三相SPWM逆变器的仿真与研究毕业设计
基于三相并网逆变器SPWM及SVPWM控制的仿真研究

基于三相并网逆变器SPWM及SVPWM控制的仿真研究三相并网逆变器是一种常见的电力电子设备,用于将直流电能转化为交流电能并连接到电网中。
在实际应用中,为了提高逆变器的性能和控制精度,常常采用了SPWM和SVPWM控制策略。
本文对基于三相并网逆变器的SPWM和SVPWM控制进行了仿真研究。
首先,介绍了三相并网逆变器的基本工作原理。
三相并网逆变器由整流器和逆变器两个部分组成。
整流器将电网中的交流电转化为直流电,逆变器将直流电转化为交流电并注入电网中。
同时,逆变器还需要提供电网中的电能质量控制,包括功率因数修正和谐波消除等。
接着,详细介绍了SPWM和SVPWM控制策略。
SPWM控制是一种常见的逆变器控制方法,通过调节逆变器输出电压的幅值和频率来实现对电网的注入电能控制。
SVPWM控制是一种更精确的控制方法,将逆变器输出电压分解为两个三角波信号,并通过调节三角波波形的占空比和相位来精确控制逆变器输出电压。
其优点是能够实现连续变化的电压和频率控制,提高了系统的运行稳定性和效率。
然后,搭建了三相并网逆变器的仿真模型,并分别进行了SPWM和SVPWM控制的仿真实验。
在仿真实验中,选择了逆变器的输出电压波形、频率和相位作为控制目标,通过调节SPWM和SVPWM控制的参数来实现对逆变器输出电压的控制。
仿真结果表明,SVPWM控制相比于SPWM控制具有更高的控制精度和稳定性,在电网注入电能方面效果更好。
最后,对仿真结果进行了分析和讨论。
在仿真实验中,SPWM控制的输出电压存在较大的气动调节误差,而SVPWM控制的输出电压更接近于理想波形,控制精度更高。
此外,SVPWM控制可以实现更高的电压变化速率和更精确的相位控制,更适用于一些对控制精度要求较高的应用场景。
综上所述,基于三相并网逆变器的SPWM和SVPWM控制是一种有效的控制策略。
本文通过仿真研究发现,SVPWM控制相比于SPWM控制具有更高的控制精度和稳定性,可以满足一些对电网注入电能控制要求较高的应用需求。
(完整版)三相逆变器SPWM的仿真

目录一摘要 (2)二三项逆变器SPWM调制原理 (2)三SPWM逆变电路及其控制方法 (2)3.1SPWM包括单极性和双极性两种调制方法 (2)3.2调制法 (3)3.3特定谐波消去法 (4)四三相桥式逆变器SPWM调制的仿真型 (5)4.1SUBSYSTEM封装模块 (6)4.2SUBSYSTEM1封装模块 (7)五三相桥式逆变器SPWM调制的仿真波形 (7)六频谱分析 (14)6.1对相电压UN’、VN’、WN’输出电压进行谐波分析 (14)6.2对负载的线电压U UV、U VW、U WU的输出波形进行谐波分析 (16)6.3负载VN的相电压UN、VN、WN输出波形进行谐波分析 (17)七结语 (19)八参考文献 (19)三相逆变器双极性SPWM调制技术的仿真一摘要:在电力电子技术中,PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
本论文以三相逆变器双极性SPWM调制技术的仿真为例,通过运用了Matlab/Simulink和Power System Block(PSB)电力系统模块集工具箱仿真环境,对电路进行建模、计算和仿真分析。
通过调节载波比N,用示波器观看输出波形的改变。
另外,采用subplot作出相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,并加以分析。
关键词:PWM 三相逆变器载波比N 示波器仿真波形二三相逆变器SPWM调制原理在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
图1中各个形状的窄脉冲在作用到逆变器中电力电子器件时,其效果是相同的,是指环节的输出响应波形基本相同。
重要理论基础——面积等效原理a)矩形脉冲b)三角脉冲c)正弦半波脉冲d)单位脉冲函图1 形状不同而冲量相同的各种窄脉冲三SPWM逆变电路及其控制方法3.1 SPWM包括单极性和双极性两种调制方法(1)如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式。
电压型三相SPWM逆变器建模和仿真研究

* * * 学 院本科毕业设计(论文)作者姓名 指导教师学科门类 所学专业 题 目代分类号学号 密级 提交论文日期成绩评定 Voltage-source SPWM Inverter电压型三相逆变器就是供给逆变器的交流电源是三相电电源, SPWM正弦脉宽调制法这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性能好,使输出电压只含有固定频率的高次谐波分量,并能够消除谐波,且设计简单等一系列的优点,SPWM 正弦脉宽调制法是一种比较好的波形改善的方法。
SPWM正弦脉宽调制法的出现为中型和小型逆变器的快速发展起到了一个重要的推动作用。
伴随着电力电子技术的高速发展,电压型三相SPWM逆变器已被广泛应用在各个领域之中,并且SPWM技术已经成为目前应用最为广泛的逆变用PWM技术。
通过电压型三相SPWM逆变器建模和仿真研究这项课题,能够加强自己对电压型三相SPWM逆变器控制原理和建模进行深入理解,并提高自己在三相电压逆变方面的计算机仿真能力,为今后自己从事交流电机控制与电源逆变相关工作打下良好的基础。
关键词:电压型;频率;SPWM;逆变器The AC power supply voltage three-phase inverter is supplied to the inverter is three-phase electric power supply, the technology of SPWM sine pulse width modulation method is simple in principle, strong versatility, with fixed switching frequency, control and regulation performance, so that the output voltage harmonic component contains only the fixed frequency, and can eliminate the harmonic, and has the advantages of simple design a series of, SPWM sine pulse width modulation method is a good waveform improvement. SPWM sine pulse width modulation method for the rapid development of medium and small inverter plays an important role in promoting. Along with the rapid development of power electronic technology, three-phase voltage-source SPWM inverter has been widely used in various fields, and the SPWM technology has become the most widely used PWM technology of inverter.Through research on Modeling and Simulation of three-phase voltage-source SPWM inverter this subject, it can make me have a strength to voltage three-phase SPWM inverter control principle and modeling a more depth understanding, and it can improve myself in the three-phase voltage inverter aspects of computer simulation ability, which can make me have a good foundation of engaged in AC motor control and power inverter related work.Key words: Voltage type; frequency SPWM; Inverter目录摘要 (I)Abstract (II)目录 (III)1 引言 (1)2 电压型三相SPWM逆变器的工作原理及控制方法 (1)2.1 三相电压型逆变器电路 (1)2.2 SPWM控制的基本原理 (4)2.3电压型三相SPWM逆变器的实现及控制 (6)3 电压型三相SPWM逆变器的建模与仿真 (8)3.1 Simulink软件的介绍 (8)3.2 电压型三相SPWM逆变器的建模和仿真 (9)4 总结 (16)参考文献 (17)谢辞 (18)1 引言近年来,随着大功率全控型电力电子器件的研究与开发成功和应用技术的不断成熟,电能变换技术得到了突破性的进展,在一些领域中,已经开始使用各种新型逆变器电源,其中,也包括电动机。
三相逆变器SPWM的仿真

目录一摘要 (2)二三项逆变器SPWM调制原理 (2)三SPWM逆变电路及其控制方法 (2)3.1SPWM包括单极性和双极性两种调制方法 (2)3.2调制法 (3)3.3特定谐波消去法 (4)四三相桥式逆变器SPWM调制的仿真型 (5)4.1SUBSYSTEM封装模块 (6)4.2SUBSYSTEM1封装模块 (7)五三相桥式逆变器SPWM调制的仿真波形 (7)六频谱分析 (14)6.1对相电压UN’、VN’、WN’输出电压进行谐波分析 (14)6.2对负载的线电压U UV、U VW、U WU的输出波形进行谐波分析 (16)6.3负载VN的相电压UN、VN、WN输出波形进行谐波分析 (17)七结语 (19)八参考文献 (19)三相逆变器双极性SPWM调制技术的仿真一摘要:在电力电子技术中,PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
本论文以三相逆变器双极性SPWM调制技术的仿真为例,通过运用了Matlab/Simulink和Power System Block(PSB)电力系统模块集工具箱仿真环境,对电路进行建模、计算和仿真分析。
通过调节载波比N,用示波器观看输出波形的改变。
另外,采用subplot作出相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,并加以分析。
关键词:PWM 三相逆变器载波比N 示波器仿真波形二三相逆变器SPWM调制原理在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
图1中各个形状的窄脉冲在作用到逆变器中电力电子器件时,其效果是相同的,是指环节的输出响应波形基本相同。
重要理论基础——面积等效原理a)矩形脉冲b)三角脉冲c)正弦半波脉冲d)单位脉冲函图1 形状不同而冲量相同的各种窄脉冲三SPWM逆变电路及其控制方法3.1 SPWM包括单极性和双极性两种调制方法(1)如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式。
(完整版)三相SPWM逆变器仿真

三相SPWM逆变器仿真一、原理分析1、基本原理按照输出交流电压半周期内的脉冲数,脉宽调制(PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM可分为等脉宽调制和正弦脉宽调制(SPWM)。
等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。
这是因为等腰三角形的载波u T上、下宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于该函数值的矩形脉冲。
而且在三角载波u T不变条件下,改变正弦调制波u R的周期就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉冲的宽度,进而改变u D中基波u D1的大小。
这就是正弦脉宽调制(sine pulse width modulated,SPWM)。
2、正弦脉宽调制方法(此处仅介绍了采样法)SPWM是以获得正弦电压输出为目标的一种脉宽调制方式。
这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM具体实现方法。
下图就是三相电压源型PWM逆变器主电路结构图:图—1上图为一三相电压源型PWM逆变器,VT1~VT6为高频自关断器件,VD1~VD6为与之反并联的快速恢复二极管,为负载感性无功电流提供通路。
两个直流滤波电容C串联接地,中点O’可以认为与三相Y接负载中点O等电位。
逆变器输出A、B、C三相PWM电压波形取决于开关器件VT1~VT6上的驱动信号波行,即PWM的调制方式。
假设逆变电路采用双极性SPWM控制,三相公用一个三角形载波u T,三相正弦调制信号u RA、u RB、u RC互差120o,可用A相来说明功率开关器件的控制规律,正如下图中所示。
当u RA>u T时,在两电压的交点处,给A相上桥臂元件VT1导通信号、下桥臂元件VT4关断信号,则A相与电源中点O’间的电压u AO’=E/2。
当u RA<u T时,在两电压的交点处给VT4导通信号、VT1关断信号,则u AO’=-E/2。
三相电压型SPWM逆变器的仿真

(2)逆变电源输出的线电压Vab-inv;
(3)加在负载上的线电压Vab-bad
从波形图上可以看出,负载电压非常接近正弦波,这是由于LC滤波器大大减少了逆变电源输出电压的谐波。
为了对输出特性进行分析,在仿真结束后,利用快速傅里叶变换(FFT)对上述3个电压波形的谐波成分进行分析,它们各次谐波含量如图(6)所示。
Matlab软件具有强大的数值计算功能,本文利用Matlab软件中的Simulink和Power System Blochset建立位一个三相电压型SPWM逆变电源建立系统仿真模型,并对其输出特性进行仿真分析。
二、工作原理
三相电压型SPWM逆变电源系统的原理,如图(1)所示。
它的主要功能是将直流电压变换成交流电压,采用SPWM控制策略,调压控制器采用数字式PI控制,实时地调节逆变输出电压的幅值,以满足实际的要求。系统的主回路选择IGBT作为开关器件,为了减少输出电压的谐波,逆变电源输出接有串联谐振滤波电路。
参考文献:
(1)洪乃刚.电力电子、电机控制系统的建模和仿真【M】.北京:机械工业出版社
(2)王云亮,周渊深,舒志兵.电子技术【M】.北京:电子工业出版社
(3)钱平,孙国琴,胡春慧.交直流传动控制系统【M】.北京:高等教育出版社
(4)王兆安,黄俊.电力电子技术【M】.4版.北京:机械工业出版社
(5)李华德.交流调速控制系统【M】.北京:电子工业出版社
三、系统仿真模型的建立
利用Matlab软件中的Simulink和Power System Blochset构建三相SPWM逆变电源的电路模型,如图(2)所示。
这一系统是由AC-DC和DC-AC两部分组成,60HZ的交流电通过整流器送到逆变器,再由逆变器的输出经过LC滤波器供电给一个交流负载6路IGBT模块选用PSB库的子库Power Electronics中的UniversalB属性Power Electronics Device改为IGBT/D DDE即可。其他的参数可以根据自己的实际需要来设置。模型中关键点的部分就是电压调节系统,模型如图(3)所示。
三相电压型SPWM逆变器设计

三相电压型SPWM逆变器设计一、设计原理:三相电压型SPWM逆变器由一个直流输入端和一个交流输出端组成。
其主要原理是将直流电压转换为较高频率的脉冲宽度调制信号,然后通过逆变桥电路将直流电压转换为交流电压。
在逆变桥电路中,通过控制三相负载端的三个开关管的开关状态,可以实现对输出电压幅值、频率和相位的控制。
二、设计步骤:1.选择逆变桥电路拓扑:逆变桥电路有多种不同的拓扑结构,如全桥、半桥等,需要根据具体需求来选择合适的拓扑结构,一般来说,全桥结构应用较为广泛。
2.数据采样和计算:通过采样电路获取输入电流和输出电压的实时数据,并进行运算和控制。
一般需要采用高速的模数转换器(ADC)进行数据采集,并使用微控制器或数字信号处理器(DSP)进行计算和控制。
3.正弦脉宽调制(PWM):通过正弦脉宽调制技术,将直流电压转换为脉冲宽度调制信号。
正弦脉宽调制技术是一种通过比较三角波和参考正弦波来确定开关管的开关状态的方法,其核心思想是让输出电压的波形尽可能接近正弦波形。
4.控制逆变桥电路开关状态:通过控制逆变桥电路中的三个开关管的开关状态,可以实现对输出电压的控制。
一般来说,可以采用脉冲宽度调制技术控制开关管的开关时间,从而改变输出电压的幅值和频率。
5.输出滤波:由于逆变器输出为脉冲宽度调制信号,需要进行滤波处理,以减小输出电压的谐波含量,并使其接近纯正弦波形。
常用的滤波器包括LC滤波器和LCL滤波器。
6.过流、过压保护:为了保护逆变器和负载,需要设计过流和过压保护电路,并将其集成到逆变器中。
总结:通过以上的步骤,就可以设计出一款三相电压型SPWM逆变器。
设计时需要根据具体需求选择逆变桥电路拓扑、采集数据并进行计算,使用正弦脉宽调制技术控制开关管的开关状态,进行输出滤波,并设计过流、过压保护电路。
这些步骤需要结合电力电子、控制系统和信号处理等多个领域的知识和技术。
三相电压型SPWM逆变器仿真分析及应用

三相电压型SPWM逆变器仿真分析及应用三相电压型SPWM逆变器是一种常见的电力电子装置,用于将直流电能转换为交流电能。
它广泛应用于可再生能源发电系统、电动汽车充电系统、UPS电源等领域。
本文将对三相电压型SPWM逆变器进行仿真分析,并讨论其在实际应用中的一些关键技术。
首先,我们来介绍一下三相电压型SPWM逆变器的工作原理。
该逆变器由六个开关管组成,三个开关管连接到每个电压型逆变器的输入端,三个开关管连接到中性点。
逆变器的输入是直流电压,输出是三相交流电压。
逆变器的工作原理是通过不同开关管的开关状态,控制直流电压经过逆变器的辅助电路,从而产生所需的交流电压。
在SPWM控制策略下,通过对开关管的PWM波形进行调制,可以实现对输出电压的调节。
接下来,我们进行三相电压型SPWM逆变器的仿真分析。
首先,我们需要建立逆变器的数学模型,并设计控制策略。
然后,利用数值计算软件进行仿真模拟,得到逆变器的输出波形和性能参数。
最后,对仿真结果进行分析和验证。
在仿真过程中,我们可以通过调节PWM波形的频率、幅值和相位等参数,观察输出电压的变化情况。
同时,可以对逆变器的效率、谐波含量、响应时间等性能指标进行评估和改进。
通过仿真分析,可以帮助我们更好地理解逆变器的工作原理和特性,并为实际应用中的设计和优化提供参考。
除了仿真分析,三相电压型SPWM逆变器还有一些关键技术需要注意。
首先是开关管的选择和驱动电路的设计,要保证开关管具有足够的电流和电压承受能力,并且能够快速开关。
其次是PWM控制策略的设计,包括调制波形的产生方法和控制方法的选择,以实现输出电压的精确控制。
此外,还需要考虑逆变器的过电流保护、温度保护、短路保护等安全措施。
综上所述,三相电压型SPWM逆变器是一种常见的电力电子装置,在可再生能源发电系统、电动汽车充电系统、UPS电源等领域有广泛应用。
通过仿真分析和关键技术的研究,可以提高逆变器的性能和可靠性,推动其在实际应用中的进一步发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相SPWM逆变器的仿真与研究[摘要]随着电力电子技术、计算机技术、自动控制技术的迅速发展,PWM技术得到了迅速发展,SPWM正弦脉宽调制法这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性能好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列优点,是一种比较好的波形改善法。
它的出现为中小型逆变器的发展起了重要的推动作用。
SPWM技术成为目前应用最为广泛的逆变用PWM技术。
因此,研究SPWM逆变器的基本工作原理和作用特性意义十分重大。
本论文介绍了三相电压型SPWM逆变器的工作原理,仿真电路及matlab仿真。
文中还给出了用此逆变器构成的三相交流电动机变频调速系统,并对仿真结果进行分析。
[关键词]正弦脉宽调制,逆变器,电机变频调速,matlab仿真Three-phase SPWM inverter simulation and researchAuthor: Huang Fei(Grade9, Class1, Major Automation , Electrical EngineeringDept, Shaanxi University of Technology , Hanzhong 723003,Shaanxi)Instructor: Zhang Peng Chao[Abstrac]With the power electronics technology, computer technology, the rapid development ofautomatic control technology, PWM technology is developing rapidly, SPWM sine pulse width modulation principle of this technology is characterized by simple, versatile, with a fixed switching frequency, control and regulation performance, eliminate harmonics thatcontain only a fixed output voltage of high frequency harmonic components, simple design and a series of advantages, is a good waveform improvement Act. It was a smallinverter played an important role. SPWM technology become the most widely usedinverter with PWM technology. Therefore, the study of SPWM inverter characteristics ofthe basic working principle and the role of great significance.This paper describes the three-phase voltage SPWM inverter works, simulate circuits and matlab simulation. The article also gives the composition with this three-phase ACinverter motor frequency control systems, and simulation results were analyzed.[Key words]Sinusoidal pulse width modulation, inverters, motor speed, matlab simulation毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日引言经过大约30多年的发展,交流调速电气传动已经上升为电气调速传动的主流。
在电气调速领域内,可以相信在不久的将来交流调速将会完全取代直流调速传动。
现在要求性能较高的中、小容量的交流调速传动,主要使用电子式电力变换器对交流电动机进行变频调速。
除变频以外的另一些简单的调速方案,如变极调速、定子调压调速、转差离合器调速等,它们只有在特定场合有一定的应用。
由于电力电子学和微电子技术的发展,使变频调速技术近年来获得了飞速的发展,各种变频调速控制方式、PWM脉宽调制技术以及MCU微处理器和以大规模集成电路为基础的全数字化控制技术等均在变频调速中获得了成功应用。
SPWM正弦脉宽调制法这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性能好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列优点,是一种比较好的波形改善法。
它的出现为中小型逆变器的发展起了重要的推动作用。
SPWM技术成为目前应用最为广泛的逆变用PWM技术。
根据生成SPWM波形的实现方式可以分为模拟控制和数字控制两种形式。
传统的模拟控制在逆变器中应用广泛,技术成熟,控制性能优良,但模拟控制也存在一些缺陷:元件众多,设计周期长,调试复杂,不易管理维护等。
随着数字信号处理技术的蓬勃发展,数字控制技术已经成功地应用到电力电子与电力传动控制领域中来,逆变器的数字控制逐渐成为研究热点。
1 PWM技术的应用1.1 PWM控制技术的研究意义PWM控制技术一直是变频技术的核心技术之一。
1964年A.Schonung和H.stemmler首先在<<BBC>>评论上提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。
从最初采用模拟电路完成三角调制波和参考正弦波比较,产生正弦脉宽调制SPWM信号以控制功率器件的开关开始,到目前采用全数字化方案,完成优化的实时在线的PWM信号输出,可以说直到目前为止,PWM在各种应用场合仍占主导地位,并一直是人们研究的热点。
由于PWM可以同时实现变频变压反抑制谐波的特点,由此在交流传动乃至其它能量变换系统中得到广泛应用。
PWM控制技术大致可以分为三类,正弦PWM(包括电压,电流或磁通的正弦为目标的各种PWM方案,多重PWM也应归于此类),优化PWM及随机PWM。
正弦PWM已为人们所熟知,而旨在改善输出电压、电流波形,降低电源系统谐波的多重PWM技术在大功率变频器中有其独特的优势(如 ABB ACS1000系列和美国ROBICON公司的完美无谐波系列等);而优化PWM所追求的则是实现电流谐波畸变率(THD)最小,电压利用率最高,效率最优,及转矩脉动最小以及其它特定优化目标。
在70年代开始至80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般最高不超过5KHZ,电机绕组的电磁噪音及谐波引起的振动引起人们的关注。
为求得改善,随机PwM方法应运而生。
其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。
正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值(DTC控制即为一例);另一方面则告诉人们消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,因为随机PWM技术提供了一个分析、解决问题的全新思路。
在电力拖动领域,解决好电动机的无级调速问题有着十分重要的意义,电机调速性能的提高可以大大提高工农业生产设备的加工精度、工艺水平以及工作效率,从而提高产品的质量和数量;对于风机、水泵负载,如果采用调速的方法改变其流量,节电效率可达20%-60%。
众所周知,直流调速系统具有较为优良的静、动态性能指标。
在很长的一个历史时期内,调速传动领域基本上被直流电机调速所垄断,这是和实际中交流电机的广泛使用是一对存在的矛盾,许多应用交流电机的设备为了达到调节被控对象的目的,只能采用物理的方法,例如采用风门,阀门控制流量等,这样浪费能源的问题就很突出,费用就大。
而且在采用直流调速的方面由于直流电机固有的缺点—换相器和电刷的存在,使得维修工作量大,事故率高,电机的大容量使用受到限制,在易燃易爆的场合无法使用,因此开发交流调速势在必行。
变频调速具有高效率、宽范围和高精度等特点,是目前运用最广泛且最有发展前途的调速方式。
交流电动机变频调速系统的种类很多,从早起提出的电压源型变频器开始,相继发展了电流源型,脉宽调制等各种变频器。
目前变频调速的主要方案有:交-交变频调速,交-直-交变频调速,同步电动机自控式变频调速,正弦波脉宽调制(SPWM)变频调速,矢量控制变频调速等。
这些变频调速技术的发展很大程度上依赖于大功率半导体器件的制造水平。
随着电力电子技术的发展,特别是可关断晶闸管GT0,电力晶体管GTR,绝缘门极晶体管IGBT,MOS晶闸管及MTC等具有自关断能力全控功率元件的发展,再加上控制单元也从分离元件发展到大规模数字集成电路及采用微机控制,从而使变频装置的快速性,可靠性及经济性不断提高,变频调速系统的性能也得到不断完善。