数学建模——传染病模型
数学建模例题题

数学建模试题一、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。
社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。
一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。
要求:请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?二、线性规划模型—销售计划问题某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。
要求:若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型,并用软件求解。
【注】线性规划在MATLAB的库函数为:linprog。
语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划目标函数的系数:f = [-5; -4; -6]约束方程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调用线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、一阶常微分方程模型—人口模型与预测 下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。
传染病模型——精选推荐

3.12传染病模型摘要:本文是一个对传染病的研究问题。
通过把一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。
建立数学模型用极限和微积分等数学方法对传染病传播规律进行研究。
关键词:传染病极限和微积分正文1 传染病〔Infectious Diseases〕是由各种病原体引起的能在人与人、动物与动物或人与动物之间相互传播的一类疾病。
病原体中大部分是微生物,小部分为寄生虫,寄生虫引起者又称寄生虫病。
有些传染病,防疫部门必须及时掌握其发病情况,及时采取对策,因此发现后应按规定时间及时向当地防疫部门报告,称为法定传染病。
中国目前的法定传染病有甲、乙、丙3类,共37种医学科学的发展已经能够有效地预防和控制许多传染病,天花在世界范围内被消灭,鼠疫、霍乱等传染病得到控制。
但是仍然有一些传染病暴发或流行,危害人们的健康和生命。
在发展中国家,传染病的流行仍十分严重;即使在发达国家,一些常见的传染病也未绝迹,而新的传染病还会出现,如爱滋病(AIDS)等。
有些传染病传染很快,导致很高的致残率,危害极大,因而对传染病在人群中传染过程的定量研究具有重要的现实意义。
传染病流行过程的研究与其他学科有所不同,不能通过在人群中实验的方式获得科学数据。
事实上,在人群中作传染病实验是极不人道的。
所以有关传染病的数据、资料只能从已有的传染病流行的报告中获取。
这些数据往往不够全面,难以根据这些数据来准确地确定某些参数,只能大概估计其范围。
基于上述原因,利用数学建模与计算机仿真便成为研究传染病流行过程的有效途径之一。
2问题提出上世纪初,瘟疫还经常在世界的某些地区流行,被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变?3 模型分析社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等,在建立模型时不可能考虑所有因素,只能抓住关键的因素,采用合理的假设,进行简化。
传染病数学建模

传染病数学建模
传染病数学建模是一种使用数学方法来描述和预测传染病传播过程的手段。
通过建立数学模型,研究人员可以更好地理解疾病的传播机制,预测其在未来的发展趋势,并为防控措施的制定提供科学依据。
在传染病数学建模中,常见的模型有SIR 模型、SEIR 模型、SEIRS 模型等。
这些模型通过定义不同的状态变量来描述人群中不同个体的状态,如易感者(Susceptible)、感染者(Infected)、康复者(Recovered)等。
然后,通过建立微分方程或差分方程来描述这些状态变量之间的动态关系。
在SIR 模型中,假设人群中只有易感者和感染者两种状态,感染者经过一段时间后会自行康复并获得免疫力。
在SEIR 模型中,增加了“暴露”状态,表示已经接触但尚未表现出症状的个体。
而在SEIRS 模型中,除了“暴露”状态外,还增加了“易感”状态,表示从未被感染过且没有免疫力的人群。
除了以上提到的模型外,还有许多其他的数学模型用于描述传染病传播过程,如基于agent 的模型、网络模型、元胞自动机模型等。
这些模型各有优缺点,需要根据具体的研究问题和数据来选择合适的模型。
总之,传染病数学建模是一种重要的研究手段,可以帮
助我们更好地理解疾病的传播机制和预测未来的发展趋势。
通过建立数学模型,我们可以更好地制定防控措施,减少疾病的传播和影响。
传染病数学建模

第 30 题传染病传播的数学模型由于人体的疾病难以控制和变化莫测,医学中的数学模型也是较为复杂的。
在研究传染病传播问题时,人们发现传染病传播所涉及的因素很多,例如,传染病人的多少,易受感染者的多少,免疫者 (或感染后痊愈者 )的多少等。
在将某一地区,某种传染病的统计数据进行处理和分析后,人们发现了以下的规律性:设 S 表示在开始观察传染病之后第 k 天易受感染者的k人数, H 表示在开始观察后第 k 天传染病人的人数, I 表kk示在开始观察后第 k 天免疫者 (或感染后痊愈者 ) 的人数,那么S+1=S-0.01S(1) kkk (2)H+1=H -0.2H+0.01S kkkk I+1=I+0.2H(3) kkk其中 (1)式表示从第 k 天到第 k+1 天有 1%的易受感染者得天的传 k+1 式表示在第 (2)病而离开了易受感染者的人群;染病人的人数是第 k 天的传染病人的人数减去痊愈的人数 0.2H(假设该病的患病期为 5 k(3)式表示在第 k+ 1 天免疫者的人数是第 k 天免疫者的人数加上第 k 天后病人痊愈的人数。
将 (1),(2)和(3)式化简得如果已知 S,H,I 的值,利用上式可以求得 S, H,10001I 的值,将这组值再代入上式,又可求得 S,H,I 的值,2221这样做下去,我们可以逐个地,递推地求出各组S,H,kk I 的值。
因此,我们把 S,H, I 和 S,H,I 之间kkkkk+1k+11k+的关系式叫做递推关系式。
现在假设开始观察时易受感染者,传染病人和免疫者的人数分别为将上述数据 (5)代入 (4) 式右边得利用递推关系式 (4)反复计算得表 30-1。
在建立上述数学模型的过程中,如果还要考虑该地区人员的迁入和迁出,人口的出生和死亡所引起的总人数的变化等因素,那么传染病传播的数学模型变得非常复杂。
所以必须舍去次要因素,抓住主要因素,把问题简化,建立相应的数学模型。
传染病数学建模代码

传染病数学建模代码传染病数学建模是一种利用数学模型来研究疾病传播规律的方法。
它可以帮助我们更好地了解疫情的变化和控制措施的有效性。
下面,我们就让这篇文章来为您详细介绍传染病数学建模的相关代码吧!在传染病数学建模中,我们通常使用SIR模型。
SIR模型是以S (Susceptible)、I(Infectious)、R(Recovered)三类人群为基础的病毒传播模型。
我们可以通过以下代码,构建基本的SIR模型:```pythonimport numpy as npimport matplotlib.pyplot as plt定义初始变量N = 1000 # 总人数I0 = 1 # 初始感染者数量S0 = N - I0 # 初始易感者数量R0 = 0 # 初始恢复者数量beta = 0.2 # 易感者被感染率gamma = 0.1 # 感染者康复率构建SIR模型def SIR_model(t, y):S, I, R = ydS_dt = -beta * S * I / NdI_dt = beta * S * I / N - gamma * IdR_dt = gamma * Ireturn([dS_dt, dI_dt, dR_dt])计算SIR模型y0 = [S0, I0, R0]t = np.linspace(0, 100, 10000) # 时间范围res = odeint(SIR_model, y0, t)S = res[:, 0]I = res[:, 1]R = res[:, 2]绘制SIR曲线fig = plt.figure(facecolor='w')ax = fig.add_subplot(111, facecolor='#dddddd', axisbelow=True)ax.plot(t, S/N, 'b', alpha=0.5, lw=2, label='易感者')ax.plot(t, I/N, 'r', alpha=0.5, lw=2, label='感染者')ax.plot(t, R/N, 'g', alpha=0.5, lw=2, label='恢复者')ax.set_xlabel('时间(天)')ax.set_ylabel('人口比例')ax.set_ylim(0,1.2)ax.yaxis.set_tick_params(length=0)ax.xaxis.set_tick_params(length=0)ax.grid(b=True, which='major', c='w', lw=2, ls='-')legend = ax.legend()legend.get_frame().set_alpha(0.5)plt.show()```在上述代码中,我们首先定义了初始变量和SIR模型。
传染病的数学模型

传染病模塑洋解2.2.2 snsis,SIR经典模型经典的传播模塑大致将人髀分为传播态S,易感染态/和免挾态R。
S态表示t It 带有病毒或遥言的传播能力,一旦接顒到易感染个U就会以一定闵率导致对方成力传播态。
/表示该个体没有接触U病毒或遥言,容易被传播态个U感染。
R表示当经il-t或多彳、感染周期后,垓fit 永远不再被感染。
s/模里考虑了最简单的怖况,即一个个U值感染,就永远成为感染态,向周围邻居不断传播病毒或遥言等。
假设个体接能感染的忧率为0,思人数为N,在各状态均匀混合网络中建立传播模塑如下:U而得到芈 5(1)dt对此方Silfi求解可得:可见,起初免大跚分的个体为/态,任何一个S态个fi都会遇列/态f体并且传染给对方,网络中的s态个数甌时间应指数用长。
与此同时,顒着/态fit的城少,网络中s态f 数达到饱和,逐渐网络中fit全部应为s态。
然而在观实世界中,fit不可能一頁祁处于传播态。
有些节直会因为传播的能力和恿愿的下酚,从而自动转变为永不传播的尺态。
而有些节点可能会Us态转变/态,因此简单的S/模塑就不能满足节点具有自倉能力的现实需求,因而出观S/S模里和s〃?模型。
SIR是研究复杂网络il言传播的经典的模型。
采用与病毒传播柑皿的过程屮的SIR态代表传播过程中的三种状态。
Zanetee, Moreno先后研究了小世界传播过程中的培言传播。
Moreno等人将人辭分为S (传播端言)、I(设有听到培言),R (对培言不再相信也不传播)。
假设没有听到遥言/个U与S个体接触,以视率几伙)变为Sf体,S个体谓到5 11$或尺个mni率Q伙)变力/?,如图2.9所示。
建立的平均场方样:-J > = -几(k"(/)s(/)dt< 一a(k)s(t)[s(t) + r(t)]dt,心(0)IS 2.9 SIR樸型的状态转移囹= a(k)s(f)[s(/) + r(0]dt与之前人得到的均匀网络的病毒传播的给沦相反,遥言在均匀网络中传播没有闽値。
第二章传染病模型

数学建模
传染病模型
茂名学院
1
5.1 传染病模型
数学建模
问题 • 描述传染病的传播过程
• 分析受感染人数的变化规律
• 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段 • 按照传播过程的一般规律,
用机理分析方法建立模型
茂名学院
2
数学建模
模型1 已感染人数 (病人) i(t)
假设
建模
di i
i
di dt
si
i
ds
dt
si
i(0)
i 0
,
s(0)
s 0
di
ds
1
s
1
i ss0 i0
s(t)单调减相轨线的方向
s 1/ , i im t , i 0
s满足
s0
i0 s
1
ln
s s0
0
P1: s0>1/ i(t)先升后降至0
di
ds
1
s
1
i ss0 i0
相轨线
i(s) (s i ) s 1 ln s
0
0
i
s0
1
D {(s,i) s 0, i 0, s i 1}
在D内作相轨线i(s)
的图形,进行分析
茂名学院
D 0
110 s
数学建模
模型4 相轨线 i(s) 及其分析 SIR模型
茂名学院
t
t m
1
ln
1 i0
1
t i 1 ?
传染病动力学的数学建模与研究论文

就报告病例11335例,肯尼亚报告病例10108例.此外。结核病已使2亿人死亡; 疟疾仅在1997年就与厄尔尼诺现象一起造成150—270万人死亡【2】. 传染病的危害如此巨大,因此,人类一直以来都穷其智力为战胜传染病而奋斗 不息,取得显著成果.如今,天花被彻底消灭了,白喉、麻疹、破伤风在许多国家 得到有效抑制.随着抗生素的发明,结核病也结束了往日的恐怖.随着鸡尾酒疗法 的出现,艾滋病的治疗也在一定程度上得到改善。特别是各国采取广泛措施,积极 预防和消灭传染病,也取得了较好的社会效果.例如,世纪之初,我们即有效的消 灭了非典和禽流感的肆虐.成果的取得来之不易,根本原因在于传染病防治研究的 进步.。 目前,学界公认的传染病研究方法主要有四种;描述性研究、分析性研究、实 验性研究和理论性研究.传染病动力学是对传染病进行理论性定量研究的一种重要 方法.它是根据种群生长的特性,疾病的发生及在种群内的传播、发展规律,以及与 之有关的社会等因素,建立能反映传染病动力学特性的数学模型,通过对模型动力
播.
第三部分介绍了我们在传染病动力学的微观建模与研究方面所做的一些工作. 考虑到癌症在HIV感染者中的高发特点,我们建立了两个艾滋病与癌症相结合的 HIV-1动力学模型;一个ODE模型;一个DDE模型.系统有四个平衡态.我们讨 论了在不同的免疫状况下这些平衡态的存在性、稳定性以及其生物学意义.在DDE 模型中,我们讨论了正平衡态Hopf分支的存在条件.我们的研究结果与一些医学 临床结果及试验室观察相吻合. 本文研究的是传染病动力学领域的重要问题,具有重大的研究价值,属于该领 域的前沿问题.文中所用方法和所得结果对研究传染病模型和疾病控制都有一定指
important
on
its pathogenesis,regu-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模——传染病模型
数学建模——传染病模型
关键词:数学建模,传染病模型,预测,疫情,发展
一、引言
传染病模型是数学建模中的一个重要领域,旨在通过数学方法描述和预测传染病的发展趋势。
通过建立传染病模型,我们可以了解疾病传播的机制,评估各种干预措施的效果,并为制定有效的防控策略提供决策支持。
二、传染病模型概述
传染病模型是基于生物学、流行病学和数学理论建立的,主要考虑个体之间的接触方式和疾病传播的动态过程。
基本的传染病模型通常假设人群由易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三类组成。
通过分析这三类人群的数量变化,可以揭示疾病传播的规律。
常见的传染病模型包括 SIR 模型、SEIR 模型等。
SIR 模型假设人群分为易感者(S)、感染者(I)和康复者(R),其中感染者与易感者接触后将传染疾病,感染后将进入康复阶段。
SEIR 模型则在 SIR 模型的基础上增加了潜伏期(E),即感染者并非立即变为易感者,而是进入潜伏期,一段时间后才具有传染性。
三、建模方法与步骤
1、建立数学模型:根据传染病的基本假设,列出描述疾病传播的微分方程,确定变量及其含义。
2、参数估计:根据历史数据或实验结果,估计模型中的参数值。
这些参数包括感染率、恢复率、潜伏期等。
3、模型求解:通过求解微分方程,得到易感者、感染者和康复者的数量变化情况。
4、模型检验:将模型的预测结果与实际数据进行比较,检验模型的准确性和可靠性。
四、案例分析
以某个地区的流感疫情为例,通过建立 SIR 模型预测疫情的发展趋势。
首先,根据历史数据估计模型的参数值,包括感染率和恢复率等。
然后,通过求解微分方程得到易感者、感染者和康复者的数量变化情况。
根据预测结果,可以评估各种干预措施的效果,如隔离、疫苗接种等。
通过比较预测结果与实际数据的差异,可以不断修正和完善模型,提高预测精度。
五、结论
传染病模型是数学建模中的一个重要领域,通过建立数学模型描述和
预测传染病的发展趋势。
在传染病防控中,传染病模型可以为制定有效的防控策略提供决策支持。
未来,随着大数据和技术的发展,传染病模型将不断得到优化和改进,为疫情防控工作发挥更大的作用。