Classical Heisenberg antiferromagnet on a garnet lattice a Monte Carlo simulation
富Mn型MnNiGa Heusler合金的磁性能及交换偏置效应

第16卷第4期2021年4月Vol.16No4Apr.2021中国科技论文CHINA SCIENCEPAPER富Mn型MnNiGa Heusler合金的磁性能及交换偏置效应李佳宁,曹开颜,田方华,周超,张垠,杨森(西安交通大学物质非平衡合成与调控教育部重点实验室,西安7100-19)摘要:为了理解和丰富交换偏置现象,对富Mn型Heusler合金的磁性能和交换偏置效应及随其成分的演变规律进行了研究。
利用电弧熔炼法制备Mn0N50rGa=C r=14,10,6,2)系列合金,通过直流热磁曲线测试分析各组分合金在降温过程中出现的磁性团簇;然后利用低温下磁滞回线测试计算并研究不同Mn成分下合金的交换偏置效应及其演变规律。
结果表明,这些团簇会在外场作用下逐渐冻结为铁磁团簇,其与反铁磁母相的相互钉扎进一步导致交换偏置的产生。
其交换偏置效应在M ns)NL l0G110合金组分处达到了最大值H e=4377.06Oe通过对不同(a(或者Ni)成分下交换偏置效应规律的研究和分析,该工作将为富Mn 相Heusler合金体系的磁性特点提供丰富的实验和理论支撑。
关键词:磁学;Heusler合金;交换偏置效应;磁性材料;自旋玻璃团簇中图分类号:O169文献标志码:A文章编号:2095-2783(2021)04-03-19-05开放科学(资源服务)标识码(OSID):旨激鏗抿Magnetic properties and exchange bias effect of Mn-rich MnNiGa Heusler alloyLI Jianing,CAOKaiyan,TIAN Fanghua,ZHOU Chao,ZHANG Yin,YANG Sen(MOE Key Laboratory for NonEquilibrium Synthesis and Modulation ofCondensed Matter,Xi7an J iaotong University,Xi an710049,China)Abstract:In order to understand and enrich the phenomenon of exchange bias,the magnetic properties and exchange bias effect of Mn rich Heusler alloys were studied.And the Mn0N50-z Ga(x=14,10,6,2)series alloys were prepared by the arc melting method,and the magnetic clusters of various component alloys during the cooling process were analyzed by DC thermal magnetic curve Lest;The exchange bias effect and evolution laws with different Mn compositions were studied through the hysteresis loops.The results show that these clusters will gradually freeze into ferromagnetic clusters under the external field,and they will be pinned to the antiferromagnetic mother phase lo cause exchange bias.The exchange bias effect reaches the maximum value H e=4377.06Oe al the composition of Mn0N4)Ga0alloy.This work will provide rich experimental and theoretical support for the magnetic study of the Mn-rich Heusler alloy system.Keywords:magnetism;Heusler alloy;exchange bias effect;magnetic materials;spin glass clusters近年来,作为自旋电子学的重要物理原理之一,交换偏置效应的研究使得巨磁阻材料及相关自旋电子器件领域有了较大发展。
(完整版)材料现代分析方法第一章习题答案解析

第一章1.X射线学有几个分支?每个分支的研究对象是什么?答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。
X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。
X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。
X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。
2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少?解:已知条件:U=50kV电子静止质量:m0=9.1×10-31kg光速:c=2.998×108m/s电子电量:e=1.602×10-19C普朗克常数:h=6.626×10-34J.s电子从阴极飞出到达靶的过程中所获得的总动能为:E=eU=1.602×10-19C×50kV=8.01×10-18kJ由于E=1/2m0v02所以电子击靶时的速度为:v0=(2E/m0)1/2=4.2×106m/s所发射连续谱的短波限λ0的大小仅取决于加速电压:λ0(Å)=12400/U(伏) =0.248Å辐射出来的光子的最大动能为:E0=hv=h c/λ0=1.99×10-15J3. 说明为什么对于同一材料其λK<λKβ<λKα?答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k以kα为例:hV kα = E L– E khe = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象?答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。
倒易点阵的证明

例题2.1体心立方和面心立方点阵的倒易点阵 证明体心立方点阵的倒易点阵是面心立方点阵.反之,面心立方点阵的倒易点阵是体心立方点阵. [证明]选体心立方点阵的初基矢量如图1.8所示,()1ˆˆˆ2aa x y z =+- ()2ˆˆˆ2aa x y z =-++ ()3ˆˆˆ2aa x y z =-+ 其中a 是立方晶胞边长,ˆˆˆ,,xy z 是平行于立方体边的正交的单位矢量。
初基晶胞体积()312312c V a a a a =⋅⨯=依照式(2.1)计算倒易点阵矢量123231312222,,c c cb a a b a a b a a V V V πππ=⨯=⨯=⨯ ()2123ˆˆˆˆˆ22222222c x y zV a a a a b a a xy a a a π=⨯=-=+- ()2231ˆˆˆˆˆ22222222c xy z V a a a a b a a yz a a a π=⨯=-=+- ()2312ˆˆˆˆˆ22222222c xy zV a a a a b a a zx a a a π=⨯=-=+-于是有:()()()123222ˆˆˆˆˆˆ,,b x y b y z b z x a a aπππ=+=+=+ 显然123,,b b b 正是面心立方点阵的初基矢量,故体心立方点阵的倒易点阵是面心立方点阵,立方晶胞边长是4a π.同理,对面心立方点阵写出初基矢量()1ˆˆ2aa x y =+ ()2ˆˆ2aa y z =+ ()3ˆˆ2aa z x =+ 如下图。
初基晶胞体积()312314c V a a a a =⋅⨯=。
依照式(2.1)计算倒易点阵矢量()()()123222ˆˆˆˆˆˆˆˆˆ,,b x y z b x y z b x y z a a aπππ=+-=-++=-+ 显然,123,,b b b 正是体心立方点阵的初基矢量,故面心立方点阵的倒易点阵为体心立方点阵,其立方晶胞边长是4a π.2.2 (a) 证明倒易点阵初基晶胞的体积是()32/c V π,那个地址c V 是晶体点阵初基晶胞的体积;(b) 证明倒易点阵的倒易点阵是晶体点阵自身.[证明](a) 倒易点阵初基晶胞体积为()123b b b ⋅⨯,现计算()123b b b ⋅⨯.由式(2.1)知,123231312222,,c c cb a a b a a b a a V V V πππ=⨯=⨯=⨯ 此处()123c V a a a =⋅⨯ 而()()()(){}222331123121311222c c b b a a a a a a a a a a a a V V ππ⎛⎫⎛⎫⨯=⨯⨯⨯=⨯⋅-⨯⋅⎡⎤⎡⎤ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭那个地址引用了公式:()()()()A B C D A B D C A B C D ⨯⨯⨯=⨯⋅-⨯⋅⎡⎤⎡⎤⎣⎦⎣⎦。
原子物理第四章

Be
+Ze
(b) j = Ze (-v)
Be
1 Ze(v) r jr r3 4 0c 2 r 3 4 0c 2 1
1 Ze Ze r m v e 2 4 0 me c 2 r 3 4 0 mc e r
Be
3
L
电子自旋磁矩在该磁场中具有取向势能
2
S
re
r ,r+dr
电子陀螺的角动量:
re
0
(4 r )dr rv 0 (4 r )dr rr
2 2
re
v
1 4r 4 dr 4 re5 0 5 me 1 5 re 4 3 4 re / 3 5 3 mere5 5
re
2
1 1 Ze2 S L (r)S L U 3 2 2 2 me c 4 0r
L
量子力学得到相同的结果。
L l(l 1)
,
l 0,1,, n 1
ml l, (l 1),, (l 1), l
z Lz
Lz ml
相应的轨道磁矩的大小
e l(l 1) l(l 1) B l 2me
轨道磁矩在z方向的分量
L
lz
其中
e ml ml B 2me
S y
N
W. Gerlach (1889 – 1979)
只用考虑z方向磁场Bz
B Fx lz z x Bz Fy lz y B Fz lz z z
其中
z
S
y N
Bz 0 x
Bz 0 y
21925065_榴辉岩中单斜辉石-石榴子石镁同位素地质温度计评述

1000 0569/2020/036(06) 1705 18ActaPetrologicaSinica 岩石学报doi:10 18654/1000 0569/2020 06 04榴辉岩中单斜辉石 石榴子石镁同位素地质温度计评述黄宏炜1 杜瑾雪1 柯珊2HUANGHongWei1,DUJinXue1 andKEShan21 中国地质大学地球科学与资源学院,北京 1000832 中国地质大学地质过程与矿产资源国家重点实验室,北京 1000831 SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences,Beijing100083,China2 StateKeyLaboratoryofGeologicalProcessesandMineralResources,ChinaUniversityofGeosciences,Beijing100083,China2019 11 14收稿,2020 04 08改回HuangHW,DuJXandKeS 2020 Reviewontheclinopyroxene garnetmagnesiumisotopegeothermometersforeclogites ActaPetrologicaSinica,36(6):1705-1718,doi:10 18654/1000 0569/2020 06 04Abstract Theremarkableequilibriummagnesiumisotopefractionationbetweenclinopyroxeneandgarnetobservedineclogitesmakesitapotentialhigh precisiongeothermometer Therefore,thispaperselects64pairsofclinopyroxene garnetmagnesiumisotopedataofeclogitesintheChinesesouthwesternTianshanorogen,intheDabie SuluorogenandintheKaapvaalcratonintheSouthAfricafromliteratures Then,wescreened50pairsofdatathatreachtheequilibriummagnesiumisotopefractionationbytheδ26MgCpx δ26MgGrtdiagram Usingthesemagnesiumisotopeequilibriumfractionationdata,wecalculatedpeaktemperaturesofeclogitesbymagnesiumisotopegeothermometersofHuangetal (2013)throughfirst principlescalculationandWangetal (2012)andLietal (2016)throughempiricalestimation,andcomparedthemwiththepeaktemperaturesgivenbyothergeothermometers Byanalyzingthecalculationresults,itisfoundthatfororogeniceclogites,thecalculationresultsofthegeothermometerofHuangetal (2013)areconsistentwiththosepreviouslyobtainedbytraditionalgeothermometersandphaseequilibriamodeling,whilethecalculationresultsofthegeothermometersofWangetal (2012)andLietal (2016)aresignificantlylower Forthecratoneclogites,thecalculationresultsofallthethreemagnesiumisotopegeothermometersaresignificantlydifferentfromresultsoftraditionalgeothermometersbymorethan50℃,whichismostprobablycausedbyre equilibriumofmagnesiumisotopeduringearlyretrogrademetamorphismathightemperatures Thisindicatesthatthesethreemagnesiumisotopegeothermometersarenotapplicableforthecratoneclogites Basedontheabovedata,themethodofempiricalestimationisusedtocalibrateanewclinopyroxene garnetmagnesiumisotopegeothermometer,whichisΔ26MgCpx Grt=1 11×106/[T(K)]2(R2=0 92).Inaddition,thispaperalsobrieflydiscussesapplicationprospectoftheclinopyroxene garnetmagnesiumisotopegeothermometersandtheproblemsthatshouldbepaidattentiontoduringapplication Keywords Eclogites;Isotopegeothermometer;Magnesiumisotope;Clinopyroxene garnet摘 要 榴辉岩中单斜辉石和石榴子石之间显著的镁同位素平衡分馏,使其成为一种具有潜力的高精度地质温度计。
第六章 晶格动力学

第六章 晶格动力学 6.1 密度泛函微扰理论固体物理性质的变化依赖于他们的晶格动力学行为:红外、拉曼和中子散射谱;比热,热膨胀和热导;和电声子相互作用相关的现象如金属电阻,超导电性和光谱的温度依赖关系是其中的一部分。
事实上,借助于声子对这些问题的了解最令人信服地说明了目前固体的量子力学图像是正确的。
晶格动力学的基础理论建立于30年代,玻恩和黄昆1954年的专题论文至今仍然是这个领域的参考教科书。
这些早期的系统而确切地陈述主要建立了动力学矩阵的一般性质,他们的对称和解析性质,没有考虑到和电子性质的联系,而实际上正是电子性质决定了他们。
直到1970年才系统地研究了这些联系。
一个系统电子的性质和晶格动力学之间的联系的重要性不仅在原理方面,主要在于通过使用这些关系,才有可能计算特殊系统的晶格动力学性质。
现在用ab initio 量子力学技术,只要输入材料化学成分的信息,理论凝聚态物理和计算材料科学就可以计算特殊材料的特殊性质。
在晶格动力学性质的特殊情况下,基于晶格振动的线性响应理论,大量的ab initio 计算在过去十年中通过发展密度泛函理论已经成为可能。
密度泛函微扰理论是在密度泛函理论的理论框架之内研究晶格振动线性响应。
感谢这些理论和算法的进步,现在已经可以在整个布里渊区的精细格子上精确计算出声子色散关系,直接可以和中子衍射数据相比。
由此系统的一些物理性质(如比热、熱膨胀系数、能带隙的温度依赖关系等等)可以计算。
1 基于电子结构理论的晶格动力学从固体电子自由度分离出振动的基本近似是Born-Oppenhermer (1927) 的绝热近似。
在这个近似中,系统的晶格动力学性质由以下薛定谔方程的本征值ε和本征函数()ΦR 决定。
()()()2222I I I E M εΦΦ⎛⎫∂-+= ⎪∂⎝⎭∑R R R R (6.1.1) 这里I R 是第I 个原子核的坐标,I M 是相应原子核的质量,{}I ≡R R 是所有原子核坐标的集合,()E R 是系统的系统的限位离子能量,常常称为Born-Oppenhermer 能量表面。
磁性测量中ZFC和FC数据的获得与解释
1957年,χ-T低温极大值(CuMn,AgMn)
J. Owen & M. E. Browne, V. Arp & A. F. Kip, J. Phys. Chem. Solids, 2 (1957) 85
统一理论
?, ?, ? (?) ?
EA
Ising、Heisenberg、XY、 Bethe Lattice、Mattis、SK、 Random Bond…
单个Fe、Mn原子的各向异性
Science, 315 (2007.08.31) 1199-1203
三、Fe原子(团)更分叉
混磁性、自旋玻璃(SG)
非线性磁化率的实验 1979年~1980年,(Y. Miyako, et al) J. Phys. Soc. Japan, 46 (1979) 1951 J. Phys. Soc. Japan, 47 (1979) 335 J. Phys. Soc. Japan, 48 (1980) 329 综述: K. Binder & A. P. Young, Rev. Mod. Phys., 58 (1986) 801 Magnetic Susceptibility of Superconductor and Other Spin Systems Eds. R. A. Hein, T. L. Francavilla & D. H. Liebenberd, 1991, New York
三、Fe原子(团)更分叉
临界浓度、交换相互作用
近藤效应:稀释磁性合金电阻率-温度曲线极小值 1964年,始作俑者不是Jun Kondo(近藤 淳) J. Kondo, Prog. Theor. Phys., 32 (1964) 37 1931年,AuFe(J. W. Shih) Phys. Rev., 38 (1931) 2051 1951年,R-T低温极大值(AgMn)
弯曲应变下六角晶格量子反铁磁体的赝朗道能级
弯曲应变下六角晶格量子反铁磁体的赝朗道能级
解晓洁;孙俊松;秦吉红;郭怀明
【期刊名称】《物理学报》
【年(卷),期】2024(73)2
【摘要】利用线性自旋波理论和量子蒙特卡罗方法研究了弯曲应变下六角晶格量子反铁磁体的赝朗道能级.通过线性自旋波理论,发现磁赝朗道能级出现在磁子能谱的高能端,其能级间距与能级指数的平方根成正比.线性自旋波理论和量子蒙特卡罗方法都显示,尺寸相同时随着应变强度的逐渐增加,局域磁化强度逐渐减弱,应变强度相同的条件下反铁磁序在y方向上连续减弱,因为上边界处的海森伯链解耦为孤立的垂直链,导致上边界附近的磁序被破坏.量子蒙特卡罗方法提供了更精确的反铁磁序演化:在特定应变强度下上边界处垂直关联不变,水平关联增加,从而影响磁化强度,使局域磁化在上边界处呈上翘趋势.研究结果有助于理解弯曲应变对自旋激发的影响,并可能在二维量子磁性材料实验中得以实现.
【总页数】10页(P49-58)
【作者】解晓洁;孙俊松;秦吉红;郭怀明
【作者单位】北京科技大学物理系;北京科技大学;北京航空航天大学物理系
【正文语种】中文
【中图分类】O41
【相关文献】
1.非对易量子力学中中性原子在外电磁场中的朗道能级量子化
2.六角密排格子ISING(S=1)反铁磁体的零温相图
3.晶格量子涨落对正方晶格反铁磁海森堡模型基态的影响
4.石墨烯中非均匀单轴应力产生的赝朗道能级的解析计算
因版权原因,仅展示原文概要,查看原文内容请购买。
Manuscript
Using a newly-developed approach, we have achieved the direct growth of nanographene film on 4-inch glass wafer. The transmittance and conducting properties is studied for the films deposited on glass and quartz substrates.
KEYWORDS
nanographene, catalyst‐free, PECVD, transparent and conductive film
———————————— Address correspondence to Guangyu Zhang, email: gyzhang@ 2
TABLE OF CONTENTS (TOC)
Catalyst-free growth of nanographene film on various Insert your TOC graphics here. substrates
Lianchang Zhang, Zhiwen Shi, Yi Wang, Rong Yang, Dongxia Shi and Guangyu Zhang Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190, China
Graphene has attracted much attention owing to its unique structures [1, 2], superior properties [1, 3‐5], and promising device applications [1, 6, 7]. Among many studies on graphene, growth of graphene has been intensively explored recently as it provides potential routes for scaled‐up applications. Several techniques have been developed: the epitaxial growth deals [8‐14] with quite expensive single crystalline substrates, thus has limited applications; chemical vapor deposition (CVD) approach on various catalytic metal films [15‐18] is low‐cost, while it needs catalyst films and post transfer [19] or additional catalyst removal techniques [20] are necessary for putting the graphene on a nonspecific substrate. Here we report for the first time a catalyst free graphene growth approach. Without using any catalyst, nanocrystalline graphene with a size about tens of nanometers were directly grown on various substrates at relatively low temperature of 550 ºC. The sp2 bonded honey‐comb carbon lattice structure of the as‐grown materials were confirmed by Raman spectroscopy, X‐ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM). Conductivity and transparency properties of the nanographene film were also studied. This simple, low‐cost , and scalable growth approach is compatible to semiconductor processing technologies and might have potential applications for thin film resistor, gas sensor, electrode materials, transparent and conductive films, and so on. The graphene growth was carried out in a remote plasma enhanced chemical vapor deposition (r‐PECVD) system at a substrate temperature of ~550 ºC using pure methane as the precursor (see more details in supporting information). No catalyst was needed during the growth and the growth temperature, i.e. 550 C, is much lower than the CVD graphene growth temperature (900–1000 C,) [15‐18], thus enabling the growth of graphene on substrates like glass. Atomic force microscope (AFM) images of the as‐grown nanographene on SiO2 substrates with different growth durations are shown in figure 1. At the early growth stage, nanographene is nucleated everywhere on the SiO2 surface (Fig. 1a). Those larger graphene islands are ~1.2‐1.5 nm thick, which
Materials-Studio 论坛问答全集
【转帖】Materials-Studio 论坛问答全集(精选众多论坛讨论贴)★★wuli8(金币+2):感谢分享2010-03-05 15:24Materials-Studio 论坛问答全集(精选众多论坛讨论贴)转载其它论坛的贴子,希望对于新手有所帮助!不会找我要版权吧,怕怕!字体: 小中大| 打印发表于: 2008-1-05 15:03 作者: matsim 来源: 材料计算模拟社区1、问:用MS构造晶体时要先确立空间群,可是那些空间群的代码是啥意思啊,看不懂,我想做的是聚乙烯醇的晶体,嘿嘿,也不知道去哪可以查到它的空间群答:A、要做晶体,首先要查询晶体数据,然后利用晶体数据再建立模型。
晶体数据来源主要是文献,或者一些数据库,比如CCDC。
你都不知道这个晶体是怎么样的,怎么指定空间群呢?要反过来做事情哦:)B、我不知道你指示的代码是数字代码还是字母代码,数字代码它对应了字母的代码,而字母的代码它含盖了一些群论的知识(晶系,对称操作等),如果要具体了解你的物质或者材料属于那一个群,你可以查阅一下相关的手册,当然你要了解一些基本的群论知识.MS自带了一些材料的晶体结构,你可以查询一下.2、问:各位高手,我用ms中的castep进行运算。
无论cpu是几个核心,它只有一个核心在工作。
这个怎么解决呢?答:请先确认以下几个问题:1,在什么系统下装,是否装了并行版本。
2,计算时设置参数的地方是否选择了并行。
3,程序运算时,并不是时时刻刻都要用到多个CPU3、问:我已经成功地安装了MS3.1的Linux版本,串行的DMol3可以成功运行。
但是运行并行的时候出错。
机器是双Xeon5320(四核)服务器,rsh和rlogin均开启,RHEL4.6系统。
其中hosts.equiv的内容如下:localhostibm-consolemachines.LINUX的内容如下:localhost:8现在运行RunDMol3.sh时,脚本停在$MS_INSTALL_ROOT/MPICH/bin/mpirun $nolocal -np $nproc $MS_INSTALL_ROOT/DMol3/bin/dmol3_mpi.exe $rootname$DMOL3_DATA这一处,没法执行这一命令并行运算时,出现以下PIxxxx(x为数字)输出ibm-console 0 /home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exelocalhost 3 /home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exe请问这是什么原因?谢谢!答:主要是rsh中到ibm-console的没有设置把/etc/hosts改为127.0.0.1 localhost.localdomain localhost ibm-console在后面加个ibm-console也希望对大家有帮助!4、问:在最后结果的dos图中,会显示不同电子spd的贡献,我想问的是,假设MS考虑的原子Mg的电子组态为2p6 3s2,那么最后的dos结果中的s,p是不是就是2p,跟3s的贡献.比如更高能量的3p是否可能出现在dos中?如果可能的话,在这种情况下,如何区分2p和3p的贡献,谢谢.答:A、取决于你的餍势势里面没有3p电子,DOS怎么会有呢?自然,你的1p1s也不会出现在你的DOS中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arXiv:cond-mat/0010088v1 [cond-mat.str-el] 5 Oct 2000ClassicalHeisenbergantiferromagnetonagarnetlattice:aMonteCarlosimulationO.A.Petrenko1,2andD.McKPaul21ISISFacility,RutherfordAppletonLaboratory,Chilton,Didcot,OX110QX,UK
2UniversityofWarwick,DepartmentofPhysics,Coventry,CV47AL,UK
(February1,2008)
WehavestudiedaclassicalantiferromagnetonagarnetlatticebymeansofMonteCarlosimula-tionsinanattempttoexaminetheroleofgeometricalfrustrationinGadoliniumGalliumGarnet,Gd3Ga5O12(GGG).Low-temperaturespecificheat,magnetisation,susceptibility,theautocorrela-tionfunctionA(t)andtheneutronscatteringfunctionS(Q)havebeencalculatedforseveralmodelsincludingdifferenttypesofmagneticinteractionsandwiththepresenceofanexternalmagneticfieldappliedalongtheprincipalsymmetryaxes.Amodel,whichincludesonlynearest-neighbourexchange,J1,neitherordersdowntothelowesttemperaturenordoesitshowanytendencytowardsformingashort-rangecoplanarspinstructure.Thismodel,however,doesdemonstrateamagneticfieldinducedorderingbelowT∼0.01J1.Inordertoreproducetheexperimentallyobservedprop-ertiesofGGG,thesimulatedmodelmustincludenearestneighbourexchangeinteractionsandalsodipolarforces.Thepresenceofweaknext-to-nearestexchangeinteractionsisfoundtobeinsignif-icant.InzerofieldS(Q)exhibitsdiffusemagneticscatteringaroundpositionsinreciprocalspacewhereantiferromagneticBraggpeaksappearinanappliedmagneticfield.
PACSnumbers:75.50.Ee,75.40.MgI.INTRODUCTION
Theintroductionoffrustrationtomagneticsystemsleadstoextradegeneracyforthegroundstateinaddi-tiontothedegeneracyresultingfromthesymmetryofmagneticHamiltonian.Thelargerthisadditionalde-generacy,themorelikelyfrustrationistocausedramaticchangesinthemagneticpropertiesofthesystem,suchastheabsenceoflongrangeorderevenatthelowesttem-perature.Geometricalfrustrationhasbeenoneofthekeyissuesinmagnetismforatleasttwentyyears.Are-centwaveoftheoreticalpapers1,2aswellaspublicationsdealingwithMonteCarlosimulation3–6hasemphasisedtheunusualmagneticpropertiesofgeometricallyfrus-tratedsystems.Thequestionofwhetherthefrustrationleadstoadisorderedgappedstateortolong-rangeNe´eltypeorderindifferenttypesofgeometryisstillunderdebate.Currenteffortsseemtobeconcentratedaroundtwotypesoflattices:theKagom´elattice2,5,7andthepy-rochlorelattice1,3.Recentlyhasitbeenestablishedthatthepyrochlorelatticerepresentstheonlysimplesystemforwhichtheadditionaldegreeoffreedomcausedbythefrustrationisextensive–itisproportionaltothenumberofspinsinvolved8.Thegrowthoftheoreticalinterestinthepyrochlorelattice,alatticeofcorner-sharingtetrahedra,isdrivenlargelybyexperimentaldiscoveries9.Therearemanychemicallycleanpyrochlores(someofwhichmaybepro-ducedassinglecrystals10)withdifferenttypesofmag-neticatomsandinteractions,whichallowsonetopickthemostsuitableoneforstudyandforcomparisonwithaparticulartheoreticalmodel.Bystudyingthephenomenoningeneralamuchbetterunderstandingofthemagneticpropertiesofindividualcompoundscanbeachieved.Thesamereasoningappliestoanothergeo-metricallyfrustratedsystem-anantiferromagnetona
Kagom´elattice,whereSrCr9pGa12−9pO1911,jarosites12andsomeothercompounds13providequiteavarietyofmodelsystems.Gadoliniumgalliumgarnet,Gd3Ga5O12,isauniqueexampleofanantiferromagnetonthegarnetlattice.Therearenoothercompoundsmatchingitsmagneticproperties.InGGG(spacegroupIa¯3d)themagneticGdionsarelocatedontwointerpenetrating,corner-sharingtriangularsublattices,wherethetrianglesofspinsdonotlieinthesameplane–theanglebetweentwonearesttri-anglesisequaltotheanglebetweenthediagonalsofacube,70.5◦(seeFig.1).Inthiscompoundthetrian-gulararrangementofthenearestspinsiscombinedwithcompleteexchangeisotropy(thesingle-ionanisotropyisnegligiblysmall14)andwitharelativelystrongdipole-dipoleenergy.Althoughthemagneticpropertiesofvari-ousgarnetshavebeenthoroughlystudiedduringthepasthalfcentury,theanalogybetweenanyofthemandGGGisnotstraightforward.Allothermagneticgarnetsorderatsomelowtemperature,whileGGGdoesnot.NolongrangemagneticorderhasbeendetectedinGGGdownto25mK15,whileothergalliumgarnetsbasedonDy,Nd,SmandEr,ratherthanGd,havebeenfoundtobemag-neticallyorderedattemperaturesbelow1K16.Thenear-estanalogytoGGGwouldprobablybefoundamongtheMn-basedgarnets,wherethesingle-ionanisotropyisalsoverysmall.Howevertwosimilarmagneticallyisotropicgarnets,Mn3Al2Ge3O12andMn3Al2Si3O1217,alsoorder.Mostlikelythisisduetothepresenceofrelativelystrongnext-to-nearestexchangeinteractions.Ifandwhenthedegeneracyofthegroundstateisremovedandthesys-temundergoesaphasetransitiontoalong-rangeorderedstate,almostallcomplicationsdisappear.Themagneticgroundstateandthemaininteractionsareknownfromexperimentandtheoreticalcalculationsarestraightfor-ward.Numericalestimatesexisttoatleasttheaccuracy