初三数学九年级上册期末模拟试卷
九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。
九年级数学期末模拟精品测试题及答案,精品3套

(第2题)(第3题)(第6题)九年级数学期末模拟精品测试题及答案,精品3套九年级上全册精品试卷(满分:150分)一、选择题。
(本题共10个小题,每小题4分,共40分)1、2010上海世博会刚刚圆满闭幕,下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、 B、 C、 D、2、如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A、、、cm3、图中∠BOD的度数是()A、55°B、110°C、125° D.150°4、若x<0,则xxx2-的结果是()A.0 B.-2 C.0或-2 D.25、下列各式中,最简二次根式是()A、32B、22+a C、a8 D、23a6、我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O 于A、B两点,PC•切⊙O于点C,则点P到⊙O的距离是()A、线段PO的长度B、线段PA的长度C、线段PB的长度 D、线段PC的长度7、下列命题错误..的是()A、经过三个点一定可以作圆B、三角形的外心到三角形各顶点的距离相等C、同圆或等圆中,相等的圆心角所对的弧相等D、经过切点且垂直于切线的直线必经过圆心8、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,(第8题)(第14题)(第15题)(第16题)∠AOD =90°,则∠B 的度数是( )A 、500B 、400C 、450D 、6009、已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .410、若m,n 是方程020102=--x x 的两根,则代数式)20102()20102(22++-⨯--n n m m 的值为( ).A .-2010 B.2010 C.0 D.1二、填空题。
九年级数学上册期末考试卷(附答案解析)

九年级数学上册期末考试卷(附答案解析)一、选择题(每小题3分,共24分)1.(3分)如图,点D是△ABC的边BC上任一点,AB=4,AD=2,∠DAC=∠B.若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a2.(3分)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦值是()A.都扩大为原来的3倍B.都缩小为原来的C.没有变化D.不能确定3.(3分)如图,点A、B、C、D、E都是⊙O上的点,=,∠D=128°,则∠B的度数为()A.128°B.126°C.118°D.116°4.(3分)用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9 C.(x+8)2=23 D.(x﹣8)2=95.(3分)将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为()A.y=2(x+2)2﹣1 B.y=2(x+2)2﹣5C.y=2(x﹣4)2﹣1 D.y=2(x﹣4)2﹣56.(3分)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tan B=()A.2B.2C.D.7.(3分)如图,在长为30m,宽20m的矩形田地中开辟两条宽度相等的道路,已知剩余田地的面积为551m2,求道路的宽度.设道路的宽度为xm,则可列方程()A.(20+x)(30+x)=551 B.(20﹣x)(30﹣x)=551C.20×30﹣20x﹣30x=551 D.20×30﹣20x﹣30x﹣x2=5518.(3分)二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 2 4 5 …y…﹣7 ﹣2 1 1 ﹣7 ﹣14 …下列说法正确的是()A.抛物线的开口向上B.当x>1时,y随x的增大而增大C.二次函数的最大值是2D.抛物线与x轴只有一个交点二.填空题(每小题3分,共18分)9.(3分)若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.11.(3分)如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.12.(3分)如图,正方形ABCD中,扇形ABC与扇形BCD的弧交于点E,AB=2cm,则图中阴影部分的面积为cm2.(不求近似值)13.(3分)抛物线y=ax2+bx+c经过点A(0,﹣3),B(2,﹣3),C(﹣2,5),则该抛物线上纵坐标为5的另一个点D的坐标是.14.(3分)车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在 2.5h内到达,则速度至少需要提高到km/h.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.参考答案与解析一、选择题(每小题3分,共24分)1.【分析】首先证明△CAD∽△CBA,得,从而,即可得出答案.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴,∵△ABD的面积为a,∴S△CAD=a,故选:C.2.【分析】根据相似三角形的判定方法可得新三角形与Rt△ABC是相似的,从而可得锐角A 的大小是不变的,即可解答.【解答】解:∵Rt△ABC的各边长都扩大为原来的3倍后,所得的三角形与Rt△ABC是相似的,∴锐角A的大小是不变的,∴锐角A的正弦、余弦值是没有变化,故选:C.3.【分析】连接AC、CE,根据圆内接四边形的性质求出∠CAE,根据圆心角、弧、弦之间的关系定理求出∠ACE,根据圆内接四边形的性质计算,得到答案.【解答】解:连接AC、CE,∵点A、C、D、E都是⊙O上的点,∴∠CAE+∠D=180°,∴∠CAE=180°﹣128°=52°,∵=,∴∠ACE=∠AEC=×(180°﹣52°)=64°,∵点A、B、C、E都是⊙O上的点,∴∠AEC+∠B=180°,∴∠B=180°﹣64°=116°,故选:D.4.【分析】将常数项移动方程右边,方程两边都加上16,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2+8x+7=0,移项得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9.故选:A.5.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为:y=2(x﹣1+3)2﹣3+2,即y=2(x+2)2﹣1;故选:A.6.【分析】先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tan B的值即可计算.【解答】解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴DF=EF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tan B===2.故选:B.7.【分析】由道路的宽度为xm,可得出剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形,根据剩余田地的面积为551m2,即可得出关于x的一元二次方程,此题得解.【解答】解:∵道路的宽度为xm,∴剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形.依题意得:(20﹣x)(30﹣x)=551.故选:B.8.【分析】根据给出的自变量x与函数值y的对应值逐一分析解答即可.【解答】解:∵抛物线经过点(﹣2,﹣7),(4,﹣7),则对称轴为x=1,设抛物线的解析式为y=a(x﹣1)2+k,代入点(0,1)和(﹣1,﹣2)得,,解得,∴抛物线的解析式为y=﹣(x﹣1)2+2,∵a=﹣1,∴抛物线开口向下,故A不符合题意;∵对称轴为x=1,∴当x>1时,y随x的增大而减小,故B不符合题意;∵抛物线的顶点坐标为(1,2),开口向下,∴二次函数的最大值为2,故C符合题意;∵抛物线开口向下,顶点为(1,2),∴抛物线与x轴有两个交点,故D不符合题意.故选:C.二.填空题9.答案为:且k≠0.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为(1,2)或(﹣1,﹣2).【分析】根据位似变换的性质计算即可.【解答】解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).11.答案为:②⑤⑥.12.答案为:π.13.答案为:(4,5).14.答案为:240.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.【分析】这里,先算﹣12022=﹣1,=4,|﹣2|=2﹣,再进行综合运算.【解答】解:﹣12022﹣+|﹣2|=﹣1﹣4+2﹣=﹣3﹣.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)【分析】过A作AD⊥BC,交CB延长线于点D,证△ACD是等腰直角三角形,则CD=AD,再由锐角三角函数定义得BD=AD,则AD﹣AD=75,求出AD的长,即可解决问题.【解答】解:过A作AD⊥BC,交CB延长线于点D,如图所示:则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=,∴CD===AD,在Rt△ABD中,tan∠ABD=,∴BD=≈=AD,由题意得:AD﹣AD=75,解得:AD=300(m),∵此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,∴此时热气球(体积忽略不计)附近的温度约为:20℃﹣×0.6℃=18.2℃,答:此时热气球(体积忽略不计)附近的温度约为18.2℃.17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.【分析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN •MC;代入数据可得MN•MC=BM2=8.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴=,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴=.∴BM2=MN•MC.又∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?【分析】(1)设这两次价格上调的平均增长率为x,利用经过两次上调价格后的价格=原价×(1+这两次价格上调的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,根据每天该口罩的销售额为315元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合要让顾客获得更大的优惠,即可得出每包应该降价3元.【解答】解:(1)设这两次价格上调的平均增长率为x,依题意得:10(1+x)2=16.9,解得:x1=0.3=30%,x2=﹣2.3(不符合题意,舍去).答:这两次价格上调的平均增长率为30%.(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,依题意得:(10﹣m)(30+5m)=315,整理得:m2﹣4m+3=0,解得:m1=1,m2=3.又∵要让顾客获得更大的优惠,∴m的值为3.答:每包应该降价3元.19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.【分析】先利用等腰三角形的性质得到∠EAD=∠FAD,则根据圆周角定理得到=,再利用垂径定理的推理得到AD⊥EF,于是可判断EF∥BC.【解答】解:EF∥BC.理由如下:∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠EAD=∠FAD,∴=,∵AD为直径,∴AD⊥EF,而AD⊥BC,∴EF∥BC.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.【分析】(1)由题意可知b=0,再将(2,2)代入y=ax2+bx﹣2即可求解析式;(2)①求出A(,0),B(﹣,0),再由2[c+2+(c+2)2]=4(c+2),即可求c;②由题意可得m=﹣,k<0,再由m>6,可得﹣<k<0,联立,得到AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,与x轴的交点P (﹣,0),与y轴的交点为N(0,b),由∠PNO=∠AMO,可得k'=m=﹣,则有线段AB的垂直平分线为y=﹣x++,所以N点纵坐标为n=+,即可求<n<.【解答】解:(1)∵顶点在y轴上,∴b=0,∵抛物线y=ax2+bx﹣2经过(2,2),∴4a﹣2=2,∴a=1,∴y=x2﹣2;(2)①当k=0时,y=c,联立,∴A(,c),B(﹣,c),∵△ABP为等腰直角三角形,∴P点在AB的垂直平分线上,∴P点在抛物线的顶点(0,﹣2)处,∵AB=2,AP=BP=,∴2[c+2+(c+2)2]=4(c+2),∴c=﹣1;②∵c=1,∴y=kx+1,∴m=﹣,由题意可知,k<0,∵m>6,∴﹣<k<0,联立,∴x2﹣kx﹣2=0,∴x A+x B=k,∴AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,∴与x轴的交点P(﹣,0),与y轴的交点为N(0,b),∵PN⊥AB,∴∠PNO=∠AMO,∴=,∴k'=m=﹣,∴y=﹣x+b,∴线段AB的垂直平分线为y=﹣x++,∴N点纵坐标为n=+,∴<n<.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.【分析】(1)把A点的坐标代入函数解析式,即可求出答案;(2)解由两函数解析式组成的方程组,求出方程组的解,即可得出B点的坐标,求出C点的坐标,再根据三角形面积公式求即可;(3)根据图象即可求出答案.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1,即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)连接OA、OB,∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由解得,,∴由图象可得:点B的坐标为(﹣1,﹣2),∴;(3)由图象可知不等式组的解集为1<x≤2.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?【分析】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【解答】解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为P甲=.(4分)(2)这个游戏对双方不公平,因为甲获胜的概率P甲=,乙获胜的概率P乙=,,所以,游戏对双方是不公平的.(6分)23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.【分析】(1)用待定系数法求函数的解析式即可;(2)过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),S△PAC=﹣(t ﹣)2+当t=时,△PAC的面积最大值为,此时P(,);(3)由题意可知H1在抛物线y=﹣x2﹣2x+3上,再由H1A2=(t﹣)2+,可得当t=时,A2有最小值,求出n的值即可.H1【解答】解:(1)将A(﹣1,0),C(2,3)两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(2)设AC的直线解析式为y=kx+b,∴,解得,∴y=x+1,过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),∴PG=﹣t2+t+2,∴S△PAC=×3×(﹣t2+t+2)=﹣(t﹣)2+,∴当t=时,△PAC的面积最大值为,此时P(,);(3)点H(n,t)为抛物线上的一个动点,点H1与H点关于y轴对称,∴H1(﹣n,t),H1在抛物线y=﹣x2﹣2x+3上,∴t=﹣n2﹣2n+3,∴H1A2=(n+1)2+t2=t2﹣t+4=(t﹣)2+,∴当t=时,H1A2有最小值,∴=﹣n2+2n+3,解得n=1+.。
2024--2025学年人教版九年级数学上册期末综合试卷+答案

人教版数学九年级上册综合试卷(第21章~第25章)一、单选题1.下列图形中是中心对称图形的是()A.B.C.D.2.抛物线yy=−3(xx+4)2−3的顶点坐标是()A.�4,−3�B.�−4,−3�C.�4,3�D.�−4,3�3.若点AA(0,2)与点B关于原点对称,则点B的坐标为()A.(2,0)B.(−2,0)C.(0,2)D.(0,−2)4.若扇形的半径为2,圆心角为90°,则这个扇形的面积为()A.π2B.3πC.2πD.π5.下列说法正确的是()A.“任意画一个三角形,其内角和是360°”是随机事件.B.“明天的降水概率为80%”,意味着明天降雨的可能性较大.C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会中奖.D.晓芳抛一枚硬币10次,有711次时,正面向上的概率为710. 6.如图,将△AAAAAA绕点AA逆时针旋转70°,得到△AAAAAA,若点AA在线段AAAA的延长线上,则∠AA 的大小是()A.45°B.50°C.70°D.55°7.如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.13B.23C.16D.568.如图,AAAA为⊙OO直径,点D是AAAA上方圆上异于A、B的一点,若∠AAOOAA=130°,则∠AA的度数()A.50°B.25°C.70°D.35°9.抛物线yy=aaxx2+bbxx+cc(aa<0)与x轴的一个交点坐标为(﹣2,0),对称轴为直线xx=2,其部分图象如图所示,当yy>0时,xx的取值范围是()A.x>﹣2 B.x<6 C.﹣2<x<6 D.x<﹣2或x>6 10.如图,在Rt△AAAAAA中,∠AAAAAA=90°,AAAA=8,AAAA=6,点D是平面内的一动点,且AAAA=3,MM 为AAAA的中点,在点D运动的过程中,线段AAMM长度的取值范围是()A.32<AAMM≤72B.72≤AAMM≤132C.6≤AAMM≤8D.32≤AAMM<52二、填空题11.某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为.12.某厂一月份的总产量是500吨,三月份的总产量为720吨.若平均每月增长率是xx,则xx=.13.如图,PPAA、PPAA、AAAA是⊙OO的切线,AA、AA、AA是切点,AAAA分别交PPAA、PPAA于AA、AA两点.若∠AAPPAA=40°,则∠AAOOAA的度数为.14.如图,⊙OO的半径为6,直角三角板的30°角的顶点A落在⊙OO上,两边与圆交于点B、C,则弦AAAA的长为.15.若关于x的一元二次方程xx2+6xx−cc=0有一根为−2,则c的值为.16.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CE交OB于点E,若OA=6,∠AOB=120°,则图中阴影部分的面积为(结果保留π).17.抛物线y=(a−1)x2−2x+3在对称轴左侧,y随x的增大而增大,则a的取值范围是.18.边长为2的正方形ABCD与边长为2√2的正方形AEFG按图(1)位置放置,AD与AE在同一直线上,AB与AG在同一直线上,将正方形ABCD绕点A逆时针旋转如图(2),线段DG与线段BE相交,交点为H,则△GHE与△BHD面积之和的最大值为三、解答题19.解方程(1)xx2−2xx=4 (2)(xx+4)2=5(xx+4)20.一只不透明的口袋里装有1个红球、1个黄球和若干个白球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个是白球的概率为12(1)试求袋中白球的个数;(2)搅匀后从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,试用画树状图或列表格的方法,求两次摸出的2个球恰好是1个白球、1个红球的概率,21.已知关于x的一元二次方程xx2−(mm+2)xx+2mm=0.(1)证明:不论m为何值,方程总有实数根.(2)若方程的两个实数根xx1,xx2满足xx12+xx22+xx1xx2=7,求m的值.22.如图隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m.按照图中所示的直角坐标系,抛物线可以用y=-14x2+bx+c表示,且抛物线上的点C到OB的水平距离为2m,到地面OA的距离为5m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)该隧道内设双行道,一辆货车高4m,宽2.5m,能否安全通过,为什么?2350元/件的商品,经市场调查发现:该商品的每天的销售量y(件)是售价x(元件)的一次函数,其售价、销售量的二组对应值如下表:售价x(元件)5565销售量y(件/天)9070(1)求销售量y与售价x之间的函数关系式;(2)十月份销售该商品时,售价定为多少元,每天才能获取最大利润?最大销售利润是多少?(3)十一月份由于原材料上涨等因素,该商品成本价提高了a元/件(6≤aa≤15),商品的每天销售量与销售价的关系不变,若商品的销售价不低于成本价,且物价部门规定售价不得超过80元/件,商店十一月份销售该商品的过程中,获得的销售最大利润能否为882元?说明理由.24.如图1,正方形AAAAAAAA和正方形AAAAAAAA,AA,AA,AA三点共线,AAAA=4,AAAA=2√2.将正方形AAAAAAAA绕点AA顺时针旋转αα(0°≤αα≤45°),连接AAAA,AAAA.(1)如图2,求证:AAAA=AAAA;(2)如图3,在旋转的过程中,当AA,AA,AA三点共线时,试求AAAA的长;(3)在旋转的过程中,是否存在某时刻,使得∠AAAAAA=120°,若存在,请直接写出AAAA的长;若不存在,请说明理由.25.如图,已知二次函数LL1:yy=xx2−4xx+3与x轴交于A、B两点(点A在点B左边),与y轴交于点C.(1)写出二次函数LL1的开口方向、对称轴和顶点坐标;(2)研究二次函数LL2:yy=kkxx2−4kkxx+3kk(kk≠0).①写出二次函数LL2与二次函数LL1有关图象的两条相同的性质;②若直线yy=8kk与抛物线LL2交于E、F两点,问线段AAAA的长度是否发生变化?如果不会,请求出AAAA的长度;如果会,请说明理由.26.【定义新知】定义:有一个角是其对角一半的圆内接四边形叫做圆美四边形,其中这个角叫做美角.【初步应用】(1)如图1,四边形AAAAAAAA是圆美四边形,∠AA是美角.①∠AA的度数为________°;②连接AAAA,若⊙OO的半径为5,求线段AAAA的长;【拓展提升】(2)如图2,已知四边形AAAAAAAA是圆美四边形,∠AAAAAA是美角,连接AAAA,若AAAA平分∠AAAAAA,判断AAAA、AAAA与AAAA之间的数量关系,并说明理由.参考答案:题号 1 2 3 4 5 6 7 8 9 10 答案 A B D D B D B B C B11.11212.0.213.70°14.615.-816.3ππ+9√3217.618.a<119.(1)解:xx2−2xx=4,∴xx2−2xx+1=4+1,∴(xx−1)2=5,∴xx−1=±√5,∴xx1=1+√5,xx2=1−√5;(2)解:(xx+4)2=5(xx+4),∴(xx+4)2−5(xx+4)=0,∴(xx+4)(xx+4−5)=0,∴xx+4=0或xx+4−5=0,∴xx1=−4,xx2=1.20.解:(1)设袋中白球的个数有x个,根据题意得:xx1+1+xx=12,解得:x=2,答:袋中白球的有2个;(2)根据题意画图如下:共有12种等可能的结果,其中摸出两个球恰好是1个白球、1个红球占4种,所以两次摸出的2个球恰好是1个白球、1个红球的概率是412=13. 21.(1)解:证明:∵Δ=(mm+2)2−4×2mm=mm2+4mm+4−8mm=mm2−4mm+4=(mm−2)2≥0,∴不论mm为何值时,方程总有实数根;(2)根据题意得xx1+xx2=mm+2,xx1xx2=2mm,∵xx12+xx22+xx1xx2=7,∴(xx1+xx2)2−xx1xx2=7,∴(mm+2)2−2mm=7,整理得mm2+2mm−3=0,解得mm1=1,mm2=−3,∴mm的值为1或−3.22.(1)根据题意得B(0,2),C(2,5),把B(0,2),C(2,5)代入y=-14x2+bx+c得�cc=2,−14×22+2bb+cc=5,解得�bb=2,cc=2,∴抛物线解析式为y=-14x2+2x+2,则y=-14(x﹣4)2+6,∴D(4,6),∴拱顶D到地面OA的距离为6m;(2)能.理由如下:由题意得,货运汽车最外侧与地面OA的交点为(1.5,0)或(6.5,0),当x=1.5或x=6.5时,y=-14(1.5﹣4)2+6=4716>4,∴这辆货车能安全通过.23.(1)解:销售量y与售价x之间的函数关系式为yy=kkxx+bb,把�55,90�,�65,70�代入yy=kkxx+bb,得:�55kk+bb=9065kk+bb=70,解得�kk=−2bb=200,∴yy=−2xx+200,即销售量y与售价x之间的函数关系式为yy=−2xx+200;(2)解:设总利润为WW元,根据题意得,WW=(xx−50)(−2xx+200)=−2xx2+300xx−10000=−2(xx−75)2+1250,∵aa=−2<0,∴当xx=75时,WW有最大值,最大值为1250.所以当售价定为75元时,每天获取最大利润,最大利润为1250元;(3)解:设总利润为WW元,根据题意得,WW=(xx−50−aa)(−2xx+200)=−2xx2+(300+2aa)xx−10000−200aa,∴对称轴为直线xx=−300+2aa2×(−2)=300+2aa4=150+aa2,∵−2<0,∴抛物线的开口向下,当150+aa2>80,即10<aa≤15时,在对称轴左侧WW随x的增大而增大,∵xx≤80,∴当xx=80时,WW最大=882即−2×802+(300+2aa)×80−10000−200aa=882,解得:aa=7.95<10(舍去);当150+aa2≤80,即6≤aa≤10时,∴当xx=150+aa2时,WW最大=882,∵WW=−2xx2+(300+2aa)xx−10000−200aa=−2�xx−150+aa2�2+12aa2−50aa+1250,∴12aa2−50aa+1250=882,解得aa1=8,aa2=92(舍去)综上,当aa=8时,可获得最大利润为882元.24.(1)证明:∵四边形AAAAAAAA和AAAAAAAA是正方形,∴AAAA=AAAA,∠AAAAAA=90°,AAAA=AAAA,∠AAAAAA=90°,∴∠AAAAAA=∠AAAAAA,在△AAAAAA和△AAAAAA中,�AAAA=AAAA∠AAAAAA=∠AAAAAAAAAA=AAAA,∴△AAAAAA≌△AAAAAA(SAS),∴AAAA=AAAA;(2)解:如图3,连接AAAA,交AAAA于点OO,∵四边形AAAAAAAA是正方形,AAAA=2√2,∴AAAA=AAAA=2√2,∠AAAAAA=90°,AAOO=AAOO=12AAAA,∠AAOOAA=90°,∴AAAA=√AAAA2+AAAA2=4,∴AAOO=AAOO=2,∵AA、AA,AA三点共线,AAAA=4,∴在Rt△AAAAOO中,OOAA=√AAAA2−OOAA2=√42−22=2√3,∴AAAA=OOAA−OOAA=2√3−2;(3)解:存在某时刻,使得∠AAAAAA=120°,AAAA=√10−√2,理由如下:如图2,过点AA作AAAA⊥AAAA,交AAAA的延长线于点AA,∵∠AAAAAA+∠AAAAAA=180°,∠AAAAAA=120°,∴∠AAAAAA=60°,∵AAAA⊥AAAA,∴∠AAAAAA+∠AAAAAA=90°,∴∠AAAAAA=90°−∠AAAAAA=30°,∴AAAA=12AAAA=√2,∴AAAA=√AAAA2−AAAA2=√6,在Rt△AAAAAA中,AAAA=4,∴AAAA=√AAAA2−AAAA2=√10,∴AAAA=AAAA−AAAA=√10−√2.25.(1)抛物线yy=xx2−4xx+3中,aa=1、bb=−4、cc=3,∴对称轴xx=−bb2aa=−−42×1=2,4aaaa−bb24aa=4×1×3−(−4)24×1=−1,且aa=1>0,∴二次函数LL1的开口向上,对称轴是直线xx=2,顶点坐标�2,−1�;(2)①函数LL2:yy=kkxx2−4kkxx+3kk=kk(xx2−4xx+3)=kk[(xx−2)2−1]=kk(xx−2)2−kk,当yy=0时,有:kk(xx−2)2−kk=0,结合kk≠0,解得xx=1,或者xx=3,则二次函数LL2与LL1有关图象的两条相同的性质:对称轴为xx=2或顶点的横坐标为2,都经过AA(1,0),AA(3,0)两点;②线段AAAA的长度不会发生变化.∵直线yy=8kk与抛物线LL2交于E、F两点,∴kkxx2−4kkxx+3kk=8kk,∵kk≠0,∴xx2−4xx+3=8,整理,得:xx2−4xx−5=0,解得:xx1=5,xx2=−1,∴AAAA=xx1−xx2=6,∴线段AAAA的长度不会发生变化.26.(1)①∵四边形AAAAAAAA是圆美四边形,∠AA是美角,∴∠AAAAAA=2∠AA,∠AAAAAA+∠AA=180°,∴2∠AA+∠AA=180°,解得∠AA=60°,故答案为:60.②作圆的直径AADD ,连接AADD ,则∠AAAADD =90°,∠DD =∠AA =60°∵圆的半径为5,∴AADD =10,∵∠AAAADD =90°−60°=30°,∴AADD =12AADD =5. ∴AAAA =√3AADD =5√3.(2)关系为:AAAA =AAAA +AAAA ,理由如下:如图,延长AAAA 到点M ,使得AAMM =AAAA ,连接MMAA , ∵四边形AAAAAAAA 是圆美四边形,∠AAAAAA 是美角, ∴∠AAAAAA =2∠AAAAAA ,∠AAAAAA +∠AAAAAA =180°, ∴2∠AAAAAA +∠AAAAAA =180°,解得∠AAAAAA =60°,∴∠AAAAAA =120°,∵AAAA 平分∠AAAAAA ,∴∠AAAAMM =∠AAAAAA =∠AAAAAA =60°,∴△AAMMAA 是等边三角形,∴AAAA =AAMM ,∠AAAAAA =∠AAAAMM =60°,∴∠AAAAAA +∠AAAAAA =∠AAAAMM +∠AAAAAA ,∴∠AAAAAA =∠AAAAMM ,∵∠AAAAAA =∠AAAAMM ,∵�∠AAAAAA =∠AAAAMM ∠AAAAAA =∠AAAAMM AAAA =AAMM ,∴△AAAAMM≌△AAAAAA, ∴AAAA=AAMM,∵AAMM=AAAA+AAMM,∴AAAA=AAAA+AAAA.。
沪科版九年级上册数学期末考试试卷附答案

沪科版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.关于二次函数22y x =--下列说法正确的是()A .有最大值-2B .有最小值-2C .对称轴是1x =D .对称轴是1x =-2.对抛物线y=-x 2+4x-3而言,下列结论正确的是()A .开口向上B .与y 轴的交点坐标是(0,3)C .与两坐标轴有两个交点D .顶点坐标是(2,1)3.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是()A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>4.如图,在直角坐标系中,△OAB 的顶点为O(0,0),A(-6,4),B(-3,0).以点O 为位似中心,在第四象限内作与△OAB 的位似比为12的位似图形△OCD ,则点C 坐标为()A .(2,-1)B .(3,-2)C .33,22⎛⎫- ⎪⎝⎭D .3,12⎛⎫- ⎪⎝⎭5.如图,点A ,B 分别是反比例函数12y x=-(x <0)和4y x =-(x <0)图象上的点,且AB ∥x 轴,点C 在x 轴上,则△ABC 的面积是()A .4B .5C .6D .86.若ad=bc ,则下列不成立的是()A .a cb d=B .a c ab d b-=-C .a b c db d++=D .1 111a cb d ++=++7.如图,四边形OABC 是矩形,四边形ADEF 是边长为3的正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在边AB 上,点B 、E 在双曲线(0)ky x x=>上,且5BF =,则k 值为().A .15B .714C .725D .178.正方形ABCD 中,AB=4,P 为对角线BD 上一动点,F 为射线AD 上一点,若AP=PF ,则△APF 的面积最大值为()A .8B .6C .4D .9.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =-,下列结论不正确的是A .0abc >B .0a b c -+<C .24b ac >D .0a c -<10.如图,在正方形ABCD 和正方形BEFG 中,连接,AG DF ,则DF AG的值为()A .1B .12C 2D .22二、填空题11.抛物线2(2)y x =-+的顶点坐标是_________.12.如图,若芭蕾舞者拍起的脚尖点C 分线段AB 近似于黄金分割(AC <BC),已知AB=160cm ,BC 的长约为_________cm .(结果精确到0.1cm)13.如图,在边长为1的小正方形网格中,点A 、B 、C 均在格点上,则tan ∠B 的值为_________.14.如图,矩形ABCD 中,AB=6,AD=8,点P 是AB 边上一动点,把△ADP 沿DP 折叠得△A DP ',射线DA '交直线AB 于点Q 点.(1)当Q 点和B 点重合时,PQ 长为___________;(2)当△A DC '为等腰三角形时,DQ 长为____________.15.如图,在直角坐标系中,点E (﹣4,2),F (﹣2,﹣2),以O 为位似中心,将△EFO 缩小为△E 'F 'O ,且△E 'F 'O 与△EFO 的相似比为12,则点E 的对应点E '的坐标为_________.16.如图所示,在平面直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A ,C 分别在x 轴、y 轴上,双曲线ky x(k ≠0,x >0)经过AB 、BC 的中点N 、F ,连接ON 、OF 、NF .若S △BFN =3,则k =__.三、解答题17.计算:2sin 245°-6cos30°+3tan45°+4sin60°18.如图,二次函数y=-212x +bx+c 的图象经过A(2,0)、B(0,-4)两点,(1)求二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.19.一次函数y1=kx+b的图象与反比性函数y2=mx的图象交于A(2,1)、B(-1,n)两点.(1)利用图中的条件,求反比例函数和一次函数的解析式;(2)根据图象直接写出使y1 y2的自变量x取值范围.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B(3,﹣3),C (1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并求出线段AA2的长度.21.2020年6月23日,我国第55颗北斗卫星,即北斗全球卫星导航系统最后一颗组网卫星发射成功北斗导航装备的不断更新,极大方便人们的出行,某中学从A 地出发.组织学生利用导航到C 地区进行研学活动,出发时发现C 地恰好在A 地正北方向,且距离A 地24千米,由于A 、C 两地间是一块湿地.所以导航显示的路线是沿北偏东60°方向走到B 地,再沿北编西37°方向走一段距离才能到达C 地,求A 、B 两地的距离(精确到1千米).(参考数据sin37°=0.6,cos37°=0.8,tan37°=0.722.已知:如图,在Rt ABC △中,90BAC ∠=︒,AD BC ⊥于D ,E 为直角边AC 的中点,射线ED 交AB 的延长线于点F .(1)若6AB =,8AC =,求BD 长;(2)求证:AB AF AC DF ⋅=⋅.23.如图,在四边形ABCD 中,90,45,3ABC C CD BD︒︒∠=∠===.(1)求sin CBD ∠的值;(2)若3AB =,求AD 的长.24.如图,在ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,12DE CD =.(1)求证:ABF CEB V V ∽;(2)若DEF 的面积为2,求四边形BCDF 的面积.25.如图,已知抛物线1(1)(5)y a x x =--和直线2y ax a =--(其中0a >)相交于A ,B 两点,抛物线1y 与x 轴交于C ,D 两点,与y 轴交于点G ,直线2y 与坐标轴交点于E ,F 两点.(1)若G 的坐标为(0,5),求抛物线1y 的解析式和直线2y 的解析式;(2)求证:直线2y ax a =--始终经过该抛物线1y 的顶点;(3)求AB EFAF+的值.参考答案1.A 【分析】利用二次函数的性质即可判断各个选项中的结论是否正确.【详解】解:∵二次函数y =﹣x 2﹣2,∴a =﹣1,开口向下,有最大值y =﹣2,∴选项A 正确,选项B 错误;∵二次函数y =﹣x 2﹣2的对称轴为直线x =0,∴选项C 、D 错误,故选:A .【点睛】本题考查了二次函数的性质、二次函数的最值,解题的关键是明确题意,利用二次函数的性质解答.2.D 【分析】根据二次函数的解析式结合二次函数的性质,逐一分析四个选项的正误即可得出结论.【详解】A 、因为a=-1<0,故抛物线开口向下,故本选项不符合题意;B 、当x=0时,y=-3,抛物线与y 轴的交点坐标是(0,-3),故本选项不符合题意;C 、()()24413161240=-⨯-⨯-=-= >,抛物线与x 轴有两个交点,所以与两坐标轴有三个交点,故本选项不符合题意;D 、对抛物线()224321y x x x =-+-=--+,顶点坐标是(2,1),故本选项符合题意;故选:D 【点睛】本题考查了二次函数的性质以及二次函数图象与系数的关系,熟练掌握二次函数图象与系数之间的关系是解题的关键.3.D 【详解】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.4.B 【分析】根据关于以原点为位似中心的对应点的坐标关系,把点A 的横纵坐标乘以12-即可得到答案.【详解】∵△OAB 与 OCD 关于原点O 位似,位似比为12,设点C 坐标为(),a b ,点A 坐标为()6,4-,点A 与点C 是对应点,∴()1632a =-⨯-=,1422b =-⨯=-,∴C 点坐标为:(3,-2)故选:B .【点睛】本题考查了位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .5.A 【分析】先将△ABC 的面积转化成△ABO 的面积,再通过辅助线得S △ABO =S △ADO −S △BDO .【详解】解:连接AO ,BO ,延长AB 交y 轴于点D ,∵AB //x 轴,∴S △ABO =S △ABC ,∴S △ABO =S △ADO −S △BDO =124422-=∴S △ABC =4.故选:A .【点睛】本题考查反比例函数系数k 的几何意义,解题关键是熟练掌握添加辅助线方法.6.D 【分析】根据比例和分式的基本性质,进行各种演变即可得到结论.【详解】A 由a cb d=可以得到ad=bc ,故本选项正确,不符合题意;B 、由a c ab d b-=-可得:(a-c )b=(b-d )a ,即ad=bc ,故本选项正确,不符合题意;C 、由a b c db d ++=可得(a+b )d=(c+d )b ,即ad=bc ,故本选项正确,不符合题意;D 、由1 111a cb d ++=++,可得(a+1)(d+1)=(b+1)(c+1),即ad+a+d=bc+c ,不能得到ad=bc ,故本选项错误,符合题意;故选:D .【点睛】本题考查了比例线段,根据比例的性质能够灵活对一个比例式进行变形.7.C【分析】设AO =a ,即可得出B (a ,8),E (a +3,3),依据点B 、E 在反比例函数(0)k y x x=>的图象上,即可得到a 的值,进而得出k 的值.【详解】解:设AO =a ,∵四边形ADEF 是边长为3的正方形,BF =5,∴AB =8,OD =a +3,∴B (a ,8),E (a +3,3),又∵点B 、E 在反比例函数(0)k y x x =>的图象上,∴8a =3(a +3),解得a =95,∴B (95,8),∴k =95×8=725,故选:C .【点睛】此题主要考查了反比例函数图象上点的坐标特点以及正方形和矩形的性质,反比例函数图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .8.C【分析】根据AP=PF 得到点P 在AF 的垂直平分线上,过P 作PG ⊥AF ,G 为垂足,则AG=GF ,DG=PG ,设DF=x ,得到AG=42x +,GD=PG=42x -,利用三角形面积公式计算得到S △APF =2144x -+,根据函数性质即可得到答案.【详解】∵AP=PF ,∴点P 在AF 的垂直平分线上,过P 作PG ⊥AF ,G 为垂足,则AG=GF ,DG=PG ,设DF=x ,则AG=42x +,∴GD=PG=42x -,∴S △APF =2141(4)4224x x x -⨯+⨯=-+≤4,所以△APF 面积最大值为4;故选:C ..【点睛】此题考查正方形的性质,线段垂直平分线的判定及性质,二次函数的最值问题,正确引出辅助线并设定未知数解决问题是解题的关键.9.D【分析】根据二次函数的图象与性质得到a b c 、、的符号,再逐一进行判断.【详解】解:由图知,二次函数的图象开口向上,即0a >,与y 轴交于正半轴,即0c >,对称轴12b x a=-=-2b a∴=a b 、同号,即0b >0abc ∴>,故A 正确;由图知,当1x =-时,0y <,0a b c ∴-+<,故B 正确;由图知,二次函数图象与轴有两个不同的交点,即240b ac ->,故C 正确;无法判断0a c -<,故D 错误,故选:D .【点睛】本题考查二次函数的图象与性质,是基础考点,难度较易,掌握相关知识是解题关键.10.C【分析】连接BD ,BF ,先证明ABG DBF ∽,进而即可求解.【详解】解:连接BD ,BF ,∵在正方形ABCD 和正方形BEFG 中,∴BD AB =BF BG =,∠ABD =∠GBF =45°,∴BD AB =BF BG,∠ABG =∠DBF ,∴ABG DBF ∽,∴DFAG =BF BG =,故选C .【点睛】本题主要考查正方形的性质以及相似三角形的判定和性质,添加辅助线,构造旋转相似模型,是解题的关键.11.()2,0-【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】2(2)y x =-+是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为()2,0-,故答案为:()2,0-.【点睛】本题考查了二次函数的性质,解题的关键是熟记顶点式2()y a x h k =-+的顶点坐标是()h k ,.12.98.9【分析】由点C 是线段AB 的黄金分割点,可得AC BC BC AB ==可得,BC AB =计算后可得答案.【详解】解:∵C 分线段AB 近似于黄金分割,且AC <BC ,AC BC BC AB ∴==∴)11160801801.23698.9.22BC AB cm -==⨯=≈⨯≈故答案为:98.9.【点睛】本题考查的是黄金分割的含义,掌握“点C 是线段AB 的黄金分割点,可得12AC BC BC AB -==”是解题的关键.13.12【分析】根据在直角三角形中,正切为对边比邻边,可得答案.【详解】解:如图所示,2222222222420,125,3425BD DC BC =+==+==+= ,222BD DC BC ∴+=,90D ∠=︒,BD DC ===,1tan 2DC B BD ==故答案:12【点睛】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.103645555或2455【分析】(1)画出点Q 与B 重合时的图象,根据折叠的性质得到相等的边,设PQ x =,则6PA PA x '==-,在Rt PQA ' 中利用勾股定理列式求出结果;(2)分情况讨论,利用等腰三角形“三线合一”的性质,结合相似三角形的性质和判定,列式求出DQ 的长.【详解】解:(1)如图,当点Q 与B 重合时,∵6AB =,8AD =,90A ∠=︒,∴10QD =,∵折叠,∴8AD A D '==,∴1082A Q QD A D ''=-=-=,设PQ x =,∴6PA PA x '==-,∵222PA A Q PQ ''+=,∴()2264x x -+=,解得103x =,故答案是:103;(2)①如图,当A´D=A´C=8时,过点A '作A M DC '⊥于点M ,由等腰三角形“三线合一”的性质得DM=12DC=3,∴A M '=∵//AD A M ',∴ADQ MA D '∠=∠,∵90DAQ A MD '∠=∠=︒,∴AQD MDA ' ,∴QDADDA MA ='',则8QD=55QD =;②如图,当A´C=DC=6时,过点C 作CN DQ ⊥于点N ,由等腰三角形“三线合一”的性质得DN=12DA´=4,∴CN =∵90CDN ADQ ∠+∠=︒,90DQA ADQ ∠+∠=︒,∴DQA CDN ∠=∠,∵90DAQ CND ∠=∠=︒,∴AQD NDC ,∴QD ADDC NC =,则6QD =QD =;③∵8A D AD '==,6DC =,∴A D DC '≠,故答案是:55【点睛】本题考查折叠问题,解题的关键是掌握勾股定理,矩形的性质,折叠的性质,以及相似三角形的性质和判定.15.(﹣2,1)或(2,﹣1)【分析】根据位似变换的性质计算即可.【详解】解:∵以O 为位似中心,将△EFO 缩小为△E 'F 'O ,△E 'F 'O 与△EFO 的相似比为12,∵E (﹣4,2),∴点E '的坐标为:(﹣2,1)或(2,﹣1);故答案为:(﹣2,1)或(2,﹣1).【点睛】本题考查了位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.16.12【分析】先求出点N 坐标,利用待定系数法即可解决问题;【详解】解:∵N 、F 是AB 、BC 的中点,∴BF =12BC ,BN =12AB ,S △BFN =3,∴12BF •BN =12•12BC •12AB =3,∴BC •AB =24,∵四边形ABCO 是正方形,∴OA =AB =BC =CO =,∵N 是AB 中点,∴AN =BN ,∴N (),把N ()代入k y x=,得到k =12,故答案为:12.【点睛】本题考查了反比例函数系数k 的几何意义,正方形的性质,求出点N 坐标是解题的关键.17.4【分析】直接代入特殊角的三角函数值求解即可.【详解】解:原式=22()63142⨯-⨯⨯+⨯13=-+4=-,故答案为:4.【点睛】本题考查了特殊角三角函数的计算,属于基础题,计算过程中细心即可求解.18.(1)21342y x x =-+-;(2)2【分析】(1)由待定系数法即可求出抛物线解析式;(2)由(1)中求出的抛物线的解析式求出该抛物线的对称轴,得到点C 的坐标,通过A 、B 、C 三个点的坐标即可求得ABC 的面积.【详解】(1)分别把点A(2,0)、B(0,-4)代入212y x bx c =-++得,2122024x c c ⎧-⨯++=⎪⎨⎪=-⎩,解得:34b c =⎧⎨=-⎩,∴这个二次函数的解析式为:21342y x x =-+-(2)由(1)中抛物线对称轴为直线,331222b x a =-=-=⎛⎫⨯- ⎪⎝⎭,∴点C 的坐标为:(30),,∴321AC =-=,∴ABC 的面积为:1141222OB AC ⋅⋅=⨯⨯=,【点睛】本题考查了用待定系数法求二次函数、二次函数图像的性质、三角形面积,解题的关键是理解题意,利用二次函数图像的性质求解三角形的面积.19.(1)2,1y y x x==-;(2)1x <-或02x <<【分析】(1)由A 的坐标易求反比例函数解析式,从而求B 点坐标,进而运用待定系数法求一次函数的解析式;(2)观察图象,找出一次函数的图象在反比例函数的图象下方时,x 的取值即可.【详解】(1)由题意得:212m =⨯=,()12n -⨯=,2n =-,∴反比例函数解析式为:2y x=,()1,2B --,再由题意得:212k b k b +=⎧⎨-+=-⎩;解得:11k b =⎧⎨=-⎩∴一次函数的解析式为:1y x =-;(2)由图像可知:当12y y <时,自变量x 取值范围是:1x <-或02x <<.【点睛】本题考查的是反比例函数和一次函数的综合题,掌握利用待定系数法求一次函数、反比例函数的解析式和根据图象求自变量的取值范围是解决此题的关键.20.(1)见解析;(2)见解析;AA2【分析】(1)分别将点A 、B 、C 向上平移5个单位得到对应点,再顺次连接可得;(2)分别将点A 、B 、C 绕点O 顺时针旋转90°得到对应点,再顺次连接可得,再利用勾股定理求得AA 2的长度即可.【详解】(1)如图,△A 1B 1C 1即为所求:(2)如图,△A 2B 2C 2即为所求:连接OA 2,OA 1,由旋转性质得,OA 1=OA 2,∵OA 122(40)(10)--+--17∴AA 22212OA OA +1717+34【点睛】本题主要考查作图-平移变换、旋转变换,解题的关键是熟练掌握平移作图和旋转90°作图.21.14千米【分析】过B 作BD ⊥AC ,由题意得到三角形ABD 为直角三角形,设AD=x 千米,表示出CD 和BD ,在直角三角形BCD 中,利用锐角三角函数定义求出x 的值,即可确定出AB 的长.【详解】解:如图,过点B 作BD ⊥AC 于点D ,设AD=x ,∵∠A=60°,∴3x ,CD=24-x ,AB=2x ;∵∠BCD=37°,∴tan ∠BCD=BD CD ,即324x解得x=7,即AB=2x=14(千米)【点睛】此题属于解直角三角形题型,熟练掌握锐角三角函数定义是解本题的关键.22.(1) 3.6BD =;(2)见解析【分析】(1)由勾股定理得10BC =,C ABD BA ∽△△,得 3.6BD =;(2)首先由直角三角形的性质可得:DE CE AE ==,可得FDB FAD ∽△△,得出DF BD AF AD=,再利用等角的正切相等可得出结论.【详解】解:(1)在Rt ABC △中,∵6AB =,8AC =,∴10BC ===,∵90BAC ∠=︒,AD BC ⊥,∴90BAC ADB ∠==︒∠,∵∠B=∠B ,∴C ABD BA ∽△△,∴BD AB BA CB =,∴236 3.610AB BD CB ===,∴ 3.6BD =;(2)∵DE 是Rt ADC 斜边AC 边上的中线,∴DE CE AE ==,∴∠EAD=∠EDA ,∠C=∠CDE ,∵∠CDA=∠CAF=90°,∴∠CDE=∠FAD=∠C ,∴∠FDB=∠FAD ,∵∠F=∠F ,∴FDB FAD ∽△△,∴DF BD AF AD=,又∵tan tan BD AB DAB C AD AC=∠=∠=,∴DF AB AF AC =,即AB AF AC DF ⋅=⋅.【点睛】此题考查了相似三角形的判定与性质,直角三角形的性质以及锐角三角函数的性质等知识,合性较强,解题时要注意数形结合思想的应用.23.(1)1sin3CBD ∠=;(2)AD =【分析】(1)过点D 作DE BC ⊥于点E ,由三角函数求出1CE DE ==,再根据三角函数即可求出答案;(2)过点D 作DF AB ⊥于点F ,则四边形BEDF 是矩形,根据矩形的性质和勾股定理,即可得到答案.【详解】解:(1)如图,过点D 作DE BC ⊥于点E ,在Rt CED ∆中,∵45,C CD ∠=︒=∴1CE DE ==,在Rt BDE ∆中,1sin 3DE CBD BD ∠==;(2)过点D 作DF AB ⊥于点F ,则90BFD BED ABC ∠=∠=∠=︒,∴四边形BEDF 是矩形,∴1DE BF ==,∵3BD =,∴DF =∵3AB =,∴2AF =,∴AD =【点睛】本题考查了解直角三角形,锐角三角函数,勾股定理,以及矩形的判定和性质,解题的关键是熟练掌握所学的知识,正确利用解直角三角形和锐角三角函数进行解题.24.(1)见解析;(2)16【分析】(1)根据平行四边形的性质,证明两角对应相等,两三角形相似即可.(2)首先证明ABF DEF ∆≅,再证明EFD EBC ∆∆∽,利用相似三角形的性质面积比等于相似比的平方,即可求出EBC ∆的面积,由此即可解决问题.【详解】解:(1) 四边形ABCD 是平行四边形A C ∴∠=∠,//AB CDABF CEB∴∠=∠ABF CEB∴∆∆∽(2)解: 四边形ABCD 是平行四边形,//AD BC ∴,AB 平行且等于CD ,DEF CEB ∴∆∆∽,DEF ABF ∆∆∽,12DE CD = ,∴21()9DEF CEB S DE S CE ∆∆==,2DEF S ∆= ,18CEB S ∆∴=,16BCE DEF BCDF S S S ∆∆∴=-=四边形.【点睛】本题主要考查了平行四边形的性质,相似三角形的判定和性质,熟悉相似三角形的性质和判定是解决问题的关键.25.(1)1(1)(5)y x x =--,21y x =--;(2)见解析;(3)1【分析】(1)根据题意将点(0,5)G 代入抛物线解得1a =由此即可得出答案;(2)根据题意,求出顶点坐标为(3,4)a -.根据顶点和直线解析式2y ax a =--的关系即可证明;(3)过A ,B 两点作x 轴的垂线,垂足分别为M ,N 两点,根据题意可求出(1,0)E -,(2,0)M ,(3,0)N ,由////OF AM BN ,可得::::EF FA AB EO OM MN =,即可得出结论;【详解】解:(1)∵点(0,5)G 在该抛物线上,∴5(1)(5)a =-⨯-,∴1a =,所以抛物线解析式为:1(1)(5)y x x =--直线解析式为21y x =--(2)证明:令1(1)(5)y a x x =--=0解得:x 1=1,x 2=5所以与x 轴交点为(1,0)和(5,0),所以其对称轴为直线3x =,顶点坐标为(3,4)a -.当x=3时,234y a a a =--=-,∴2y 经过点(3,4)a -,所以直线2y ax a =--始终经过该抛物线的顶点.(3)过A ,B 两点作x 轴的垂线,垂足分别为M ,N 两点,令2y ax a =--=0,解得1x =-,即(1,0)E -,联立两个解析式12(1)(5)y a x x y ax a=--⎧⎨=--⎩得(1)(5)a x x ax a --=--,解得12x =,23x =,所以(2,0)M ,(3,0)N ,∵////OF AM BN∴::::1:2:1EF FA AB EO OM MN ==,∴1EF AB AF+=【点睛】本题主要考查了抛物线与一次函数及平行线分线段成比例的综合运用,熟练掌握相关概念是解题关键.。
【5套打包】宁波市初三九年级数学上期末考试测试题(含答案解析)

最新人教版九年级(上)期末模拟数学试卷(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()A.B.C.D.2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为1C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币20000次,正面朝上的次数一定是10000次3.将抛物线y=(x﹣1)2+1向左平移1个单位,得到的抛物线解析式为()A.y=(x﹣2)2+1B.y=x2+1C.y=(x+1)2+1D.y=(x﹣1)24.已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A.B.C.D.6.用配方法解方程x2﹣8x﹣20=0,下列变形正确的是()A.(x+4)2=24B.(x+8)2=44C.(x+4)2=36D.(x﹣4)2=367.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m﹣3等于()A.2B.﹣2C.1D.﹣18.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个9.函数y=﹣(x﹣1)2,当满足()时,y随x的增大而减小.A.x>0B.x<0C.x>1D.x<110.如图,在扇形OAB中,∠AOB=120°,点C是弧AB上的一个动点(不与点A、B重合),OD⊥BC,OE⊥AC,垂足分别为点D、E.若DE=,则弧AB的长为()A.B.C.D.2π二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。
11.如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是.12.做重复实验:抛掷同一枚啤酒瓶盖1000次,经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率为.13.已知点A(﹣3,y1),B(2,y2)在抛物线y=上,则y1y2.(填“<”,“>”,“=”)14.如图,四边形OABC的顶点A、B、C均在⊙O上,圆心角∠AOC=100°,则∠ABC°.15.如图,在△ABC中,AB=AC,∠C=72°,△ABC绕点B逆时针旋转,当点C的对应点C1落在边AC上时,设AC的对应边A1C1与AB的交点为E,则∠BEC1=°.16.如图,作半径为1的⊙O的内接正六边形A1B1C1D1E1F1,然后作正六边形A1B1C1D1E1F1的内切圆,得第二个圆,再作第二个圆的内接正六边形A2B2C2D2E2F2,又作正六边形A2B2C2D2E2F2的内切圆,得第三个圆…,如此下去,则第六个圆的半径为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)解方程:x(x+4)=﹣3(x+4).18.(6分)如图,P A、PB是⊙O的两条切线,A、B是切点,AC是⊙O的直径,∠BAC=35°,求∠P的度数.19.(6分)李师傅今年开一家商店,2月份盈利2400元,4月份盈利3456元,且每月盈利的平均增长率都相等,求每月盈利的平均增长率.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)甲、乙两人面前分别摆有3张完全相同的背面向上的卡片,甲面前的卡片正面分别标有数字0,1,2;乙面前的卡片正面分别标有数字﹣1,﹣2,0;现甲从面前随机抽取一张卡片,卡片正面上的数字记为x,乙从面前随机抽取一张卡片,卡片正面上的数字记为y,设点M的坐标为(x,y).用树形图或列表法求点M在函数y=﹣图象上的概率.21.(7分)如图,一次函数y=x的图象与反比例函数y═的图象交于A,B两点,且点A坐标为(1,m).(1)求此反比例函数的解析式;(2)当x取何值时,一次函数大于反比例函数的值.22.(7分)在Rt△ABC中,∠A=30°,∠ACB=90°,AB=10,D为AC上点.将BD绕点B顺时针旋转60°得到BE,连接CE.(1)证明:∠ABD=∠CBE;(2)连接ED,若ED=2,求的值.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)已知抛物线y1=x2+mx+n,直线y2=2x+1,抛物线y1的对称轴与直线y2的交点为点A,且点A的纵坐标为5.(1)求m的值;(2)若点A与抛物线y1的顶点B的距离为4,求抛物线y1的解析式;(3)若抛物线y1与直线y2只有一个公共点,求n的值.24.(9分)如图,BC为⊙O的直径,点A是弧BC的中点,连接BA并延长至点D,使得AD=AB,连接CD,点E为CD上一点,连接BE交弧BC于点F,连接AF.(1)求证:CD为⊙O的切线;(2)求证:∠DAF=∠BEC;(3)若DE=2CE=4,求AF的长.25.(9分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x (0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.参考答案一、选择题1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据旋转180°后与原图重合的图形是中心对称图形,进而分析即可.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为1C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币20000次,正面朝上的次数一定是10000次【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对选项进行判定;解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币20000次,正面朝上的次数可能为10000次,所以D选项错误.故选:A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.3.将抛物线y=(x﹣1)2+1向左平移1个单位,得到的抛物线解析式为()A.y=(x﹣2)2+1B.y=x2+1C.y=(x+1)2+1D.y=(x﹣1)2【分析】抛物线平移不改变a的值,结合平移的规律:左加右减,上加下减,书写新抛物线解析式.解:将抛物线y=(x﹣1)2+1向左平移1个单位,得到的抛物线解析式为y=(x﹣1+1)2+1=x2+1,即y=x2+1.故选:B.【点评】主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4.已知反比例函数y=的图象过点P(2,﹣3),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6<0,∴该反比例函数经过第二、四象限.故选:C.【点评】本题考查了反比例函数的性质.反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A.B.C.D.【分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是:=,故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.6.用配方法解方程x2﹣8x﹣20=0,下列变形正确的是()A.(x+4)2=24B.(x+8)2=44C.(x+4)2=36D.(x﹣4)2=36【分析】将方程的常数项移到右边,两边都加上16,左边化为完全平方式,右边合并即可得到结果.解:x2﹣8x﹣20=0,移项得:x2﹣8x=20,配方得:x2﹣8x+16=20+16,即(x﹣4)2=36.故选:D.【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,利用平方根定义开方转化为两个一元一次方程来求解.7.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m﹣3等于()A.2B.﹣2C.1D.﹣1【分析】根据一元二次方程的解的定义即可求出答案.解:由题意可知:m2﹣m﹣2=0,∴m2﹣m=2,∴原式=2﹣3=﹣1,故选:D.【点评】本题考查一元二次方程的解法,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.8.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个【分析】根据直线和圆的位置关系判断方法,可得结论.解:∵d=3<半径=4∴直线与圆相交∴直线m与⊙O公共点的个数为2个故选:C.【点评】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l 和⊙O相离⇔d>r.9.函数y=﹣(x﹣1)2,当满足()时,y随x的增大而减小.A.x>0B.x<0C.x>1D.x<1【分析】由抛物线解析式得出开口方向和对称轴,再根据二次函数的性质求解可得.解:∵y=﹣(x﹣1)2,∴a=﹣1<0,对称轴为直线x=1,则当x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小;故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).10.如图,在扇形OAB中,∠AOB=120°,点C是弧AB上的一个动点(不与点A、B重合),OD ⊥BC,OE⊥AC,垂足分别为点D、E.若DE=,则弧AB的长为()A.B.C.D.2π【分析】如图作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.解:如图作OH⊥AB于H.∵OD⊥BC,OE⊥A C,∴CD=DB,CE=AE,∴AB=2DE=2,∵OH⊥AB,∴BH=AH=,∵OA=OB,∴∠AOH=∠BOH=60°,OB==2,∴的长==,故选:B.【点评】本题考查弧长公式,三角形的中位线定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。
重庆珊瑚中学初三数学九年级上册期末模拟试题(含答案)
重庆珊瑚中学初三数学九年级上册期末模拟试题(含答案)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A .2:3B .2:3C .4:9D .16:81 2.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠3.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )A .点P 在O 上B .点P 在O 外C .点P 在O 内D .无法确定4.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°5.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( )A .2sin 3B =; B .2cos 3B =;C .2tan 3B =;D .以上都不对;6.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .47.下列说法中,不正确的是( )A .圆既是轴对称图形又是中心对称图形B .圆有无数条对称轴C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心 8.△ABC 的外接圆圆心是该三角形( )的交点. A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高 9.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .1610.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .1211.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .10πD .π 12.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( )A .12.36cmB .13.6cmC .32.386cmD .7.64cm 13.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .3 14.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣1 15.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°二、填空题16.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.17.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.18.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .19.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.20.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.21.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.22.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 23.方程22x x =的根是________.24.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.25.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.26.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.27.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.28.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)29.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.30.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.三、解答题31.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?32.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB .(1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.33.已知二次函数y =2x 2+bx ﹣6的图象经过点(2,﹣6),若这个二次函数与x 轴交于A .B 两点,与y 轴交于点C ,求出△ABC 的面积.34.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.35.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m ≤15),B 类(9≤m ≤11),C 类(6≤m ≤8),D 类(m ≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为 ,扇形统计图中A 类所对的圆心角是 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C 类的有多少名?四、压轴题36.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?37.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ;(2)求证:AC 是⊙O 的切线;(3)求图中两阴影部分面积的和.38.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.39.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 40.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为492 3 .故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.D解析:D【解析】【分析】由函数是二次函数得到a-1≠0即可解题.【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0,解得:a≠1,故选你D.【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.3.B解析:B【解析】【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴10= ,∵O 的直径为10,∴r=5,∵OP>5,∴点P 在O 外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断. 4.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC ,然后根据圆周角定理计算∠ADC 的度数.【详解】∵BC 的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.5.C解析:C【解析】【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC++==,所以cosB=313BCAB=,sinB=21233AC ACtanBAB BC===,所以只有选项C正确;故选:C.【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.6.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.7.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大8.A解析:A【解析】【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.9.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12 BC,∴△ADE∽△ABC,∵DEBC=12,∴14ADEABCSS∆∆=,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.10.C解析:C【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.11.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为601010π⨯=.故选C. 12.A 解析:A 【解析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.13.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.14.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.15.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题16.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr 即可求解. 【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm 2. 故答案是:35π.【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=C B∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径 ∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 18.2-2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=AB ,代入运算即可.【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×=cm , 故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×12=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般. 19.46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠D CB=80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)44 2-=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.20.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:x解析:13【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.21.50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.22.【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只,根据题意得,解得x=10,经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】此题主解析:【解析】【分析】直接利用概率公式计算.【详解】解:设袋中共有小球只, 根据题意得635x =,解得x =10, 经检验,x=10是原方程的解,所以袋中共有小球10只.故答案为10.【点睛】 此题主要考查概率公式,解题的关键是熟知概率公式的运用.23.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.24.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.25.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.26.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.27.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.28.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.29.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.30.【解析】【分析】先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=,再连接PF、AF,解析:2【解析】【分析】先在CB上取一点F,使得CF=12,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=12,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵14CFCP=,14CPCB=∴CF CP CP CB=又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴14 PF CFPB CP==∴PA+14PB=PA+PF , ∵PA+PF≥AF ,AF=2222114562CF AC ⎛⎫+=+= ⎪⎝⎭∴PA+14PB ≥.1452∴PA+14PB 的最小值为145, 故答案为145.【点睛】 本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键. 三、解答题31.(1)y=100x (010x ≤≤的整数) y=2-3130x +x(1030x <≤的整数);(2)购买22件时,该网站获利最多,最多为1408元.【解析】【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当010x ≤≤的整数时,y 与x 的关系式为y=100x ;当1030x <≤的整数时,1030062002x y x , y=2-3130x x + (1030x <≤的整数),∴y 与x 的关系式为:y=100x (010x ≤≤的整数), y=2-3130x +x(1030x <≤的整数)(2)当(010x ≤≤的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=23130x x -+,∵a=-3<0,抛物线开口向下,∴y 有最大值,当x=22123b a -=时,y 取最大值, 因为x 为整数,根据对称性得:当x=22时,y 有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x 的取值范围及取值要求是解答此题的关键之处.32.(1)见解析;(2)BP =7.【解析】【分析】(1)连接OB ,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP ∽△ABD ,然后利用相似三角形的对应边成比例求BP 的长.【详解】(1)证明:连接OB ,如图,∵AD 是⊙O 的直径,∴∠ABD =90°,∴∠A+∠ADB =90°,∵OA =OB ,∴∠A =∠OBA ,∵∠CBP =∠ADB ,∴∠OBA+∠CBP =90°,∴∠OBC =180°﹣90°=90°,∴BC ⊥OB ,∴BC 是⊙O 的切线;(2)解:∵OA =2,∴AD =2OA =4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴APAD =AOAB,即14BP=21,解得:BP=7.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.33.【解析】【分析】如图,把(0,6)代入y=2x2+bx﹣6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用△ABC的面积=12×AB×OC,即可得答案.【详解】如图,∵二次函数y=2x2+bx﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b﹣6,解得:b=﹣4,∴抛物线的表达式为:y=2x2﹣4x﹣6;∴点C(0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=12×AB×OC=12×4×6=12.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.34.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【解析】【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.35.(1)50,72;(2)作图见解析;(3)90.【解析】【分析】(1)用A类学生的人数除以A类学生的人数所占的百分比即可得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)用该校九年级男生的人数乘以该校九年级男生“引体向上”项目成绩为C类的的学生所占得百分比即可得答案.【详解】(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如所示,。
第一学期九年级数学期末试卷初三模拟七
第一学期九年级期末试卷七1. 改革开放以来,我国国内生产总值由1978年的3645亿元增长到2008年的300670亿元。
将300670用科学记数法表示应为A.60.3006710⨯ B.53.006710⨯ C.43.006710⨯ D.430.06710⨯2. 设02a =,2(3)b =-,39c =-,11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是 A .c a d b <<< B .b d a c <<<C .a c d b <<<D .b c a d <<<3. 用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设A .a 不垂直于cB .a ,b 都不垂直于cC .a ⊥bD .a 与b 相交4. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o,那么∠2的度数是A .32oB .58oC .68oD .60o5. 在直角坐标系中,点P 在直线04=-+y x 上,O 为原点,则|OP|的最小值为A . -2B . 22C .6 D . 106. “赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是 A .12B .14C .15D .1107. 已知:m n ,是两个连续自然数()m n <,且q mn =.设p q n q m =++-,则p A.总是奇数 B.总是偶数C.有时是奇数,有时是偶数 D.有时是有理数,有时是无理数8. 如图,矩形ABCG (BC AB ⊥)与矩形CDEF 全等,点B 、C 、D 在同一条直线上,APE ∠ 的顶点P 在线段BD 上移动,使APE ∠为直角的点P 的个数是 A .0 B .1 C .2 D .39. 如图,AB 是半圆的直径,点C 是弧AB 的中点,点E 是弧AC 的中点,连结EB 、CA交于(第6题)2 1(第4题)点F ,则BFEF为 A.13 B. 14 C. 212- D. 212- 10. 如图,A 1、A 2、A 3是抛物线2y ax =( a>0)上的三点,A 1B 1、A 2B 2、A 3B 3分别垂直于x 轴,垂足为B 1、B 2、B 3,直线A 2B 2交线段A 1A 3于点C.A 1、A 2、A 3三点的横坐标为连续整数n-1、n 、n+1,则线段CA 2的长为A. aB. 2aC. nD. n-111. 如图,日食图中表示太阳和月亮的分别为两个圆,这两个圆的位置关系是 . 12. 如果一个数x 与2相乘的结果是有理数,则这个数x 的一般形式是 .(用代数式表示x )13. 体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是2 6.4S =甲,乙同学的方差是28.2S =乙,那么这两名同学跳高成绩比较稳定的是 同学.14. 如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB =20°)时最为合适,已知货车车厢底部到地面的距离AB =1.5m,木板超出车厢部分AD =0.5m,则木板CD 的长度为 .(参考数据:sin20°≈0.3420,cos 20°≈0.9397,精确到0.1m ).15. 某饮料公司的饮料车间先将散装饮料灌装成瓶装饮料,再将瓶装饮料装箱出车间,该车间有灌装、装箱生产线共26条, 每条灌装、装箱生产线的生产流量分别如图1、2所示. 某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装饮料存量变化情况,则灌装生产线有 条.(第11题)A BC D (第14题图1) (第14题图2) (第9题)F A B CPG (第8题)ED(第10题)6425A 1 A 2A 3B 1 B 2 B 3OxyC16. 如图,图1是一块边长为1,面积记为S 1的正三角形纸板,沿图1的底边剪去一块边长为12的正三角形纸板后得到图2,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图3,4,…,记第n (n ≥3) 块纸板的面积为S n ,则S n-1-S n = .17.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x ,y 的值;(2)在备用图中完成此方阵图.18.如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90的扇形.(1)求这个扇形的面积(结果保留 );(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(第16题)…1 2 3 4 –2 34 (备用图)2y –x –2 3 4 x y (第17题) ab c(第15题) AB C O① ② ③ (第18题)19.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角1C 处.(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径; (2)当1445AB BC CC ===,,时,求蚂蚁爬过的最短路径的长.20.如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,使AB=a ,BC=a 21,∠ABC=Rt ∠(要求保留作图痕迹,不必写出作法);(2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的中线长 .21.为了了解某校初三年级1000名学生的视力情况,随机抽查了部分初三学生的视力情况,经过统计绘制了频率分布表和频率分布直方图.频率分布表 频率分布直方图根据图表中的信息回答下列问题:(1)写出频率分布表中的a = ,b = ,补全频率分布直方图;分组 频数 频率3.95~4.25 60.12 4.25~4.55 a b 4.55~4.85 17 0.34 4.85~5.15 15 0.3 5.15~5.45 40.08合计50 1(备用图)(第19题)频率 组距视力0 3.95 4.25 4.55 4.85 5.15 5.45(第20题)a(2)判断这组数据的中位数落在哪个小组内?(3)若视力在4.85~5.15范围内均属于正常,不需要矫正.试估计该校初三学生视力正常的人数约为多少人?22.已知,如图,△ABC 是等边三角形,过AC 边上的点D 作DG ∥BC ,交AB 于点G ,在GD 的延长线上取点E ,使DE =DC ,连接AE 、BD . (1)求证:△AGE ≌△DAB(2)过点E 作EF ∥DB ,交BC 于点F ,连AF ,求∠AFE 的度数.23.甲喜欢喝西湖龙井茶,乙喜欢喝咖啡。
第一学期九年级数学期末试卷初三模拟一
第一学期九年级期末试卷一一.选择题1.函数)(x f y =的图像如右图所示,根据图像提供的信息, 下列结论中错误的是………………………………( ) A.0)5(=f ;B.2)6(-=f ;C.当73≤≤x 时,42≤≤-y ; D.当63≤≤x 时,y 随x 的增大而增 2.如果点D 、E 分别在△ABC 边AB 、AC 的反向延长线上,一定能推出DE ∥BC 的条件是 A .AC AE BC DE = ; B .AC AD AB AE =; C .AE AC AD AB =; D .BDADCE AC =. 3.根据你对相似的理解,下列命题中,不.正确的是( ). (A )相似三角形的对应角相等; (B )相似三角形的对应边成比例; (C )相似三角形的周长比等于相似比; (D )相似三角形的面积比等于相似比. 4.直线x y 2=与x 轴正半轴的夹角为α,那么下列结论正确的是( ). (A )2tan =α; (B )2cot =α ; (C )2sin =α; (D )2cos =α.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O . 下列命题中,正确的是( ). (A )CD AB =; (B )OC AD AB 2=+; (C )OB OA =; (D )AB OB OA =-.6.已知c bx ax x f ++=2)((其中c b a 、、为常数,且0≠a ),小明在用描点法画)(x f y =的图像时,列出如下表格.根据该表格,下列判断中,不.正确的是( )(A )抛物线)(x f y =开口向下; (B ) 抛物线)(x f y =的对称轴是直线1=x ; (C )2)3(-=f ; (D ))8()7(f f <. 二.填空题7. 4的平方根是 .x … 1- 0 1 2 …y… 2- 2.5 4 2.5 …AO xyαxy367 45-28. 不等式012<-x 的解集是 .9. 方程1112-=-x x x 的解为 . 10. 平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是 .11. 抛物线2)1(2++-=x y 的顶点坐标为 .12. 把抛物线23x y =先向右平移2个单位,再向下平移1个单位,这时抛物线的解析式为: .13. 一条抛物线具有下列性质:(1)经过点)3,0(A ;(2)在y 轴左侧的部分是上升的,在y 轴右侧的部分是下降的. 试写出一个满足这两条性质的抛物线的表达式. .14. 某小山坡的坡长为200米,山坡的高度为100米,则该山坡的坡度i = . 15. 在平面直角坐标系中,已知点)0,1(A 、)2,0(B 、)2,2(C .记向量e OA =,则OC OB -= (用e 表示).16. 已知ABC ∆中,点D 、E 分别在边AB 、AC 上,且DE ∥BC . 若ADE ∆的面积与四边形BCED 的面积相等,则ABAD的值为 .17. 如图,梯形ABCD 中,AB ∥CD ,点M 、N 分别是AD 、BC 的中点,AB DE ⊥,垂足为点E . 若四边形BCDE 是正方形,且点M 、N 关于直线DE 对称,则DAE ∠的余切值为 .18.如图,已知菱形ABCD 中,︒=∠60ABC ,点E 在边BC 上,︒=∠25BAE .把线段AE 绕点A 逆时针方向旋转,使点E 落在边CD 上,则旋转角α的 度数为 .(︒<<︒1800α)(第18题图)ADBCE(第17题图)ABCEDM N. . ADB CE (第16题图)三.解答题19. 先化简,再求代数式12)1311(2-÷-+++x xx x x 的值.其中︒-︒=45cos 60sin x .20. 如图,已知向量a 、b ,求作向量x ,满足2)2(21b a b a x -=+-. (不要求写作法,但要保留作图痕迹,并写出结论)21.如图,ABC ∆中,点D 在边BC 上,DE ∥AB ,DE 交AC 于点E ,点F 在边AB 上,且AE CE FB AF =.(1)求证:DF ∥AC ;(2)如果2:1:=DC BD ,ABC ∆的面积为182cm ,求四边形AEDF 的面积.22、为了预防“流感”,某学校对教室进行“药熏”消毒。
第一学期九年级数学期末试卷初三模拟八
俯视主视α第一学期九年级期末试卷八1.25的算术平方根是A . 5B .±5 C.5 D .±5 2.到三角形各顶点的距离相等的点是三角形( ) A .三条角平分线的交点 B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点3.一个几何体及它的主视图和俯视图如图所示, 那么它的左视图正确的是________4.玉树地震后,各界爱心如潮,4月20日 搜索“玉树捐款”获得约7945000条结果,其中7945000用科学记数法表示应为__________(保留三个有效数字)A . 7.94³105B . 7.94³106C . 7.95³105D . 7.95³1065.某青年排球队12名队员的年龄情况如下:年龄(单位:岁) 18 19 20 21 22 人 数14322则这个队队员年龄的众数和中位数是______________A 、19,20B 、19,19C 、19,20.5D 、20,19 6.分解因式:2327a -=.7.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,已知DE =6cm ,则BC =___ ___cm .8.一件衬衣标价是132元,若以9折降价出售,仍可获利10%,则 这件衬衣的进价是 元.9.为了测量一个圆形铁环的半径,某同学采用了如下办法:将 铁环平放在水平桌面上,用一个锐角为30°的三角板和一 个刻度尺,按如图所示的方法得到相关数据,进而可求得铁 环的半径,若测得PA =5cm ,则铁环的半径是cm .10.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,A B C D(第7题)图13CBA直角三角形中较小的锐角为α,则tan α的值等于___________ 11. 计算12. 如图,要在一块形状为直角三角形(∠C 为直角)的铁皮上裁出一个半圆形的铁皮,需先 在这块铁皮上画出一个半圆,使它的圆心在线段AC 上, 且与AB 、BC 都相切.请你用直尺和圆规画出来(要求 用尺规作图,保留作图痕迹,不要求写作法).13.如图,在ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使A K =CM 、BL =DN , 求证:四边形KLMN 为平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学九年级上册期末模拟试卷一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .703.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =4.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .15.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 726.抛物线223y x x =++与y 轴的交点为( ) A .(0,2)B .(2,0)C .(0,3)D .(3,0)7.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐8.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④9.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=42且∠ACB 最大时,b 的值为( ) A .226+B .226-+C .242+D .24210.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,011.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交 B .相切C .相离D .无法确定12.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( )A .23x y =B .32=y xC .23x y =D .23=y x13.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .414.二次函数y =()21x ++2的顶点是( ) A .(1,2) B .(1,−2)C .(−1,2)D .(−1,−2)15.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .34二、填空题16.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.17.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.18.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .19.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.20.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____. 21.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.22.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.23.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;24.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;25.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.26.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .27.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.28.某小区2019年的绿化面积为3000m2,计划2021年的绿化面积为4320m2,如果每年绿化面积的增长率相同,设增长率为x,则可列方程为______.29.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.30.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.三、解答题31.(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)32.为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y 与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?33.已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形? (2)当AB=3时,求□ABCD 的周长.34.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a 、b 满足的关系式及c 的值,(2)当x <0时,若y =a 2x +bx +c (a <0)的函数值随x 的增大而增大,求a 的取值范围, (3)如图,当a =−1时,在抛物线上是否存在点P ,使△PAB 的面积为32?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由,35.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情. (1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.四、压轴题36.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.37.已知,如图Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P为AC的中点,Q从点A运动到B,点Q运动到点B停止,连接PQ,取PQ的中点O,连接OC,OB.(1)若△ABC∽△APQ,求BQ的长;(2)在整个运动过程中,点O的运动路径长_____;(3)以O为圆心,OQ长为半径作⊙O,当⊙O与AB相切时,求△COB的面积.38.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.39.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 40.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D 【解析】 【分析】根据角的度数推出弧的度数,再利用外角∠AOC 的性质即可解题. 【详解】解:∵∠ADC=110°,即优弧ABC 的度数是220°, ∴劣弧ADC 的度数是140°, ∴∠AOC=140°, ∵OC=OB, ∴∠OCB=12∠AOC=70°, 故选D. 【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.B解析:B 【解析】 【分析】根据两内项之积等于两外项之积对各项分析判断即可得解. 【详解】解:由34a b=,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.4.C解析:C 【解析】 【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案. 【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++.故答案为:C. 【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.5.B解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6,∵E、F分别是边BC、CD的中点,∴12 EFBD=,∴14EFCBCDDSS=,∴18EFCABCDSS=四边形,∴1176824AGH EFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.6.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.7.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S2甲=1.7,S2乙=2.4,∴S2甲<S2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键8.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可.【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心,∴OA =OC =OB ,∵四边形OCDE 为正方形,∴OA =OC <OD ,∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心,OA =OE =OB ,即O 是△AEB 的外心,OB =OC =OE ,即O 是△BCE 的外心,OB =OA ≠OD ,即O 不是△ABD 的外心,故选:A .【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.9.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.【详解】解:∵AB=42A(0,2)、B(a ,a +2)22(22)42a a ++-=解得a =4或a =-4(因为a >0,舍去)∴B(4,6),设直线AB 的解析式为y=kx+2,将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+,将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.10.C解析:C【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.11.B解析:B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm ,∴直线和圆相切,故选B .【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.12.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.13.B解析:B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.14.C解析:C【解析】【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21x++2的顶点坐标.【详解】解:∵二次函数y=()21x++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.15.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题16.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.18.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.19.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.20.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019 解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).21.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:45. 【点睛】 本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.23.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.24.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),∵a=10,开口向上,∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.25.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.26..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:10 3.【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴2210=3AD AE DE =+ 考点: 1.相似三角形的判定与性质;2.勾股定理.27.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.28.3000(1+ x)2=4320【解析】【分析】设增长率为x ,则2010年绿化面积为3000(1+x )m2,则2021年的绿化面积为3000(1+x )(1+x )m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x ,则2010年绿化面积为3000(1+x )m 2,则2021年的绿化面积为3000(1+x )(1+x )m 2,然后可得方程.【详解】解:设增长率为x ,由题意得:3000(1+x )2=4320,故答案为:3000(1+x )2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.29.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h ,∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.30.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC ,故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.三、解答题 31.(1)2m n;(2)见解析. 【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n. (2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.32.(1)y=﹣0.5x+110;(2)房价定为120元时,合作社每天获利最大,最大利润是5000元.【解析】【分析】(1)根据题意和函数图象中的数据可以求得相应的函数解析式;(2)根据题意可以得到利润与x 之间的函数解析式,从而可以求得最大利润.【详解】(1)设y 与x 之间的函数关系式为y=kx+b ,70758070k b k b +=⎧⎨+=⎩,解得:0.5110k b =-⎧⎨=⎩, 即y 与x 之间的函数关系式是y=﹣0.5x+110;(2)设合作社每天获得的利润为w 元,w=x (﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x 2+120x ﹣2200=﹣0.5(x ﹣120)2+5000, ∵60≤x≤150,∴当x=120时,w 取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.【点睛】本题考查了一次函数的应用、二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.33.(1)32)14【解析】【分析】(1)由菱形的四边相等知方程有两个相等的实数根,据此利用根的判别式求解可得,注意验根;(2)由AB=3知方程的一个解为3,代入方程求出m 的值,从而还原方程,再利用根与系数的关系得出AB+AD 的值,从而得出答案.【详解】解:(1)若四边形ABCD 是菱形,则AB=AD,所以方程有两个相等的实数根,则△=(-m )2-4×1×12=0,解得m=±检验:当m=,x=符合题意;当m=,x=-,不符合题意,故舍去.综上所述,当m 为,四边形ABCD 是菱形.(2)∵AB=3,∴9-3m+12=0,解得m=7,∴方程为x 2-7x+12=0,则AB+AD=7,∴平行四边形ABCD 的周长为2(AB+AD )=14.【点睛】本题主要考查根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系,菱形和平行四边形的性质.34.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P 的坐标为:(32-+,. 【解析】【分析】(1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而b=3a+1,即:3102a a+-≥,即可求解; (3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,由S △PAB =32,则P Q y y -=1,即可求解.【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=3-,故点A 、B 的坐标分别为(-3,0)、(0,3),则c=3,则函数表达式为:y=ax 2+bx+3,将点A 坐标代入上式并整理得:b=3a+1; (2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥, ∵31b a =+, ∴3102a a+-≥, 解得:13a ≥-,∴a 的取值范围为:103a -≤<; (3)当a=1-时,b=3a+1=2- 二次函数表达式为:223y x x =--+,过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,∵OA=OB ,∴∠BAO=∠PQH=45°,S △PAB =12×AB ×PH=12×32PQ ×22=32, 则PQ=P Q y y -=1,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点,分别与点AB 组成的三角形的面积也为32, ∴1P Q y y -=,设点P (x ,-x 2-2x+3),则点Q (x ,x+3),即:-x 2-2x+3-x-3=±1,解得:35x -±=313x -±=;∴点P 的坐标为:(352-+,552+)或(352--,552-)或(3132-+,1132+)或(3132--,1132-). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.35.(1)12;(2)13【解析】【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:2142=; 故答案为:12. (2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41123=. 【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏. 四、压轴题。