE=2∠COF.理由如下:∵∠COE=90°,∠AOC=β,∴∠AOE=∠COE﹣∠AOC=90°﹣β,∴∠BOE=180°﹣∠AOE=180°﹣(90°﹣β)=90°+β,∵OF平分∠AOE,∴∠AOF=∠AOE=(90°﹣β)=45°﹣β,∴∠COF=β+(45°﹣β)=45°+β,∴2∠COF=2(45°+β)=90°+β∴∠BOE=2∠COF.(3)如图3中,∠DOE=180°﹣∠AOE﹣∠BOD=180°﹣(90°﹣n°)﹣(60﹣n)°=(30+n)°.【点评】本题考查角的计算,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM 与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=5秒(直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC平分∠MON?请说明理由;(3)在(2)问的基础上,那么经过多少秒∠MOC=36°?请说明理由.【分析】(1)根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠AON=∠CON,即可得出OM平分∠BOC;(2)根据图形和题意得出∠AON+∠BOM=90°,∠CON=∠COM=45°,再根据转动速度从而得出答案;(3)分别根据转动速度关系和OC平分∠MOB画图即可.【解答】解:(1)①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC;(2)5秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒;(3)如上图:OC平分∠MOBOC可能在∠MOB内侧也可能在外侧,由题意得:6t﹣3t=54°﹣30°=24°或6t﹣3t=126°﹣30°=96°,解得:t=8或32秒;答:经过8或32秒∠MOC=36°.【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.5.如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为40°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.【分析】(1)(2)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC+∠BOC)=AOB,即可得出答案;(3)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC﹣∠BOC)=AOB,即可得出答案;(4)根据角平分线定义即可求解.【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOC,∠EOC=∠BOC,∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=∠AOC,∠EOC=∠BOC,∠DOE=∠COD﹣∠EOC,=∠AOC﹣∠BOC,=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.【点评】本题考查了角的有关计算和角平分线定义,能够求出∠DOE=∠AOB 是解此题的关键,求解过程类似.6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=50°;若∠AOC=120°,则∠DOE=60°;(2)若∠AOC=α,则∠DOE=α(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【分析】(1)先根据平角的定义求出∠BOC,再根据角平分线的定义求得∠COE,再根据直角的定义可求∠DOE;(2)先根据平角的定义求出∠BOC,再根据角平分线的定义求得∠COE,再根据直角的定义可求∠DOE;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∵OE平分∠BOC,∴∠COE=∠BOC=×80°=40°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣40°=50°;∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠COE=∠BOC=×60°=30°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;故答案为:50°;60°;(2)∠DOE=α;∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;故答案为:α;(3)∠DOE﹣∠AOF=45°.理由:∵∠AOC﹣2∠BOE=4∠AOF,∴∠AOC﹣3∠AOF=2∠BOE+∠AOF,设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.7.已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD 内旋转时,∠MON=80度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD绕O点以每秒2°的速度逆时针旋转t秒,如图3,若∠AOM:∠DON=2:3,求t的值.【分析】(1)依据OM平分∠AOB,ON平分∠BOD,即可得到∠MON=∠BOM+∠BON=(∠AOB+∠BOD)=∠AOD;(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=∠AOC,∠BON=∠BOD,再根据∠MON=∠MOC+∠BON﹣∠BOC进行计算即可;(3)依据∠AOM=(10°+2t+20°),∠DON=(160°﹣10°﹣2t),∠AOM:∠DON=2:3,即可得到3(30°+2t)=2(150°﹣2t),进而得出t的值.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠BOM+∠BON=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOB+∠BOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵∠AOM=(10°+2t+20°),∠DON=(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.【点评】本题考查的是角平分线的定义,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.8.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC 和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).【分析】(1)根据角平分线的定义,OD、OE分别平分∠AOC和∠BOC,则可求得∠COE、∠COD的值,∠DOE=∠COE+∠COD;(2)结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算;(3)根据周角的定义,结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算.【解答】解:(1)∵α=120°,∠AOC=40°,∴∠BOC=80°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=40°,∠COD=∠AOC=20°,∴∠DOE=60°;(2)∵∠BOC=α﹣∠AOC,OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=α﹣∠AOC,∠COD=∠AOC,∴∠DOE=∠COE+∠COD=α;(3)∠DOE=(360°﹣α)=180°﹣α.【点评】考查了角的计算,熟记角的特点与角平分线的定义是解决此题的关键.9.如图①,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=40°,求∠DOE的度数;(2)如图①,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,OE平分∠BOC.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF与∠DOE的度数之间的关系,说明理由.【分析】(1)由∠AOC的度数可以求得∠BOC的度数,由OE平分∠BOC,可以求得∠COE的度数,又由∠DOC=90°可以求得∠DOE的度数;(2)由第(1)问的求法,可以直接写出∠DOE的度数;(3)①首先写出∠AOC和∠DOE的度数之间的关系,由∠COD是直角,OE平分∠BOC,BOC+∠AOC=180°,可以建立各个角之间的关系,从而可以得到∠AOC 和∠DOE的度数之间的关系;②首先得到∠AOF与∠DOE的度数之间的关系,由2∠AOF+∠BOE=(∠AOC﹣∠AOF),∠COD是直角,OE平分∠BOC,∠AOC和∠DOE的关系,可以建立各个角之间的关系,从而可以得到∠AOF与∠DOE的度数之间的关系.【解答】解:(1)∵∠AOC=40°∴∠COB=180°﹣∠AOC=180°﹣40°=140°∵OE平分∠COB∴∠COE=∠COB=70°,又∵∠COD=90°∴∠EOD=∠COD﹣∠COE=20°(2)∠DOE=,(3)①∠DOE=∠AOC,理由如下:∵OE平分∠COB∴∠COE=∠COB又∵∠COD=90°∴∠EOD=∠COD﹣∠COE=90°﹣∠COB,∵∠COB+∠AOC=180°∴∠COB=180°﹣∠AOC∴∠EOD=90°﹣(180°﹣∠AOC)=∠AOC②4∠EOD﹣3∠AOF=180°,理由如下:∵OE平分∠COB∴∠EOB=∠COE∴∠AOC﹣2∠BOE=∠AOC﹣2∠COE=∠AOC﹣2(90°﹣∠EOD)=∠AOC+2∠EOD﹣180°又∵∠DOE=∠AOC∴∠AOC﹣2∠BOE=4∠EOD﹣180°∵∠AOC﹣3∠AOF=2∠BOE∴4∠EOD﹣3∠AOF=180°【点评】本题考查角的计算、角平分线的性质,解题的关键是根据题目中的信息,建立各个角之间的关系,然后找出所求问题需要的条件.10.如图1所示:已知,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)∠MON═45°;(2)如图2,∠AOB=90°,∠BOC=x°,仍然分别作∠AOC、∠BOC的平分线OM、ON,能否求出∠MON的度数若能,求出其值;若不能,说明理由.(3)如图3,若∠AOB=α,∠BOC=β(α、β均为锐角,且α>β),仍然分别作∠AOC、∠BOC的平分线OM、ON,能否求出∠MON的度数.若能,求∠MON 的度数.(4)从(1)、(2)、(3)的结果中,你发现了什么规律?【分析】(1)根据题意可知,∠AOC=120°,由OM平分∠AOC,ON平分∠BOC;推出∠MOC=∠AOC=60°,∠CON=∠BOC=15°,由图形可知,∠MON=∠MOC ﹣∠CON,即∠MON=45°;(2)根据(1)的求解思路,先利用角平分线的定义表示出∠MOC与∠NOC的度数,然后相减即可得到∠MON的度数;(3)用α、β表示∠MOC,∠NOC,根据∠MON=∠MOC﹣∠NOC得到.(4)由(1)、(2)、(3)的结果中,∠MON的度数与∠BCO无关,∠MON=.【解答】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°,∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°;故答案为:45;(2)能.∵∠AOB=90°,∠BOC=x°,∴∠AOC=90°+x°∵OM、ON分别平分∠AOC,∠BOC,∴∠MOC=∠AOC=(90°+x°)=45°+x,∴∠CON=∠BOC=x,∴∠MON=∠MOC﹣∠CON=45°+x﹣x=45°.(3)∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM平分∠AOC,∴∠MOC=∠AOC=(α+β),∵ON平分∠BOC,∴∠NOC=∠BOC=,∴∠MON=∠MOC﹣∠NOC=(α+β)﹣=.(4)规律:∠MON的度数与∠BCO无关,∠MON=.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM平分∠AOC,∴∠MOC=∠AOC=(α+β),∵ON平分∠BOC,∴∠NOC=∠BOC=,∴∠MON=∠MOC﹣∠NOC=(α+β)﹣=.【点评】本题考查角的和差定义、角平分线的定义,利用∠MON=∠MOC﹣∠NOC 是解决问题的关键.11.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【分析】(1)根据角平分线的定义得:∠AOM=∠AOB=65°,∠AON=40°,相减可得∠MON的度数;(2)①根据角的和差定义计算即可;②构建方程求出n即可;(3)根据角的和差定义计算即可;【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点评】本题考查角的计算、角平分线的定义、旋转变换等知识,解题的关键是熟练掌握角的和差定义,属于中考常考题型.12.如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数.(2)若将题干中的∠AOB=90°改为∠AOB=α,其余条件不变,求∠MON的度数;(3)若将题干中的∠BOC=30°改为∠BOC=β(β为锐角),其余条件不变,求∠MON的度数.(4)从前面的结果中,你能得出什么结论?【分析】(1)根据题意,易得∠MOC=∠AOC,∠NOC=∠BOC进而结合∠MON=∠MOC﹣∠NOC的关系,易得答案;(2)由(1)的结论,易得当∠AOB=x°时,总有∠MON=∠AOB的关系,即得答案;(3)由(1)的结论,易得当∠BOC=y°(∠BOC为锐角)时,总有∠MON=∠AOB的关系,即得答案;(4)分析(1)(2)(3)的结论,易得答案.【解答】解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,又∵∠AOB=90°,∠BOC=30°∴∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB=12×90°=45°.(2)当∠AOB=α,其他条件不变时,∠MON=∠AOB=α.(3)当∠BOC=β,其他条件不变时,∠MON=∠AOB=×90°=45°.(4)由(1)(2)(3)的结果,可得出结论:∠MON总等于∠AOB的一半,而与∠BOC的大小无关.【点评】本题考查角平分线的定义与运用,注意结合图形,发现角与角之间的关系,利用互余、互补等关系解题.13.已知直线AB经过点O,∠COD=90°,OE是∠BOC的平分线.(1)如图1,若∠AOC=50°,则∠DOE=25°;(2)如图1,若∠AOC=α,则∠DOE=;(用含α的式子表示)(3)将图1中的∠COD绕顶点O顺时针旋转到图2的位置,其它条件不变,(2)中的结论是否还成立?试说明理由;(4)将图1中的∠COD绕顶点O逆时针旋转到图3的位置,其它条件不变,则∠DOE=180°﹣α(用含α的式子表示)【分析】(1)如图1,根据平角的定义和∠COD=90°,得∠AOC+∠BOD=90°,从而求得:∠BOD=40°,由角平分线定义得:∠BOE==65°,利用角的差可得结论;(2)同理可得:∠DOE=α;(3)如图2,根据平角的定义得:∠BOC=180°﹣α,由角平分线定义得:∠EOC=∠BOC=90°﹣α,根据角的差可得(2)中的结论还成立;(4)同理可得:∠DOE=∠COD+∠COE=180°﹣.【解答】解:(1)如图1,∵∠COD=90°,∴∠AOC+∠BOD=90°,∵∠AOC=50°,∴∠BOD=40°,。

2019-2020学年七年级数学上册 4.6 角 4.6.1 角教案 华东师大版.doc

2019-2020学年七年级数学上册 4.6 角 4.6.1 角教案 华东师大版.doc

2019-2020学年七年级数学上册 4.6 角 4.6.1 角教案华东师大版教学目标1.知识与技能:(1)通过丰富的实例,理解角的有关概念;(2)认识角的表示方法(3)能进行度与度分秒之间的转化(4)能够作一个角等于已知角2.过程与方法:体会角在实际生活中的应用,培养学生的抽象思维教学重点和难点教学重点:1.角与角的相关概念;2.角的度量单位以及单位之间的换算.教学难点:由于角的度量单位是60进制,所以角的单位换算是本节的难点.教学过程教师活动、学生活动、设计意图.1.提出问题.展示实物(如时钟,墙角,教材P132页的图片)1.观察实物与图片,你发现其中有什么相同图形吗?学生看书,教师巡视.学生回答问题,教师点评.学生回答问题,教师点评.学生回答,教师点评,注意鼓励学生.2.你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画.3.从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?思考:相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角.培养学生的动手能力.引导学生观察并归纳角的共同点讲授新课.(一)角的概念.1.在学生充分发表自己对角的认识的基础上,师生共同归纳得出:有公共端点的两条射线组成的图形叫做角.这个公共端点是角的顶点,这两条射线是角的两条边.问题1:钟表上的时针与分针是如何构成角的?从中你能得到什么启发?师生共同归纳得出角的第二定义:角是由一条射线绕着它的端点旋转而成的图形.进而得到两种特殊的角:平角和周角.平角:当射线OB绕O点旋转,当终止位置OA与起始位置OB在一条直线上时,形成平角;周角:当射线OB绕O点旋转,当终止位置OA与起始位置OB重合时,形成周角.((1)用三个大写字母可以表示一个角.比如∠AOB,谁能指出下列各角的顶点和两条边?注意:①三个字母的顺序有规定,顶点的字母必须写在中间.②顶点的字母不一定用O,角的始边与终边的字母也可以随意.(2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可.以表示为∠O.判断下列角可以用顶点的字母表示吗?(3)用数字或小写的希腊字母表示角.(注意:角中不能有角)练习:下面表示角的方法,哪个是正确的?哪个是错误的?1.请同学们借助量角器画出下列各角:(1)30°(2)45°(3)60°(4)90°(5)120°(6)150°(7)62°(8)105°学生画图,教师指导.(根据需要教师可先做示范)2.提醒学生:角是有大有小,角的大小与边的长短无关,因为角的两边是射线,不可以度量.角的大小只与构成角的两边张开的大小有关,角可以度量可以比较大小,可以参与运算.三.角度制的概念.以度分秒为单位的角的度量制就是角度制.度、分、秒是常用的角的度量单位,把一个周角分成360份,一份就是1°,把1°分成6 0份,一份就是1′,把1′分成60份,一份就是1″,从角度制不难发现,角的度数在进行运算时,是60进制的.即1周角=360°,1平角==180°,1°=60′,1′=60″.问题3:你能解决下列问题吗?试一试:(1)29°26′59″+48°58′15″;(2)36°26′46″-29°46′29″;(3)32°25′24″×3;(4)180°—23°31′25″.提醒:转化时必须逐级进行,“越级”转化容易出错.3.巩固练习.四.小结.1.角的定义、表示方法;2.度分秒的转化、角度制;3.度分秒的转化、角度制,通过总结归纳,完善学生的已有知识结构.。

华师大七上课课练4.6 角(含答案)

4321EDCBA4.6 角一、选择题1.下列说法正确的是( )(A ) 角的两边可以度量; (B)角是由两条射线构成的图形. (C)一条直线可以看成是一个平角; (D)平角的两边可以看成直线. 2.下列说法不正确的是( )(A ) 两个锐角的和不一定大于直角; (B)两个钝角的和不一定大于平角. (C)只有锐角才有余角; (D)任何小于平角的角都有补角.3.从∠AOB 的顶点O 引出两条射线OC 、OD 两条射线,图中共有角的个数为( ) (A )4个. (B )5个. (C )6个. (D )7个. 4.下列各角中,是钝角的为( )(A )周角32. (B )周角41. (C )平角32. (D )平角21. 5.如图,共有( )个小于平角的角.(A )5. (B )6. (C )7. (D )8. (第5题图)6.用一副三角板的内角可以画出大于0º且小于180º的不同角度的角共有( ) (A )9种. (B )10种. (C )11种. (D )12种. 7.如图,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( ) ①AD 平分∠BAF . ②AF 平分∠DAC .③AE 平分∠DAF . ④AE 平分∠BAC .(A )1. (B )2. (C )3. (D )4. 8.∠A 与∠B 互补,∠B 与∠C 互余,则∠A 一定是( )(A )锐角. (B )钝角. (C )直角. (D )不能确定. 9.八点三十分,这一时刻,时针与分针夹角是( ) (A )70°. (B )75°. (C )80°. (D )85°. 二、填空题10.角是由有 的两条射线组成的图形,两条射线的 是这个角的顶点,角也可以看成是由一条射线 .(第7题图)DC BAOEDCBA南东西北BAOEDCBA11.1个周角= 个平角= 个直角.12.当时钟的时间为6:30分时,时针与分针的夹角为 度.13.从8点10分到8点40分,时钟的时针转过 度,时钟的分针转过 度. 14.108°42ˊ= 度;35.28°= 度 分 秒. 15.13°39ˊ+64°45ˊ= .16.图中共有 角,以点A 为顶点的角是 .B(第16题图) (第17题图)17.如图,已知∠COE =∠BOD =∠AOC =90°,则图中互余的角有 对,互补的角有 对.18.如图,A ,B ,C 分别代表学校、图书馆、小红家,学校和图书馆分别在小红家的北偏西方向,学校又在图书馆的北偏东方向,那么图中点A 表示 ,点B 表示 ,点C 表示 .(第18题图) (第20题图)19.如果车站在学校的北偏东10千米处,那么学校在车站的 方向 处. 20.如图,∠BOC =60°,OE 、OD 分别为∠AOC 和∠BOC 的平分线,则∠EOD = ,∠COE = ,∠BOE 的平分线是 . 三、解答题 21.计算:①51325536'︒+'︒ ②35262⨯'︒③33370268'︒-'︒ ④370÷︒22.如图,以B为顶点的角共有几个?请把它们写出来,以D23.如果在∠AOD的内部从顶点O引出2条射线,求图中有多少个角?如果引出3条射线呢?如果引出100条射线呢?你发现了什么规律?ODCBA24.已知一个角的补角比这个角的余角的三倍还多20°,求这个角.25.在图中画出:(1)表示北偏东30°的射线OA;(2)表示东南方向的射线OB;(3)表示南偏西方向60°的射线OC.26.如图,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11.求∠AOB与∠BOC的度数.D CBO A27.在平面上,∠AOB=100°,∠BOC=60°,若OM平分∠AOB,ON平分∠BOC,求∠MON的度数.28.小刚星期天早晨8:00出发去奶奶家,中午11:30返回.他出发时和返回时时钟的时针和分针夹角各是多少?时针转过的角度是多少?答案:一、1.D 2.B 3.C 4.C 5.C 6.C 7.B 8.B 9.B 二、10.公共端点 公共端点 绕端点旋转而得到的图形 11.2 412.15° 13.15° 180° 14.108.7° 846135'''︒15.78°24ˊ 16. 8 ∠A 17. 4,5 18.学校 图书馆 小红家 19.南偏西 10千米 20.90° 60° 射线OC 三、21.①69°10ˊ②187°15ˊ③30°47ˊ ④23°20ˊ22.3个 ∠ABE ∠ABC ∠EBC 4个 ∠ADE ∠ADB ∠BDC ∠CDE 23.6个 10个 5151 24.55° 25.略26. 20°, 70° 27. 80°或 20° 28.120° 165° 105°课题:4.6 角讲学槁学习目标:1、认识互为余角和补角概念,理解互为余角和补角主要反映角的数量关系。

图形的认识4.6角(3)


2
1
4
3
如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3, 那么∠2与∠4相等吗?为什 么?
2
1
4
3
如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3, 那么∠2与∠4相等吗?为什 么?
2
1
4
3
如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3, 那么∠2与∠4相等吗?为什 么?
同角或等角的补角相等
同角或等角的余角相等.
如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E在 一条直线上,且∠2=∠4,请说出∠1与∠3之间 的关系?并试着说明理由?
D
A
B
2
3 4
1
C
E
O

B

D
40°


西O
60°
A
西O
60°
A

C南
2、如图,OA表示北偏东32°方向线, OB表 示 南 偏 东 43° 方 向 线 , 则 ∠AOB 等 于 ———— 。
3、A看B的方向是北偏东30°,那么B看A的 方向是( )
(A)南偏东60°(B)南偏西60°
(C)南偏东30°(D)南偏西30° 北
互为余角
如果两个角的和是一个直角, 那么这两个角叫做互为余角, 其中一个角是另一个角的余角。
互为余角
如果两个角的和是一个直角 ,那么这两个 角叫做互为余角,其中一个角是另一个角的 余角。
互为补角
如果两个角的和是一个平角 ,那么这两个 角叫做互为补角,其中一个角是另一个角的 补角。
2 1
4
若∠1 + ∠2 =180 °, 则 ∠1和∠2互补.(互补定义 )

4.6 利用相似三角形测高(分层练习)(解析版)

第四章 图形的相似4.6 利用相似三角形测高精选练习一、单选题1.(2020·浙江嘉兴·八年级期末)直角三角形两条直角边长分别是5和12,则斜边上的高是( )A .3013B .6013C .132D .120132.(2021·云南省个旧市第二中学八年级期中)如图,在△ABC 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是( )A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C .∠1=∠2=∠3D .BC 是△ABE 的高【答案】C【分析】根据三角形的高、中线、角平分线的定义对各选项分析判断后利用排除法求解.【详解】解:A 、AE DE =Q ,BE \是ABD D 的中线,正确;B 、BD Q 平分EBC Ð,BD \是EBC D 的角平分线,正确;C 、BD Q 是EBC D 的角平分线,EBD CBD \Ð=Ð,BE Q 是中线,EBD ABE \йÐ,123\Ð=Ð=Ð不正确,符合题意;D 、90C Ð=°Q ,BC \是ABE D 的高,正确.故选:C .【点睛】本题考查了三角形的角平分线,高线,中线的定义,熟记概念并准确识图是解题的关键.3.(2022·江苏·灌南县新知双语学校七年级阶段练习)如图,ABC V 中,AE 是中线,AD 是角平分线,AF 是高,则下列说法中错误的是( )A .BE CE=B .C CAF 90ÐÐ+=°C .BAE CAE Ð=ÐD .ABC ABES 2S =△△【答案】C 【分析】由中线的性质可得BE CE =,ABC ABE S 2S =△△,由角平分线的定义可得BAD CAD Ð=Ð;由AF 是ABC V 的高,可得C CAF 90ÐÐ+=°.【详解】解:AE Q 是中线,BE CE \=,ABC ABE S 2S =△△,故A 、D 说法正确;AD Q 是角平分线,BAD CAD ÐÐ\=,BAE CAE ÐÐ\¹,故C 说法错误;AF Q 是ABC V 的高,AFC 90Ð\=°,C CAF 90ÐÐ\+=°,故B 说法正确;故选:C .【点睛】本题考查了三角形的面积,三角形的角平分线,中线和高,明确概念是本题的关键.4.(2022·全国·九年级课时练习)如图,ABC V 的高CD 、BE 相交于O ,如果55A Ð=°,那么BOC Ð的大小为( )A .35°B .105°C .125°D .135°【答案】C 【分析】先根据三角形的内角和定理结合高的定义求得∠ABC+∠ACB 、∠ABE 、∠ACD 的度数,即可求得∠OBC+∠OCB 的度数,从而可以求得结果.【详解】解:∵∠A=55°,CD 、BE 是高∴∠ABC+∠ACB=125°,∠AEB=∠ADC=90°∴∠ABE=180°-∠AEB -∠A=35°,∠ACD=180°-∠ADC -∠A=35°∴∠OBC+∠OCB=(∠ABC+∠ACB )-(∠ABE +∠ACD )=55°∴∠BOC=180º-(∠OBC+∠OCB )=125°故选C .【点睛】此题考查的是三角形的内角和定理和高,三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5.(2021·全国·八年级专题练习)如图,在ABC V 中,AD ,AE 分别是边BC 上的中线与高,8AE =,ABC V 的面积为24,则CD 的长为( )A.2B.3C.4D.56.(2021·全国·九年级专题练习)如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为( )A.75°B.65°C.60°D.55°高线定义,余角关系性质是解题关键.二、填空题7.(2020·山东·胶州市第七中学九年级阶段练习)小明和小红在太阳光下行走,小明身高1.5m,他的影长2.0m,小红比小明矮30cm,此刻小红的影长为______m.8.如图,在高20米的建筑物CD的顶部C测得塔顶A的仰角为60°,测得塔底B的俯角为30°,则塔高AB = ______米;【答案】80【分析】过点C作CE⊥AB后,图中将有两个直角三角形.先在△BCE中,利用已知角的正切值求出CE,然后在△CEA中,利用已知角的正切值求出AE即可解决问题.【详解】9.我军侦察员在距敌方100m的地方发现敌方的一座建筑物,但不知其高度又不能靠近建筑物物测量,机灵的侦察员将自己的食E指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,则敌方建筑物的高度约是_______m.【答案】20【分析】由题意知△ABC∽△ADE,然后根据相似三角形对边的比与对应高的比相等列式求解即可.【详解】解:∵40cm=0.4m,8cm=0.08m∵BC∥DE,AG⊥BC,AF⊥DE.∴△ABC∽△ADE,∴BC:DE=AG:AF,∴0.08:DE=0.4:100,∴DE=20m.故答案为20.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的对应高的比等于相似比,列出方程,通过解方程求解即可.此题是实际应用题,解题时首先要理解题意,将实际问题转化为三角形相似问题求解;相似三角形的对应边成比例.10.(2022·全国·九年级单元测试)如图,小颖同学用自制的直角三角形纸板DEF测量树的高度AB,她调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条边DE=8cm,DF=10cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=________m.三、解答题11.(2022·全国·九年级专题练习)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线PS与河垂直,在过点S且与直线PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,求PQ的长.12.(2022·全国·九年级课时练习)下表是小明填写的实践活动报告的部分内容,请你借助小明的测量数据,计算小河的宽度.题目测量小河的宽度测量目标示意图相关数据BC=1m,DE=1.5m,BD=5m【答案】10m【分析】利用BC//DE,可得到△ABC∽△ADE,利用相似三角形的对应边成比例,可求出AB的长.一、填空题1.(2021·山东泰安·九年级期末)小明和他的同学在太阳下行走,小明身高1.4米,他的影长为1.75米,他同学的身高为1.6米,则此时他的同学的影长为__________米.2.(2022·全国·九年级单元测试)贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。

七年级数学上册_课课练4.6_角习题_华东师大版

4321E D CBA角的练习题一、选择题1.下列说法正确的是( )角的两边可以度量; (B)角是由两条射线构成的图形. (C)一条直线可以看成是一个平角; (D)平角的两边可以看成直线. 2.下列说法不正确的是( )两个锐角的和不一定大于直角; (B)两个钝角的和不一定大于平角. (C)只有锐角才有余角; (D)任何小于平角的角都有补角.3.从∠AOB 的顶点O 引出两条射线OC 、OD 两条射线,图中共有角的个数为( ) (A )4个. (B )5个. (C )6个. (D )7个. 4.下列各角中,是钝角的为( )(A )周角32. (B )周角41. (C )平角32. (D )平角21.5.如图,共有( )个小于平角的角.(A )5. (B )6. (C )7. (D )8.(第5题图) 6.用一副三角板的内角可以画出大于0º且小于180º的不同角度的角共有( ) (A )9种. (B )10种. (C )11种. (D )12种. 7.如图,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( ) ①AD 平分∠BAF . ②AF 平分∠DAC .③AE 平分∠DAF . ④AE 平分∠BAC .(A )1. (B )2. (C )3. (D )4. 8.∠A 与∠B 互补,∠B 与∠C 互余,则∠A 一定是( )(A )锐角. (B )钝角. (C )直角. (D )不能确定. 9.八点三十分,这一时刻,时针与分针夹角是( ) (A )70°. (B )75°. (C )80°. (D )85°. 二、填空题(第7题图)DC BAODCBA南东西北BAEDCBA10.角是由有 的两条射线组成的图形,两条射线的 是这个角的顶点,角也可以看成是由一条射线 . 11.1个周角= 个平角= 个直角.12.当时钟的时间为6:30分时,时针与分针的夹角为 度.13.从8点10分到8点40分,时钟的时针转过 度,时钟的分针转过 度. 14.108°42ˊ= 度;35.28°= 度 分 秒. 15.13°39ˊ+64°45ˊ= .16.图中共有 角,以点A 为顶点的角是 .B(第16题图)(第17题图)17.如图,已知∠COE=∠BOD=∠AOC=90°,则图中互余的角有 对,互补的角有 对. 18.如图,A,B,C 分别代表学校、图书馆、小红家,学校和图书馆分别在小红家的北偏西方向,学校又在图书馆的北偏东方向,那么图中点A 表示 ,点B 表示 ,点C 表示 .(第18题图) (第20题图)19.如果车站在学校的北偏东10千米处,那么学校在车站的 方向 处. 20.如图,∠BOC=60°,OE 、OD 分别为∠AOC 和∠BOC 的平分线,则∠EOD= , ∠COE= ,∠BOE 的平分线是 . 三、解答题 21.计算:①51325536'︒+'︒ ②35262⨯'︒③33370268'︒-'︒ ④370÷︒22.如图,以B 为顶点的角共有几个?请把它们写出来,以D23.如果在∠AOD 的内部从顶点O 引出2条射线,求图中有多少个角?如果引出3条射线呢?如果引出100条射线呢?你发现了什么规律?ODC B A24.已知一个角的补角比这个角的余角的三倍还多20°,求这个角.25.在图中画出:(1)表示北偏东30°的射线OA ; (2)表示东南方向的射线OB ; (3)表示南偏西方向60°的射线OC .26.如图,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11.求∠AOB与∠BOC的度数.D CBO A27.在平面上,∠AOB=100°,∠BOC=60°,若OM平分∠AOB,ON平分∠BOC,求∠MON的度数.28.小刚星期天早晨8:00出发去奶奶家,中午11:30返回.他出发时和返回时时钟的时针和分针夹角各是多少?时针转过的角度是多少?角的练习题一.判断:1.若∠1+∠2+∠3=180°, 则∠1,∠2,∠3互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AB1NM(1)O DC AB N M(2)F E 4.6角一、判断1.所有的直角都相等.( )2.大于直角的角都是钝角.( )3.如图1,∠1也可以用∠AOB 或∠O 来表示.( )4.由同一端点出发的两条直线组成的图形叫做角.( )5.一个锐角和一个钝角的和等于一个平角.( )6.一个角的补角大于这个角.( )7.一个钝角减去一个锐角必然得到一个锐角.( )8.一个角的补角减去这个角的余角是一个直角.( ) 9.同角或等角的余角相等,补角也相等.( )10.若有一个公共顶点和一条公共边的两个角互补, 则这两个角的另一边必在同一直线上.( )11.120.5°=120°50′.( ) 12.42°51′÷3+16°29′×4=80°13′.( ) 二、填空.13.角是有公共端点的两条_______组成的图形,也可以看成是由一条______•绕它的端点旋转而成的图形._______叫做角的顶点,_______叫做角的始边,_______叫做角的终边. 14.1周角=______°,1平角=______°.15.18.32°=18°( )′( )″,216°42′=_______°.16.•若一个角的余角是这个角的4•倍,•则这个角是_______,•这个角的补角是______. 17.互为补角的两个角可以都是_______角,或者一个是______角,一个是____角.(填“钝角”、“锐角”、“直角”)18.两个角的和等于________( ),就说这两个角互为余角;•两个角的和等于-________( ),就说这两个角互为补角.19.已知∠1=43°27′,则∠1的余角是_______,补角是________.20.•从一个角的顶点引出的一条_______,•把这个角分成两个相等的角,•这条______叫做这个角的_______. 21.如果两个角是对顶角,那么这两个角_______.22.如图2,∠AME 的补角是_______,对顶角是_______.23.计算:8°43′50″-18°43′26″×5-37°3′÷3=_________.24.计算:180°-52°18′36″-25°36″×4=____________. D C AB(3)OE CABN M(4)O DC AB (5)O E4321D CAB(6)F E25.若时钟表示的时间为5点15分时,时钟的时针和分针所成的锐角是_____°.26.在∠AOB 的内部引出OC,OD 两条射线,则图中共有______•个角,•它们分别是_________. 27.如图3,∠BOC=60°,OE,OD 分别为∠AOC,∠BOC 的角平分线,则∠EOD=_______,∠COE=_______,∠BOE 的角平分线是_______.28.如图4,OM,ON 平分∠AOB 和∠BOC,∠MON=•60•°,•那么∠AOC=•_____,•∠BOC=_____. 29.角α的补角是它的余角的4倍,则角α=_______.30.如图5,已知∠COE=∠BOD=∠AOC=90°,则图中与∠BOC 相等的角为_______,与∠BOC 互补D C A B(7)F E DC A BO E的角为_______,与∠BOC 互余的角为________. 三、选择31.下列各角中,( )是钝角.A.14周角 B.23周角 C.23平角 D.14平角 32.两个锐角的和( )A.必定是锐角B.必定是钝角C.必定是直角D.可能是锐角,可能是直角,也可能是钝角 33.互为补角的两个角的比是3:2,则这两个角是( )A.108°,72°B.95°,85°C.100°,80°D.120°,60° 34.如果两个角的和等于180°,那么这两个角一定是( ).A.两个锐角;B.两个直角;C.一个锐角,一个钝角;D.两个直角或一个锐角,一个钝角35.已知OC 平分∠AOB,则下列各式:(1)∠AOC=12∠AOB;(2)∠AOC=∠COB;(•3)•∠AOB=2∠AOC,其中正确的是( )A.只有(1)B.只有(1)(2)C.只有(2)(3)D.(1)(2)(3) 36.如图6,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( ).(1)AD 平分∠BAF;(2)AF 平分∠DAC;(3)AE 平分∠DAF;(4)AE 平分∠BAC.A.1B.2C.3D.437.如图7,以C 为顶点的角(小于平角)共有( ).A.4个B.8个C.10个D.18个38.已知∠AOB=30°,∠BOC=80°,∠AOC=50°,则下列说法正确的是( ) A.射线OB 在△AOC 内 B.射线OB 在△AOC 外 C.射线OB 与射线OA 重合 D.射线OB 与射线OC 重合 39.已知∠MON=30°,∠NOP=15°,则∠MOP=( ).A.45°B.15°C.45°或15°D.无法确定40.用一副三角板的内角(其中一个三角板的内角是45°,45°,90°,•另一个是-30°,60°,90°)可以画出大于0°且小于176°的不同度数的角共有( ) A.8种 B.9种 C.10种 D.11种四、计算 41.如图,已知∠AOB:∠BOC=3:5,又OD,OE 分别是∠AOB 和∠BOC 的平分线,•若∠DOE=60°,求∠AOB 和∠BOC 的度数.42.已知∠AOB=45°,∠BOC=30°,求∠AOC 的度数.43.如图,已知OB 平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠1,∠2,∠3,∠4的度数.4321DCABO44.若一个角的补角是这个角余角的3倍,那么这个角是多少度?45.以∠AOB 的顶点O 为端点射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC 与∠BOC 的度数;(2)若∠AOB=m °,求∠AOC 与∠BOC 的度数.五、证明46.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠4,求证:∠2=∠4.4321CAO47.已知角α的余角为β,β的补角是α的4倍,求证: α=12β六、作图.48.用三角板画出下列图形:(1)画∠AOB=105°;(2)以OB 为始边,在∠AOB 内部画∠AOC=15°.(保留作图痕迹,并写出作法)七、辨析49.判断“顶点相同,且角相等的两个角是对顶角”是否正确,并说明理由.答案:一、1.∨ 2.× 3.∨ 4.× 5.× 6.× 7.× 8.∨ 9.∨ 10.∨ 11.× 12.∨二、13.射线射线射线的端点起始位置的射线终止位置的射线14.360 180 15.19122 16.716.18°162° 17.直钝锐 18.90°•直角180°平角-19.46°33′136°33′ 20.射线射线角平分线 21.相等 22.•∠AMF和∠EMB∠FMB 23.90° 24.27°39′25.67.5 26.6∠AOC,∠AOD,•∠AOB,∠COD,∠COB,∠BOD27.90°60°OC 28.120°30° 29.60° 30.∠DOE•∠AOD∠COD和∠AOB三、31.C 32.D 33.A 34.D 35.D 36.B 37.C 38.B 39.C 40.D四、41.∠AOB=45°,∠BOC=75°.42.∠AOC=75°或∠AOC=15°.43.∠1=∠2=60°,∠3=150°,∠4=90°.44.45°.45.(1)第一种情形:OB在△AOC的内部,可设∠AOC=5x,∠BOC=4x,则∠AOB=x,•即x=18°.∴∠AOC=90°,∠BOC=72°.第二种情形:OB在△AOC的内部,可设∠AOC=5x,∠BOC=4x,C AO 则∠AOB=∠AOC+•∠BOC=9x, ∴9x=18°,即x=2°.∴∠AOC=10°,∠BOC=8°. (2)∠AOC=5m °,∠BOC=4m °.或∠AOC=59m °,∠BOC=49m °. 五、46.证明:∵∠1=∠2,∴∠2=12∠ABC, ∵∠3=∠4,∴∠4=12∠ACB,•又∵∠ABC=∠ACB,∴∠2=∠4.47.(略) 六、48.(略)七、49.这句话是不正确的, 如答图所示,∠AOC=∠BOC,且有共同顶点, 但∠AOC,∠BOC 不是对顶角.更多资料请访问。

相关文档
最新文档