多方程第3题例105面板数据模型研究企业投资需求的固定影响系数模型
面板数据是什么有哪些主要的面板数据模型

面板数据是什么有哪些主要的面板数据模型面板数据(Panel data),也被称为纵向数据(longitudinal data)或者追踪数据(follow-up data),是一种常用于经济学、社会学等领域的数据收集与分析方法。
与截面数据(cross-sectional data)只涉及一个时间点上的多个观察对象不同,面板数据同时涉及多个时间点和多个观察对象,用于研究时间和个体之间的关系。
面板数据的优势在于它能够通过观察多个时间点上的同一组观察对象,捕捉个体和时间的变化,从而提供更加全面和准确的数据信息。
同时,面板数据还可以减少一些估计中的偏误和提高估计的效率。
接下来,我们将介绍面板数据的主要模型。
1. 固定效应模型(Fixed Effects Model)固定效应模型是面板数据分析中最简单的模型之一。
它假设个体固定效应与解释变量无关,然后通过消除这些固定效应来估计模型的参数。
固定效应模型的核心是个体固定效应的控制,这可以通过个体固定效应的虚拟变量进行实现。
固定效应模型的估计方法包括最小二乘法(OLS)和差分中立变量法(Demeaning Approach)等。
2. 随机效应模型(Random Effects Model)相比于固定效应模型,随机效应模型假设个体固定效应与解释变量相关。
换句话说,个体固定效应被视为随机变量,与解释变量存在相关性。
在随机效应模型中,个体固定效应被视为一种随机误差项,通过估计个体固定效应的方差来分析其对因变量的影响。
3. 差分检验模型(Difference-in-Differences Model)差分检验模型常用于研究政策干预的效果。
该模型基于两组观察对象,其中一组接受了某种政策干预,而另一组则没有。
通过比较两组观察对象在政策干预前后的差异,我们可以评估政策干预的影响。
差分检验模型需要同时估计个体和时间的固定效应,以控制其他可能影响因素的干扰。
4. 面板向量自回归模型(Panel Vector Autoregression Model)面板向量自回归模型是一种扩展的时间序列模型,用于分析多个时间点上的多个变量之间的关系。
面板数据模型

面板数据模型面板数据模型是一种用于分析和预测数据的统计模型。
它广泛应用于经济学、金融学、市场营销和社会科学等领域,用于研究变量之间的关系和影响因素。
面板数据模型可以有效地处理时间序列和横截面数据的问题,具有很高的灵便性和准确性。
面板数据模型的基本假设是存在个体间的异质性,并且个体间的异质性是固定的。
这意味着个体之间的差异不随时间而变化。
面板数据模型可以分为固定效应模型和随机效应模型两种。
固定效应模型假设个体间的差异是固定的,不随时间变化。
该模型可以通过引入个体固定效应来控制个体间的差异。
个体固定效应可以捕捉到个体特有的影响因素,如个体的天赋能力、个体的经验等。
固定效应模型的估计方法包括最小二乘法和差分法。
随机效应模型假设个体间的差异是随机的,可以用一个随机项来表示。
该模型可以通过引入个体随机效应来控制个体间的差异。
个体随机效应可以捕捉到个体间的随机波动。
随机效应模型的估计方法包括广义最小二乘法和随机效应模型估计法。
面板数据模型的优点在于可以利用个体间和时间间的差异来进行分析,从而控制了个体间和时间间的混淆因素。
面板数据模型可以提供更准确和稳健的估计结果,增强了研究的可信度和可解释性。
面板数据模型的应用非常广泛。
在经济学中,面板数据模型可以用于研究经济增长、收入分配、劳动力市场等问题。
在金融学中,面板数据模型可以用于研究股票市场、利率市场等问题。
在市场营销中,面板数据模型可以用于研究消费者行为、市场竞争等问题。
在社会科学中,面板数据模型可以用于研究教育、健康、犯罪等问题。
总之,面板数据模型是一种强大的分析工具,可以匡助研究人员更好地理解和预测数据。
面板数据模型的应用范围广泛,可以应用于各种领域的研究。
通过合理选择模型和估计方法,可以得到准确和稳健的结果,为决策提供有力支持。
面板固定效应模型的解释

面板固定效应模型的解释面板固定效应模型(Panel Fixed Effects Model)是一种在计量经济学中常用的数据分析方法,它用于处理面板数据集,即同时包含了横向和纵向的数据。
横向数据是指在不同时间点上对同一组个体(如公司或个人)的观测数据,而纵向数据则是在同一时间点上对不同个体的观测数据。
面板数据集具有丰富的信息,可以帮助我们更好地理解数据之间的关系,因此面板固定效应模型在实证经济学研究中具有重要的应用价值。
面板数据集的特点是个体之间可能存在个体固定效应,即个体特有的性质或特征会对因变量产生影响。
例如,不同公司的盈利能力可能会受到公司规模、行业属性等因素的影响。
同时,个体之间的观测数据之间可能存在序列相关性或者异方差性等问题。
为了解决这些问题,面板固定效应模型提供了一种有效的数据分析工具。
面板固定效应模型的基本思路是通过引入个体固定效应来控制个体特有的因素对因变量的影响。
具体来说,固定效应模型对每个个体引入一个虚拟变量,用于捕捉个体特有的因素,这样可以避免忽略掉一些对因变量有影响的个体特征。
通过引入这些个体固定效应变量,我们可以更准确地估计其他解释变量对因变量的影响,从而得到更加准确的结论。
在面板固定效应模型中,个体固定效应通过虚拟变量的形式进行引入。
假设我们有T个时间点和N个个体,那么对于第i个个体在第t 个时间点的观测数据,固定效应模型可以表示为:Yit = αi + Xitβ + uit其中,Yit表示因变量,αi是第i个个体的固定效应,Xit是解释变量矩阵,β是解释变量的系数,uit是误差项。
固定效应模型的核心是引入了个体固定效应αi,这样就可以控制个体特有的因素对因变量的影响。
在面板数据集中,固定效应模型通过比较同一组个体在不同时间点上的观测数据,从而可以更准确地估计因变量和解释变量之间的关系。
面板固定效应模型与其他面板数据模型(如随机效应模型)的区别在于,固定效应模型假设所有个体的观测数据都受到固定效应的影响,而随机效应模型则允许固定效应在个体之间随机变化。
面板数据模型

面板数据模型面板数据模型,又称固定效应模型,是计量经济学中常用的一种数据分析方法。
它适用于时间序列和截面数据的联合分析,具有较高的灵活性和强大的解释能力。
本文将对面板数据模型的基本原理、应用场景以及估计方法进行介绍,并通过实例说明其实际运用。
第一部分:面板数据模型的基本原理面板数据模型基于以下假设:每个个体(又称单位)在不同时间点都有观测值,并且个体之间的观测值具有相关性。
面板数据模型通常由固定效应模型和随机效应模型两种形式。
固定效应模型假设个体特定的不变因素对观测值产生了影响,这些不变因素可能包括个体的性别、年龄、学历等。
固定效应模型可以通过引入个体固定效应变量来捕捉这些影响因素,并以此来解释观测值的变动。
第二部分:面板数据模型的应用场景面板数据模型在经济学、金融学、社会学等领域得到了广泛的应用。
例如,在经济学中,研究人员可以利用面板数据模型来分析不同国家或地区的经济增长情况,探讨政策对经济发展的影响;在金融学领域,研究人员可以运用面板数据模型来研究股票价格的波动和影响因素。
第三部分:面板数据模型的估计方法面板数据模型有多种估计方法,常见的有固定效应模型估计和随机效应模型估计。
固定效应模型估计通常采用最小二乘法,即通过对个体固定效应进行回归分析来求解模型参数。
随机效应模型估计则假设个体固定效应是误差项的一部分,通过对固定效应进行随机化处理得到模型的估计结果。
实例应用:假设我们需要研究不同地区的教育水平对经济增长的影响,我们可以使用面板数据模型来分析这个问题。
我们收集了10个地区在2010年到2020年的经济增长率和教育水平数据。
我们可以利用固定效应模型来探究教育水平对经济增长的影响。
首先,我们创建一个包含个体固定效应的面板数据模型,并使用最小二乘法来估计参数。
然后,我们通过分析模型的显著性水平、参数估计结果以及模型拟合程度来得出结论。
通过面板数据分析,我们可以发现教育水平对经济增长确实存在显著的正向影响。
面板数据模型

面板数据模型面板数据模型是一种用于描述和分析数据的工具,它可以帮助我们更好地理解和解释数据的关系和趋势。
面板数据模型通常用于经济学、社会科学和市场研究等领域,可以帮助研究人员进行数据分析和预测。
面板数据模型由面板数据集组成,面板数据集是一种包含多个观测单元和多个时间点的数据集。
观测单元可以是个体、公司、国家等,时间点可以是年份、季度、月份等。
面板数据集可以分为平衡面板和非平衡面板两种类型。
在面板数据模型中,通常会使用两个方向的变量:个体方向变量和时间方向变量。
个体方向变量反映了不同观测单元之间的差异,例如不同公司之间的差异;时间方向变量反映了观测单元在不同时间点上的变化,例如不同年份之间的变化。
面板数据模型的建立需要考虑以下几个方面的内容:1. 模型设定:根据研究目的和数据特点,选择合适的面板数据模型。
常见的面板数据模型包括固定效应模型、随机效应模型和混合效应模型等。
2. 数据准备:对面板数据集进行清洗和整理,包括处理缺失值、异常值和离群值等。
同时,还需要进行数据转换和变量构造,以便于后续的模型分析。
3. 模型估计:使用合适的统计方法对面板数据模型进行估计。
常见的估计方法包括最小二乘法、广义最小二乘法和极大似然估计等。
4. 模型诊断:对估计结果进行诊断和检验,评估模型的拟合程度和稳健性。
常见的诊断方法包括异方差检验、序列相关检验和模型比较等。
5. 结果解释:根据模型估计结果,进行结果解释和推断。
可以通过显著性检验、系数解释和预测分析等方法,深入理解数据的关系和趋势。
面板数据模型的应用非常广泛,可以用于各种研究领域和实际问题的分析。
例如,在经济学中,可以使用面板数据模型研究经济增长、劳动力市场和财政政策等问题;在社会科学中,可以使用面板数据模型研究教育、健康和社会不平等等问题;在市场研究中,可以使用面板数据模型研究市场竞争、消费者行为和市场预测等问题。
总之,面板数据模型是一种强大的工具,可以帮助我们更好地理解和解释数据的关系和趋势。
13、第七章(面板数据模型——固定影响变系数模型)

面板(平行)数据模型——固定影响变系数模型一、研究目的面板数据模型从系数的角度看,可以分为3种类型,即:不变系数模型(也称为混合模型)、变截距模型、变系数模型。
这三种类型在固定影响变截距模型案例分析中已经介绍过了。
从估计方法的角度看,也可以分为3种类型,分别是:混合模型、固定影响(效应)模型、随机影响(效应)模型。
混合模型也就是不变系数模型,这时面板的三维数据和二维数据没有区别,面板模型等同于一般的回归模型,因此采用OLS就可以得到估计结果。
固定影响模型分为变截距模型和变系数模型,变截距模型在之前的案例分析中介绍了,本案例介绍固定影响变系数模型,以及之前的案例分析中没有涉及的面板数据模型中的一些知识和操作的介绍。
至于随机效应模型会在高级计量分析案例中介绍。
二、面板数据模型原理1、面板数据模型原理这部分内容参见固定影响变截距模型案例分析2、固定影响模型与随机影响模型的区别所谓的固定、随机、混合,主要是针对分组变量而言的。
固定效应模型,表示你打算比较的就是你现在选中的这几组。
例如,我想比较10个公司的业绩,分析目的就是为了比较这10个公司的差别,不想推广到其他公司。
这10个公司不是从很多公司中抽样出来的,分析结论不想推广到其他公司,结论仅限于这10个公司。
“固定”的含义正在于此,这10个公司是固定的,不是随机选择的。
随机效应模型,表示你打算比较的不仅是你的设计中的这几组,而是想通过对这几组的比较,推广到他们所能代表的总体中去。
例如,你打算分析上述10个公司所在行业内其他公司的业绩,那么你所选的10个公司业绩的分析研究,其目的不是为了比较这10个公司的业绩差异,而是为了说明整个行业的所有公司的业绩差异。
你的研究结论就不仅仅限于这10个公司,而是要推广到整个行业。
“随机”的含义就在于此,这10个公司是从整个行业中挑选出来的。
混合效应模型就比较好理解了,就是既有固定的因素,也有随机的因素。
一般来说,只有固定效应模型,才有必要进行两两比较,随机效应模型没有必要进行两两比较,因为研究的目的不是为了比较随机选中的这些组别。
论面板数据模型及其固定效应的模型分析
论面板数据模型及其固定效应的模型分析:在20世纪80年代及以前,还只有很少的研究面板数据模型及其应用的文献,而20世纪80年代之后一直到现在,已经有大量的文献使用同时具有横截面和时间序列信息的面板数据来进行经验研究(Hsiao,2007)。
同时,大量的面板数据计量经济学方法和技巧已经被开发了出来,并成为现在中级以上的计量经济学教科书的必备内容,面板数据计量经济学的理论研究也是现在理论计量经济学最热的领域之一。
面板数据同时包含了许多横截面在时间序列上的样本信息,不同于只有一个维度的纯粹横截面数据和时间序列数据,面板数据是同时有横截面和时序二维的。
使用二维的面板数据相对于只使用横截面数据或时序数据,在理论上被认为有一些优点,其中一个重要的优点是面板数据被认为能够控制个体的异质性。
在面板数据中,人们认为不同的横截面很可能具有异质性,这个异质性被认为是无法用已知的回归元观测的,同时异质性被假定为依横截面不同而不同,但在不同时点却是稳定的,因此可以用横截面虚拟变量来控制横截面的异质性,如果异质性是发生在不同时期的,那么则用时期虚拟变量来控制。
而这些工作在只有横截面数据或时序数据时是无法完成的。
代写论文然而,实际上绝大多数时候我们并不关心这个异质性究竟是多少,我们关心的仍然是回归元参数的估计结果。
使用面板数据做过实际研究的人可能会发现,使用的效应①不同,对回归元的估计结果经常有十分巨大的影响,在某个固定效应设定下回归系数为正显著,而另外一个效应则变为负显著,这种事情经常可以碰到,让人十分困惑。
大多数的研究文献都将这种影响解释为控制了固定效应后的结果,因为不可观测的异质性(固定效应)很可能和回归元是相关的,在控制了这个效应后,由于变量之间的相关性,自然会对回归元的估计结果产生影响,因而使用的效应不同,估计的结果一般也就会有显著变化。
然而,这个被广泛接受的理论假说,本质上来讲是有问题的。
我们认为,估计的效应不同,对应的自变量估计系数的含义也不同,而导致估计结果有显著变化的可能重要原因是由于面板数据是二维的数据,而在这两个不同维度上,以及将两个维度的信息放到一起时,样本信息所显现出来的自变量和因变量之间的相关关系可能是不同的。
面板固定效应模型的解释
面板固定效应模型的解释面板固定效应模型是一种用于分析面板数据的统计模型,其主要目的是通过控制个体固定效应和时间固定效应,去除个体和时间上的不可观测因素对变量之间关系的干扰,从而得到更加准确和稳健的估计结果。
在面板数据分析中,个体固定效应指的是不同个体之间的固定因素对变量之间关系的影响,而时间固定效应则是在不同时间点上固定的因素对变量之间关系的影响。
通过引入这些固定效应,面板固定效应模型能够更好地解释面板数据的动态变化和个体差异,从而提高了分析的有效性和可靠性。
面板数据是指在一段时间内对多个个体(例如个人、家庭、公司等)的多次观测数据的集合。
对于这种数据,传统的截面数据分析方法往往无法准确反映出个体和时间的固定特征对变量之间关系的影响,因此需要引入面板数据分析方法来解决这一问题。
面板固定效应模型正是针对面板数据而提出的一种分析方法,其基本思想是通过引入个体固定效应和时间固定效应来消除个体和时间上的不可观测因素对分析结果的影响,从而更好地研究变量之间的关系。
面板固定效应模型的基本形式可以表示为:\[ Y_{it} = \alpha + \beta X_{it} + \theta_i + \lambda_t + \varepsilon_{it} \]其中,\(Y_{it}\)表示面板数据中第i个个体在第t个时间点上的表现变量,\(X_{it}\)表示解释变量,\(\alpha\)为截距项,\(\beta\)为解释变量的系数,\(\theta_i\)为个体固定效应,\(\lambda_t\)为时间固定效应,\(\varepsilon_{it}\)为误差项。
个体固定效应\(\theta_i\)表示个体特定的不可观测因素对\(Y_{it}\)的影响,时间固定效应\(\lambda_t\)表示时间特定的不可观测因素对\(Y_{it}\)的影响。
通过控制这些固定效应,可以减少由个体和时间差异引起的干扰,得到更加稳健和准确的系数估计结果。
面板数据模型
面板数据模型引言概述:面板数据模型是一种经济学和统计学领域常用的数据分析方法,它可以更准确地描述和分析时间序列和横截面数据的关系。
本文将从五个大点来阐述面板数据模型的相关内容。
正文内容:1. 面板数据模型的基本概念1.1 面板数据的定义和特点:面板数据是指在一段时间内对多个个体进行观察得到的数据,包含了时间序列和横截面的特点。
1.2 面板数据的分类:面板数据可以分为平衡面板和非平衡面板,平衡面板是指每一个个体在每一个时间点都有观测值,非平衡面板则相反。
2. 面板数据模型的估计方法2.1 固定效应模型:固定效应模型是面板数据模型中最常用的一种估计方法,它通过引入个体固定效应来控制个体特定的不可观测因素对因变量的影响。
2.2 随机效应模型:随机效应模型则是通过引入个体随机效应来控制个体特定的不可观测因素对因变量的影响,相比于固定效应模型,它更加灵便。
2.3 混合效应模型:混合效应模型是固定效应模型和随机效应模型的结合,既考虑了个体固定效应,又考虑了个体随机效应。
3. 面板数据模型的假设检验3.1 Hausman检验:Hausman检验是用来判断固定效应模型和随机效应模型哪个更适合的一种假设检验方法。
3.2 异方差检验:由于面板数据模型中存在异方差问题,需要进行异方差检验来确保模型的可靠性。
3.3 序列相关检验:面板数据模型中还需要进行序列相关检验,以确保模型的误差项是否存在相关性。
4. 面板数据模型的应用领域4.1 经济学领域:面板数据模型在经济学领域广泛应用,可以用于研究经济增长、劳动经济学、国际贸易等问题。
4.2 社会学领域:面板数据模型也被用于社会学研究中,可以用于分析教育、健康、家庭结构等社会问题。
4.3 金融学领域:面板数据模型在金融学领域的应用也很广泛,可以用于研究股票市场、债券市场等金融问题。
5. 面板数据模型的优缺点5.1 优点:面板数据模型可以同时考虑个体特征和时间变化,更准确地描述变量之间的关系。
面板数据模型与固定效应分析
面板数据模型与固定效应分析面板数据模型是一种广泛应用于社会科学研究和经济学领域的统计分析方法。
它可以使用两个或以上的观察时间点和多个个体样本来研究变量之间的关系,并帮助研究者探索时间和个体的异质性对变量影响的效应。
在面板数据模型中,数据可以分为两个维度:时间维度和个体维度。
时间维度表示观察的时间点,个体维度表示被观察的个体样本。
通过使用面板数据模型,研究者可以在控制个体和时间异质性的基础上,获取更准确的估计结果。
为了更好地研究面板数据,固定效应分析是一种常用的方法。
固定效应模型将个体间的异质性纳入考虑,并通过控制个体特定的效应,来分析变量之间的关系。
在固定效应模型中,个体的固定效应被视为未知参数,只对个体间的差异进行分析。
面板数据模型和固定效应分析的应用非常广泛。
例如,研究人员可以使用面板数据分析股票市场的波动性,探索时间维度和个体维度对股票价格的影响。
此外,面板数据模型还可以用于研究企业间的竞争关系,评估政策变化对经济发展的影响等。
面板数据模型的强大之处在于它可以通过充分利用时间维度和个体维度的信息,提供对变量之间关系的更准确估计。
通过固定效应分析,研究者可以消除个体间的固定效应的干扰,更好地理解变量之间的因果关系。
在实际应用中,面板数据和固定效应的分析需要考虑数据的可行性,以及模型的可靠性。
研究者需要注意数据的质量和有效性,选择合适的统计方法和模型来分析,以获取准确可靠的结果。
总之,面板数据模型和固定效应分析是一种重要的统计方法,可以被广泛应用于社会科学研究和经济学领域。
通过使用这些方法,研究者可以更好地理解变量之间的关系,并获取更准确的估计结果。
然而,在应用过程中需要注意数据和模型的可行性,并选择合适的统计方法和模型进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面板数据概述
面板数据模型是对包含三维(截面、时期、变量)信息的数据结构(面板数
据)建模所得的模型,一般结构为i i i i i α=++y x βu 1,2i N =…
(含有N 个个体成员方程的Panel Data 模型)或t t t t μ=++y x γv t =1, 2, …, T (含有T 个时间截面方程的Panel Data 模型)。
根据截距项向量α 和系数向量 β中各分量的不同限制要求,面板数据模型可以分为如下三种类型:无个体影响的不变系数模型的单方程回归 (不变系数模
型: );变截距的单方程回归(变截距模型 );
变系数模型的单方程回归(变参数模型 ) 。
在建立模型前需要对模型形式的设定进行检验,因为如果模型形式设定不正确,估计结果将与所要模拟的经济现实偏离甚远。
因此,建立Panel Data 模型的第一步便是检验被解释变量 y it 的参数 αi 和 βi 是否对所有个体样本点或时期都是一样的,即检验样本数据究竟符合上面哪种Panel Data 模型形式,从而避免模型设定的偏差,改进参数估计的有效性。
经常使用的检验是协方差分析检验,主要检验如下两个假设:
H 1:
H 2: 可见如果接受假设 H 2 则可以认为样本数据符合类型3,即模型为不变参数模型,无需进行进一步的检验。
如果拒绝假设H 2,则需检验假设H 1。
如果接受H 1,则认为样本数据符合情形2,即模型为变截距模型,反之拒绝H 1 ,则认为样本数据符合情形1,即模型为变参数模型。
检验方法是建立两个F 值统计量F1和F2,在假设H 1和 H 2 下检验统计量F1和 F 2 分别服从相应自由度下的F 分布。
其中
假如确定是变截距模型,还需要进一步确定是固定影响模型还是随机影响模型,此时可以选择Hausman 检验,即假设随机影响模型中个体影响与解释变量
j i j i ββ==,ααj i j i ββ=≠,ααj i j i ββ≠≠,ααN βββ=== 21N ααα=== 21N
βββ=== 21)]1(),1)(1[(~))
1(()]1)(1/[()(1132--+-+-+--=k T N k N F k N NT S k N S S F )]1(,)1[(~))1((])1/[()(1121---+---=k T N k N F k N NT S k N S S F
不相关,构造统计量 ,其在原假设下服从自由度为k 的χ2分布,k 为模型中解释变量的个数。
确立好模型之后,利用已有数据在Eviews 中进行回归,并对结果进行分析。
得到回归结果之后,需要对数据的平稳性进行检验。
常用的是单位根检验和协整检验。
单位根检验是在单序列单位根检验方法的基础上进行的改进,仍然检验参数ρi 的变化情况。
根据对参数ρi 的不同限制,可以将面板数据的单位根检验方法划分为两大类:(1)相同根情形下的单位根检验,即假设面板数据中的各截面序列具有相同的单位根过程,方法包括LLC 检验、Breitung 检验 、Hadri 检验 ;不同根情形下的单位根检验,即允许面板数据中的各截面序列具有不同的单位根过程,允许参数ρi 跨截面变化,方法有Im-Pesaran-Skin 检验、Fisher-ADF 检验和Fisher-PP 检验。
协整检验也可以分为两大类,一类是建立在Engle and Granger 二步法检验基础上的面板协整检验,具体方法主要有Pedroni 检验和Kao 检验;另一类是建立在Johansen 协整检验基础上的面板协整检验。
[][]
βb βb ˆˆˆ1-∑'-=-W
面板数据操作过程
1.将例10.5中的数据处理好:sheet用英文命名,去掉中文行
2.将数据导入Eviews
3.建立pool对象。
在命令窗口输入pool pool1
打开pool1,编辑截面成员的识别称:
4.单击sheet,在对话框中输入I? K? M?,并确定。
即得到pool序列。
5.单击Pool工具栏的Estimate选项打开如下对话框:
6.得到结果为
从估计结果可以看出,5家企业的投资需求结构具有明显的差异。
在5家企业中,预期利润边际投资倾向最高是美国钢铁公司,其次是汽车制造行业的两家公司—通用汽车和克莱斯勒,而资产存量边际投资倾向最高的是西屋电气公司,最低的是通用电气公司。
7.怀特系数协方差估计
估计结果为
8.单位根检验。
在Pool对象的工具栏中,选择View/Unit Root Test。
得出结果如下:
I?的水平变量各种方法的结果都接受原假设,I?存在单位根,是非平稳的。
9.I?的一阶差分变量的所有方法的单位根检验
检验结果如下:
各种方法的结果都拒绝原假设,所以可以得出结论: I?是I(1)的。
10.协整检验
(1)Pedroni (Engle-Granger based)
在EViews中打开pool对象,选择Views/ Cointegration Test…
结果为:
(2)Kao (Engle-Granger based) 结果为:
结果为:
11.选择View/Representations检查输出
选择Procs/Make Model建立一个包括所有估计系数的未命名模型对象
模型可以根据需要进行编辑。
求解模型能对每个截面成员的因变量进行预测。