ECCC-47运用集约化规划在板坯厂优化物流及大型仓库之管理
基于供应链管理的流通企业仓储物流优化研究

基于供应链管理的流通企业仓储物流优化研究目录1. 内容概述 (3)1.1 研究背景 (3)1.2 研究意义 (4)1.3 研究内容与方法 (6)1.4 文献综述 (7)2. 供应链管理理论基础 (8)2.1 供应链管理定义与特点 (10)2.2 供应链管理原则与策略 (11)2.3 供应链优化方法 (12)2.4 供应链风险管理 (13)3. 流通企业仓储物流概述 (15)3.1 流通企业定义与特点 (16)3.2 仓储物流功能与流程 (17)3.3 仓储物流技术发展 (19)3.4 仓储物流成本分析 (20)4. 流通企业仓储物流现状与问题分析 (22)4.1 国内外流通企业仓储物流发展现状 (23)4.2 流通企业仓储物流问题概述 (24)4.3 问题成因分析 (25)5. 供应链管理在流通企业仓储物流中的应用 (26)5.1 供应链管理在仓储物流中的关键作用 (28)5.2 流通企业供应链管理实践 (29)5.3 供应链可视化与实时监控 (30)5.4 供应链协调与信息共享 (32)6. 流通企业仓储物流优化策略 (33)6.1 优化目标与原则 (35)6.2 仓储物流信息系统优化 (36)6.3 库存管理优化 (38)6.4 运输与配送优化 (39)6.5 供应商与客户关系优化 (41)7. 流通企业仓储物流优化案例分析 (42)7.1 案例背景 (44)7.2 优化前分析 (45)7.3 优化策略与实施 (46)7.4 优化效果评估 (48)8. 研究结论与建议 (49)8.1 研究总结 (51)8.2 存在不足与展望 (52)8.3 对策建议与研究展望 (53)1. 内容概述随着全球经济的日益一体化和科技的飞速发展,流通企业在供应链管理中的仓储与物流环节正面临着前所未有的挑战与机遇。
为了应对这些挑战并抓住机遇,提高企业的竞争力和市场响应速度,对基于供应链管理的流通企业仓储物流进行优化研究显得尤为重要。
冶金业结构调整取得成效

冶金业结构调整取得成效
佚名
【期刊名称】《山东冶金》
【年(卷),期】1999(000)0S1
【摘要】来自国家冶金工业局的信息显示,冶金行业结构调整成效显著,淘汰落后工艺设备取得进展。
1999年上半年全行业共淘汰小高炉122座,小转炉21座,小电炉223座,各类落后轧机106套,全年预计淘汰落后小炼钢生产能力700万t,小转炉、小电炉、小轧钢生产能力...
【总页数】1页(P65-65)
【正文语种】中文
【中图分类】F426.3
【相关文献】
1.区划调整以来武侯区产业结构调整取得成效 [J], 兰毅
2.产业结构调整取得成效 [J], 甄明霞
3.发展区域主导产业全面打造绿色国际港——对顺义区农业结构调整取得成效的调查 [J], 张志芳;张援越;
4.新疆煤矿结构调整取得成效 [J],
5.我国汽车产业结构调整取得成效 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
汽车零部件仓储设计方案

堆垛就是根据商品的包装形状、重量和性能特点,综合地面负荷、储存赶时间,将商品分别堆码成各种垛行。商品的堆垛方式直接影响着商品的保管,合理的堆垛,能够使商品不变形、不变质,保证商品储存安全。同时,还能够提高仓库的利用率,并便利商品的保管、保养和收发。
对堆垛商品的基本要求是商品正式对多时必须具备以下条件:商品的数量、质量已经彻底查清:包装完好,标志清楚;外表的玷污、尘土等以清除,不影响商品质量;受潮、修饰以及已经发生某些质量变化或质量不合格的部分,已经加工恢复或者已经提出另行处理,与合格品部混杂;为便于机械化操作,金属材料等应该打捆的已经打捆,机电产品和仪器仪表灯科技重装想的已经装入合用的包装箱。
4、货架数量:重型区主架62组,副架441组,合计503组
阁楼区主架35组,副架210组,合计245组
5、最大存储量:重型货架区7860只,阁楼货架区3675只,合计11535只托盘
6、货架主要材料:
3重型说明
重型货架,又俗称横梁式货架,或称货位式货架,属于托盘货架类,在国内的各种仓储货架系统中最为常见一种货架形式。以立柱片+横梁形式的全组装结构,结构简明有效。可根据存储单元集装设备的特性加装如:隔档、钢层板(木层板)、金属丝网层、仓储笼导轨、油桶架等功能性附件。满足不同单元集装设备形式的货物存储。
料位或料架标号:我国仓库多采用“四号定位”方法。所谓“四号定位”,就是由库房号,料架(垛)号、料架(垛)层号和料位顺序号组成一组数码来表示一个货位,并经可能与张掖编码一致。
料位编号的表示方法一般以字母(A、B、C、D……)和阿拉伯数字(0、1、2、3……9)混合表示。例如,要表示2号库房、3号料件、4层、12好料位,可表示为B3D12。
(4)合格品储存区:用于储存合格的商品。出于合格状态的商品一般采用绿色的标志以区别于其他状态的商品。
物料管理的生产计划与调度优化案例

物料管理的生产计划与调度优化案例引言物料管理是生产过程中不可缺少的环节,对于提高生产效率和保证产品质量具有重要意义。
生产计划与调度是物料管理的核心任务之一,它涉及到物料需求的计划安排、库存的控制以及生产进度的跟踪等方面。
本文将通过一个实际案例,介绍物料管理的生产计划与调度优化方法,以及其带来的好处。
案例某电子产品制造公司是一家规模较大的企业,生产线上涉及的物料种类繁多,供应商众多,物料需求的计划安排和库存控制成为公司生产管理的难题。
此前,公司采用传统的生产计划与调度方法,往往需要较长的时间和大量的人力进行决策,且效果不尽如人意。
为了提高物料管理的效率和精确度,公司决定引入优化算法进行生产计划与调度的优化。
优化目标公司的优化目标主要包括以下几点:1.实现物料需求计划的准确性,避免因物料缺货或过剩带来的生产滞后或资金浪费;2.降低库存成本,合理安排物料的补充和使用,减少库存积压;3.提高生产效率,通过合理调度材料和设备,降低生产周期和成本。
优化方法为了达到上述的优化目标,公司引入了基于数学模型的优化算法,对生产计划与调度进行优化。
具体的优化方法包括以下几个方面:1. 数据收集和分析首先,公司需要收集和分析大量的相关数据,包括物料的需求量、供应商的交货时间、库存量等信息。
基于这些数据,分析物料需求的趋势和规律,确定物料的优先级和关联性。
2. 数学模型建立在数据分析的基础上,公司将建立数学模型,用来描述物料管理的相关过程。
模型可以包括物料需求的预测模型、库存控制模型、生产调度模型等。
通过对这些模型的建立,可以帮助公司理清物料管理的逻辑关系,并找出影响物料管理效果的关键因素。
3. 优化算法设计与求解基于建立的数学模型,公司需要设计相应的优化算法,并使用计算机程序进行求解。
这些优化算法可以采用一些常见的优化方法,如线性规划、动态规划、遗传算法等。
通过对物料需求、库存和生产资源等进行优化调度,可以得到最佳的生产计划。
高质量发展视域下我国绿色物流发展路径探究

高质量发展视域下我国绿色物流发展路径探究目录1. 内容概览 (3)1.1 研究背景 (3)1.1.1 绿色物流的的概念和重要性 (4)1.1.2 我国绿色物流发展的现状 (5)1.1.3 高质量发展要求对绿色物流的影响 (6)1.2 研究目的与意义 (8)1.3 文献综述 (9)1.3.1 国内外绿色物流研究现状 (10)1.3.2 高质量发展对物流行业的新要求 (12)1.4 研究方法 (13)1.4.1 理论分析 (14)1.4.2 实证研究 (15)1.4.3 案例分析 (16)2. 我国绿色物流高质量发展路径解析 (17)2.1 绿色物流政策导向 (19)2.1.1 国家宏观政策支持 (20)2.1.2 区域及地方政策配套 (21)2.2 绿色物流技术与创新 (22)2.2.1 绿色科技应用 (24)2.2.2 智能物流系统 (25)2.3 企业绿色物流管理实践 (26)2.3.1 绿色供应链管理 (27)2.3.2 绿色绩效评估体系 (29)2.4 绿色物流标准化与认证 (30)2.4.1 物流标准制定 (31)2.4.2 第三方绿色物流认证 (33)3. 我国绿色物流发展的趋势与挑战 (33)3.1 绿色物流发展趋势 (35)3.1.1 绿色物流计算化与数字化 (36)3.1.2 绿色物流服务的多样化与定制化 (37)3.2 面临的挑战与难题 (38)3.2.1 技术障碍与成本压力 (39)3.2.2 行业标准与法规缺失 (40)3.2.3 企业意识与文化转变 (41)4. 绿色物流高质量发展政策建议 (42)4.1 强化政府作用 (43)4.1.1 完善绿色物流政策体系 (44)4.1.2 推进绿色物流项目与示范区建设 (45)4.2 提升企业绿色竞争力 (47)4.2.1 鼓励企业进行绿色物流投资 (48)4.2.2 促进企业与科研机构的合作 (49)4.3 构建社会协同发展的良好环境 (50)4.3.1 加强社会公众环境保护意识 (52)4.3.2 推动行业协会的规范与发展 (53)1. 内容概览本报告聚焦于探讨在高质量发展的背景下,我国绿色物流的发展路径。
储运工作计划

储运工作计划1. 引言本文档旨在为公司储运部门制定一个详细的工作计划,以保证货物的安全、高效地存储和运输。
储运工作的顺畅进行对于公司的正常运营非常重要,因此我们希望通过这个计划来提高我们的工作效率和服务质量。
2. 目标与指标2.1 目标•提高货物处理和运输的效率•提供高质量的储运服务•减少货物损失和延误的风险2.2 指标•货物到达时间准确性:95%以上的货物在承诺的时间内到达目的地。
•货物损失率:货物损失率低于0.5%。
•货物滞留时间:货物在仓库滞留的平均时间低于24小时。
3. 工作计划3.1 仓库管理3.1.1 货物分配与布局•根据货物属性和客户需求,合理划分仓库空间,并对货物进行合理分区存储,便于出库时的快速取货。
•制定货物存储计划和货物布局图,明确每个存储区域的用途和存储容量。
3.1.2 货物检查与清点•对入仓货物进行全面检查,记录货物数量、质量和损坏情况。
•对货物进行分类、编码和标记,以便于快速识别和管理。
•定期对仓库货物进行清点和盘点,确保库存数与系统记录一致。
3.1.3 库存管理•建立完善的库存管理系统,及时更新货物的入库和出库信息。
•根据货物特性和库存量,合理制定货物的周转周期和再订货点。
3.2 运输管理3.2.1 运输计划•根据客户需求和货物特性,制定合理的运输计划,确保货物按时送达。
•考虑交通拥堵情况和运输距离,合理安排车辆和线路。
3.2.2 运输车辆管理•对运输车辆进行定期检查和维护,确保车辆的正常运行和安全性。
•建立运输车辆调度制度,合理安排车辆的使用和维护。
3.2.3 运输安全控制•严格执行运输安全规定,确保货物的安全运输。
•对货物进行适当的包装和固定,防止货物在运输过程中的损坏。
4. 工作流程优化为了提高储运工作的效率和质量,我们将进行工作流程的优化。
•使用电子化的仓库管理系统,提高货物处理和库存管理的速度和准确性。
•使用智能化的运输管理系统,优化运输计划和车辆调度,提高货物运输的效率。
钢铁行业生产管理总结优化生产计划提高资源利用率
钢铁行业生产管理总结优化生产计划提高资源利用率钢铁行业作为国民经济中的重要组成部分,对于国家的发展和产业结构的优化起到了关键作用。
然而,在全球化竞争的背景下,钢铁行业面临着诸多挑战,包括资源短缺、环境污染等问题,因此,如何优化生产计划,提高资源利用率成为了当前钢铁行业生产管理的一大难题。
本文将对钢铁行业生产管理进行总结,寻求优化生产计划并提高资源利用率的有效途径。
一、生产调度的合理安排生产调度是钢铁行业生产管理的核心环节,它直接影响着生产效率和资源利用率。
为了实现生产计划的优化,需要合理安排生产调度。
首先,我们应该准确估算订单量和产能,确保订单的及时完成。
其次,要重视流程的优化,避免产能浪费和生产线停机等不必要的资源浪费。
此外,科学运用信息技术工具,提高调度的效率和准确性。
二、优化生产计划的制定要提高资源利用率,需要对生产计划进行合理的优化。
首先,需要确定生产的目标和关键指标,如生产总量、资源消耗等。
其次,在制定生产计划时,要考虑到供应链的整体效益,充分利用内外部资源,避免过度依赖单一供应商或市场。
同时,根据市场需求和产品特点,灵活调整生产线的配置,以适应市场变化。
三、加强设备维护和更新设备是钢铁行业生产中的关键要素,保证设备的正常运行对于提高资源利用率至关重要。
因此,我们要加强设备的维护管理工作,定期检修设备,确保其正常运转。
同时,要关注新技术的引进和设备的升级,以提高设备的能效和生产能力。
四、推行节能减排技术节能减排是钢铁行业生产管理的重要任务,也是提高资源利用率的关键环节。
优化生产计划的同时,要推行节能减排技术,在生产过程中减少能源的消耗和环境的污染。
例如,采用先进的高炉煤气回收技术,实施废渣的资源化利用等,有效提高资源利用率,降低环境压力。
五、加强人员培训和管理人员是钢铁行业生产过程中不可或缺的因素,他们的素质和能力直接影响着生产效率和资源利用率。
因此,我们要加强人员培训和管理工作,提高员工的技能水平和生产素质。
储运部的上半年的工作计划
一、前言随着公司业务的不断发展,储运部作为公司物流环节的重要一环,肩负着保障物资供应、降低物流成本、提高服务质量的重任。
为更好地完成上半年的工作任务,特制定以下工作计划。
二、工作目标1. 优化仓储管理,提高仓储利用率;2. 降低物流成本,提升运输效率;3. 加强与生产部门的沟通协调,确保生产物资供应;4. 提高客户满意度,树立良好的企业形象。
三、具体工作措施1. 仓储管理(1)对现有仓库进行盘点,确保物资账实相符;(2)根据库存情况,合理调整物资存放位置,提高仓储利用率;(3)加强仓库安全管理,定期进行安全检查,确保仓库设施设备正常运行;(4)优化物资入库、出库流程,提高工作效率。
2. 物流运输(1)加强与物流合作伙伴的沟通,确保运输服务质量;(2)根据运输需求,合理规划运输路线,降低运输成本;(3)提高运输车辆的使用效率,减少空驶率;(4)定期对运输车辆进行维护保养,确保车辆安全运行。
3. 生产物资供应(1)加强与生产部门的沟通,了解生产需求,确保生产物资及时供应;(2)根据生产计划,合理安排物资采购,降低采购成本;(3)优化物资配送流程,提高配送效率;(4)加强对生产物资的验收管理,确保物资质量。
4. 客户服务(1)提高客服人员业务水平,提升服务质量;(2)加强客户沟通,了解客户需求,及时解决问题;(3)定期开展客户满意度调查,分析客户意见,持续改进服务;(4)加强与客户的合作,建立长期稳定的合作关系。
5. 团队建设(1)组织员工进行业务培训,提高员工综合素质;(2)开展团队建设活动,增强团队凝聚力;(3)完善绩效考核制度,激发员工工作积极性;(4)关心员工生活,营造和谐的工作氛围。
四、工作计划时间安排1. 1月-2月:完成仓储盘点、优化仓储管理;2. 3月-4月:加强与物流合作伙伴的沟通,优化物流运输;3. 5月-6月:加强与生产部门的沟通,确保生产物资供应;4. 7月-8月:提高客户满意度,开展客户满意度调查;5. 9月-10月:开展团队建设活动,提高员工综合素质;6. 11月-12月:总结上半年工作,为下半年工作做好准备。
离散制造业集成化作业计划管理方法
本研究采用文献研究法、案例分析法 等方法,对离散制造业生产计划管理 现状进行深入分析,提出集成化作业 计划管理方法,并通过实际应用案例 验证其有效性。
02
离散制造业生产计划体系
生产计划层次结构
1 2 3
长期生产计划
根据企业战略和市场预测,制定未来较长时间内 的产品系列、生产规模和生产能力规划。
实施关键点控制
确保数据准确性
建立数据质量保障机制,对输入的数据进行严格审核和校验,确保数 据的准确性和一致性。
强化跨部门协作
加强生产、销售、采购、物流等部门之间的沟通和协作,确保作业计 划顺利执行。
动态调整作业计划
根据市场变化、客户需求和生产实际情况,及时对作业计划进行动态 调整,确保计划的适应性和灵活性。
衡量从原材料投入到成品产出的时间长度 ,反映企业生产能力和计划执行效率。
在制品库存
设备利用率
衡量生产过程中在制品的数量和库存时间 ,反映企业生产过程的顺畅程度和库存管 理水平。
衡量设备实际使用时间与可用时间的比例 ,反映设备使用效率和生产能力利用情况 。
03
集成化作业计划管理模型构建
模型构建原则
01
02
03
04
整体性
模型应覆盖离散制造业全流程 ,确保各环节紧密衔接。
灵活性
模型应具备适应不同生产模式 、工艺流程和设备配置的能力
。
可扩展性
模型应预留扩展接口,便于集 成新技术、新方法和新设备。
实时性
模型应支持实时数据采集、分 析和反馈,确保作业计划及时
调整。
模型框架设计
数据层
01
负责收集、整合离散制造业相关数据,包括设备状态、生产进
储运部门工作规划模板
一、前言为了提高公司储运部门的整体运营效率,确保货物安全、准时、高效地完成运输任务,结合公司发展战略和市场需求,特制定本工作规划。
二、工作目标1. 提高货物储存、运输、配送等环节的效率,降低物流成本。
2. 优化仓储管理,确保货物安全、有序存放。
3. 提升客户满意度,增强市场竞争力。
4. 保障生产计划的顺利实施,提高公司整体运营水平。
三、具体工作措施1. 仓储管理(1)建立健全仓储管理制度,明确各部门职责,确保仓储作业规范、有序。
(2)优化仓储布局,提高仓储空间利用率。
(3)加强货物盘点,确保库存数据准确无误。
(4)定期对仓库进行清洁、消毒,保持仓库环境整洁。
2. 运输管理(1)优化运输路线,缩短运输时间,降低运输成本。
(2)加强运输车辆管理,确保车辆状况良好,提高运输效率。
(3)建立健全运输合同管理制度,确保运输服务质量。
(4)加强与物流合作伙伴的沟通与协作,提高运输服务质量。
3. 配送管理(1)根据客户需求,制定合理的配送方案,确保货物准时送达。
(2)优化配送路线,提高配送效率。
(3)加强配送人员培训,提高配送服务质量。
(4)建立客户满意度评价体系,及时了解客户需求,不断改进配送服务。
4. 安全管理(1)加强安全意识教育,提高员工安全意识。
(2)建立健全安全管理制度,确保作业安全。
(3)定期进行安全检查,及时消除安全隐患。
(4)加强应急演练,提高应对突发事件的能力。
5. 信息管理(1)建立完善的信息系统,实现仓储、运输、配送等环节的信息共享。
(2)加强数据分析,为管理层提供决策依据。
(3)提高信息传递效率,确保各部门信息畅通。
四、工作计划1. 第一季度:完善仓储、运输、配送等管理制度,加强人员培训,提高员工综合素质。
2. 第二季度:优化仓储布局,提高仓储空间利用率;优化运输路线,降低运输成本。
3. 第三季度:加强配送管理,提高配送服务质量;开展客户满意度调查,改进配送服务。
4. 第四季度:加强安全管理,确保作业安全;总结全年工作,制定下一年度工作计划。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Optimized Material Flow in Plate Plants by Integration of Scheduling and Warehouse ManagementAuthor(s) Name(s) and Affiliations(s)Ralf LoeperPSI Metals GmbHDircksenstraße 42-4410178 BerlinGermanyPhone – +49 (30) 2801-1833Fax –+49 (30) 2801-1020E-mail: rloeper@psi.deJörg HackmannPSI Metals GmbHHeinrichstrasse 83-8540239 DüsseldorfGermanyPhone – +49 (211) 60219-204Fax –+49 (211) 60219-240E-mail: jhackmann@psi.deIgor KuninPSI Metals GmbHDircksenstraße 42-4410178 BerlinGermanyPhone – +49 (30) 2801-1862Fax –+49 (30) 2801-1020E-mail: ikunin@psi.deMichael DiestelPSI Metals GmbHDircksenstraße 42-4410178 BerlinGermanyPhone – +49 (30) 2801-1806Fax –+49 (30) 2801-1020E-mail: mdiestel@psi.deContact dataRalf LoeperPSI Metals GmbHDircksenstraße 42-4410178 BerlinGermanyPhone – +49 (30) 2801-1833Fax –+49 (30) 2801-1020E-mail: rloeper@psi.deAbstractApplying a cross-functional integration of planning and scheduling with warehouse management in plate plants is crucial to win a competitive edge in today’s customer-driven market. Within a virtual factory model, scheduling details are translated into stacking instructions and transport orders. An integrated sys-tem of radar and laser technology implements the automatic tracking of the transport order execution. Ultimately, the resulting knowledge of the exact plate positions in the piles returns to scheduling in a closed loop for a further optimization. Leading European steel producers applying this approach achieve opti-mal capacity utilization, reduced costs and increased production throughput.In order to optimize the material flow between stor-age locations, staging locations and production units, several fundamental requirements are posed to a modern slab inventory management system. Firstly, the precise location of each piece of material must be known and tracked at all times. Secondly, the system must recognize and react to the stacking require-ments, not just with respect to physical limitations and safety-oriented rules, but also in consideration of any future material movements. The implementation of an integrated methodology of production manage-ment, utilizing the capability of the PSImetals Logis-tics solution in conjunction with the PSImetals Plan-ning solutions, has provided steel producers with a number of significant benefits:•increased utilization of the production units •shorter production times•less thickness jumps in the scheduling of furnace sequences•increased throughput in shipping •significantly decreased instances of “lost” material •reduced inventory with increased throughput •increased transparency of the inventory for opera-tor and end client•decreased demurrage charges Specific bench-marks include•20% increase in slab throughput that can be reached without any equipment or productionchanges, solely through implementation of thestorage and transport optimization strategies. •30% increase in throughput with new equipment, while reducing the slab yard capacity by 20% Keywords•Transport Optimization•Material Flow Optimization•Inventory Management•Warehouse Management•Capacity utilization•Troughput OptimizationIntroductionThe challenges facing heavy plate producers in to-day’s marketplace require rapid turnaround of orders and efficient handling of the material in order to meet the customer’s demands for delivery time and quality while maintaining a cost advantage in production. A major aspect of an overall efficient production proc-ess is the efficient handling of the material as it is moved between storage locations, staging locations and production units.The movement of slabs and plates must be tracked as they are transported by cranes, lifts, or other mechanisms, so that each piece’s position is known at any given time. Cranes and lifts will be equipped to identify their precise position. Other vehicles may or may not have such equipment, and will rely on the in-formation provided through the material identification, often confirmed by the operator. Material stacked in a vehicle by a crane, and then moved by that vehicle, is accurately tracked through its stack location.The stacking of plates provides more complexity than slabs. Plates have numerous different sizes, and are stacked in far larger numbers than slabs. The posi-tioning of plates on a stack is of-ten less precise, with plates of different sizes that can overlap or be dou-bled up side-by-side. Furthermore, plates are often transported offset with respect to the crane’s center position, depending on the activated magnets. The system must recognize these conditions, and also al-low adjustments by the crane operator, in order to maintain an exact record of the plate locations.Figure 1: Rules for plate stackingIn contrast to most coil yards, where fixed positions identify the only coil storage locations, plates and slabs can relatively easily be deposited in locations outside of the normal, marked storage positions. When production events require such a temporary ad hoc storage location, the system must create the lo-cation dynamically, record its exact position, and also remove it again once the stack has been emptied. Material Positioning and TrackingBased on these requirements, the PSImetals Logis-tics solution is built around a structure of halls or yards which are subdivided into logical areas based on functionality. For example, areas can be desig-nated for long-term storage, production line staging, rework, loading, shipping, transport to annealing or painting, etc. Each of these areas (fields in Logistics) are then optionally divided into rows and spaces. Each space has a specific location, dimension and orientation. This structure provides the basis for the processes of destination finding and route finding, which lie at the core of warehouse and transportation management.The detailed subdivision of the storage yard into many fields allows for a rule-based optimization of storage destination for materials, which can respect and balance the various specifications of a material in order to find an optimal location. This provides a good pre-sorting of materials, so that it can be re-trieved easier. If in addition the planned sequence of utilization of the material is avail-able, such as from the PSImetals scheduling module, the material can be stored in a pre-sorted order in preparation for processing. This allows quick access to the material when the production commences, without excessive restacking operations.PSImetals maintains all data objects necessary for production and inventory management in a central database called the Factory Model. The communica-tion of information between inventory management, transportation systems, and scheduling applications is implemented by providing this single data reposi-tory for all relevant information, including material data, production data, yard layout, scheduling data, and transport orders.The fundamental basis of the material location track-ing is the crane positioning system. Standard locator systems utilizing distance measurements with lasers are increasingly being replaced by systems using a new implementation of radar technology. The position of the crane is determined via appropriate transpond-ers and antennas, providing a contact-free and robust solution. Simple attachment of the few required pieces of equipment, low maintenance, and high pre-cision are hallmarks of the LPR (local positioning ra-dar) solution developed by Symeo. Even in dirty envi-ronments or under poor visibility the LPR technology provides a reliable solution. With precise information of the crane’s position, and appropriate information of the relative position of the crane’s load, the position of the carried material is identified. Additional infor-mation, such as which magnets are active, or per-haps a crane operator’s correction, serve to further pinpoint the exact material location.Figure 2: Local positioning radar technology by SymeoCranes position can be followed by PSImetals very easily along the entirety of their tracks using the LPR technology, whether they are in a covered or open hall, since the area can be optimally illuminated bythe radar transponders. In the case of other vehicles,for examples Kress carriers, the tracking is more complicated. On the one hand they move in areas where the radar transponders provide a well-defined coverage. On the other hand, they often leave these areas in order to transport the slabs or plates to more distant locations. As they move, they are automati-cally passed from one LPR area to another, and if coverage should not be given in an area, then their position is determined via GPS. PSImetals receives the position data from the LPR system irrespective of the technological source. Symeo ensures a seamless transition between LPR and GPS positioning. In the case where neither technology is available, PSImet-als can provide operators with the capability to an-nounce the arrival and departure of transport vehicles at specific locations. Thus, PSImetals knows at all times where each means of transport is located, and can allocate loading and unloading instructions ac-cording to the transport orders for the material. Material Transport OrdersTransport orders specify which material is to be transported, its source and destination. Transport or-ders are generated either automatically, or, if neces-sary, may be manually entered. Automatically gener-ated transport orders can be triggered by the comple-tion of production processes (supply and relief of production lines), by messages from attached trans-port systems (transport means has arrived at a cer-tain position, plate has reached a certain pickup point, etc), or by execution of a schedule released from the PSImetals sequencing module. Material pieces may be transported individually, or they may be combined into combined transports. Materials are selected for combined transports so that the number of transport movements by the transport means (usually crane) is minimized.The destination of transport orders is determined by the integrated destination finding algorithm. This al-gorithm is based on a set of rules which can easily be configured by the user. In the case of material being put away, the specification of any number of different restrictions and selection criteria identifies for each piece of material an optimal storage location. The consideration of future use of the material, in particu-lar scheduled production, can provide one of the most important selection criteria. Another considera-tion is that material is not placed on top of stacks where another item is already planned to be moved. Once a destination has been identified, the route find-ing algorithm takes over, and determines the best path to reach it. Multiple legs of the journey may be required, utilizing several different means of transport, in order to reach the final destination. If multiple paths are possible, the best path is determined. Some paths may also become temporarily blocked, perhaps due to an equipment breakdown, so that PSImetals has to adapt and find another route. For a crane transport, where multiple cranes on the same track may be available, the system may identify to which crane to allocate the transport, or it may be left to the operators to confirm.Figure 3: Multiple routes and multiple legs for trans-portsIn case of semi-automatic or manual operation, the operators of the means of transport, be they cranesor other vehicles, generally have a touch screen ter-minal in their cabin which shows the transport orders currently available to them. The proper sequence is given by priorities assigned due to configurable rules or based on production priorities, as well as physical considerations, such as stacking. The crane operator activates the selected transport order and is guidedto the source of the material. A graphical display of the material stack, the source and destination, and the crane location aids the operator in positioning, which is particularly helpful in the case of stack at ad hoc locations. Automatic load detection serves to check that the correct material has been picked up. The operator then moves to the destination location and drops off the piece. PSImetals automatically reg-isters the position and the transport completion. Graphical information identifies the stack contents at the location, as well as the contents of the crane load, with ergonomic touch screen controls for the operator to confirm transport orders, loading, and unloading.Of course, PSImetals can also incorporate fully automatic cranes, providing crane instruction and completing transport orders as the crane executes them.Integrated SchedulingWhen PSImetals plans a schedule, the material in-ventory is analyzed based on different criteria in or-der to arrive at an optimal distribution and sequence. One such consideration can be the location of the material as managed in PSImetals Logistics. If the staging yard for the production to be planned was al-ready organized in an optimal manner by PSImetals Logistics, for instance by grouping of material specifi-cations, then the sequencing algorithms building the schedule can utilize this as basis. The sequence is then built and optimized so as to minimize restacking operations, and provide the material to the production line in the correct sequence.Conversely, based on the information provided by Scheduling, predictive and preparatory transport de-cisions can be made by the system. Utilizing an opti-mization model created in conjunction with the Tech-nical University of Berlin, which provides solutions analogous to the decision process of a chess com-puter, the system will generate combinations of transport orders that are far more efficient than the decisions based on gut feeling and experience com-mon on the shop floor.Figure 4: Process flow to optimize transports based on the integration of planning and logisticsAnother possibility is the creation of a pre-sorting set of transport orders, which is executed at some point before the production sequence commences, at a time when there is a low transport volume. The pro-duction sequence can then be executed without transport delays. An example of this is the pre-sorting and staging possible for the loading of trucks or rail-cars, minimizing the wait time for these vehicles, and avoiding demurrage charges.A further opportunity can be found in the inclusion of transportation requirements in planning as a produc-tion process, for instance to move material between two halls in order to reach the next appropriate pro-duction facility. The execution of the transports is re-ported back to planning, and can be used to tune the production schedule during operations as necessary. ConclusionThe implementation of an integrated methodology of production management, utilizing the capability of the PSImetals Logistics warehouse and transport man-agement solution in conjunction with the PSImetals planning and scheduling solutions, has provided heavy plate manufacturers with a number of signifi-cant benefits:•increased utilization of the production units •shorter production times •less thickness jumps in the scheduling of furnace sequences•increased throughput in shipping •significantly decreased instances of “lost” mate-rial•reduced inventory with increased throughput •increased transparency of the inventory for op-erator and end client•decreased demurrage chargesSpecific benchmarks include:20% increase in plate throughput that can be reached without any equipment or production changes, solely through implementation of the storage and transport optimization strategies.30% increase in throughput with new equipment, while reducing the slab yard capacity by 20% AbbreviationsAbbrevation ExplanationLPR local positioning radarGPS Global Positioning System References[1] Henning, H.; Hackmann, J.; Diestel, M.; Kunin, I.: Optimized Material Flow in Plate Plants by Integration of Scheduling and Warehouse Management; AISTech 2010, Iron & Steel Technology Conference and Exposition, Pittsburgh, PA。