单回路控制系统参数整定

合集下载

单回路温度定值控制系统

单回路温度定值控制系统

第1章绪论1.1 设计要求1.1.1 设计题目和设计指标设计题目:智能温控系统设计设计指标:1)设计组成单回路控制系统的各部分,画出总体框图;2)能根据单回路温度定值控制系统的特点,确定控制方案;3)根据所确定的设计方案进行仪表选择、控制器选择、执行器选择;4)合理选择PID 参数。

5)撰写设计说明书及注意事项。

1.1.2 设计功能设计一个单回路温度控制系统,实现温度定值控制;确定设计方案,选择检测变送器、控制器、执行器,确定控制器算法,并进行参数整定,以提高综合运用有关专业知识的能力和实际动手能力。

第2章 系统总体设计方案2.1工艺流程图图1:工艺流程图2.2方框图工作流程介绍系统开始后,水温传感器将水温传送给控制器与给定值进行比较,e 是否为0,如果为0直接输出,如果不为0,控制器进行PID 计算,参数整定后,进行调节,然后传给执行器执行命令,从而达到温度稳定。

PID 控制器 电阻丝加热器 加热罐水温水温检测一给定值 输出值图2:温度单回路系统结构框图+ 加热器 TT 温检控 制 器TC给定值第3章 硬件设计和器件选择3.1电气接线图250欧姆250欧姆0~5V0~10V12250欧姆250欧姆0~10V75温度控制对象温度变送脉宽调制图3:调节器与温度模块接线图3.2器件选择3.2.1 控制器用于调节PID 算法的控制器选择AI818 3.2.2 温度传感器测量水温的传感器采用热电阻Cu50。

热电阻Cu50在—50~150℃测量范围内电热阻和温度之间呈线性关系,温度系数越大,测量精度越高,热补偿性好,在过程控制领域使用广泛。

系统采用三线制Cu50,温度信号经过变送单元转换成4~20mADC 电流信号,便于采集。

3.2.3 加热器采用电阻丝作为加热器件,采用可控硅移相触发单元调节电阻丝的发热功率,输入控制信号为4—20mA标准电流信号,其移相触发与输入控制电流成正比。

输出交流电压来控制加热器电阻丝的两端电压,从而控制加热罐的温度。

单回路控制系统

单回路控制系统

2.扰动分析 该系统的主要扰动如下所述。 (1)冷流体流量的变化。冷流体的流量增大,出口温度T下 降。 (2)冷流体温度的变化。冷流体的温度上升,出口温度T升 高。
单回路控制系统 (3)(如果蒸汽源不够稳定)蒸汽的压力变化。蒸汽压力上 升导致蒸汽流量增大,出口温度T升高。 (4)蒸汽温度的变化、换热器环境温度的变化也会影响出 口温度T的变化。这些扰动一般都是随机性的、无法预知的,但 当它们最终影响到出口温度T发生变化时,控制系统都能够加以 克服。 3.控制过程 无论是由于何种原因、何种扰动,只要其作用使出口温度T 有了变化,则控制系统就能通过控制器来克服扰动对出口温度T 的影响,使之回到原来的平衡状态。 当温度T偏离平衡状态而升高时,测温用铂热电阻的阻值增大。 由温度变送器将该阻值的变化转换为输出电流的增大,作为测量 值Z送给控制器。控制器将Z与设定值X相比较,由于设定值X保持 不变,则Z上升。由X-Z=E可知,E将下降。由所设置的控制器 性质可知,此时U下降。再由所设置执行器的性质,此时进入换 热器的蒸汽流量Q将减小。显然,Q减小将使出口温度T下降,出 口温度T逐渐回复到设定值。如果控制器的参数设置恰当,可获 得较满意的控制效果。这个控制过程可用符号简洁地表达为
单回路控制系统
2.1.2 控制过程分析
在此,仍以图2.1(a)所示的蒸汽换热器出口温度控制系统为例来分 析简单控制系统的工作过程。为便于分析,设本例中测量变送装置选用 分度号为S的铂热电阻及与之配套的温度变送器;采用电动控制器,且设 置为E上升时U也上升,E下降时U也下降;所用执行器为一台带电/气阀 门定位器的气动控制阀,且将其作用方式设置为U上升时Q上升,U下降 时Q亦下降。 1.平衡状态 当流入系统的蒸汽传递给冷流体的热量使被加热物料的出口温度T维 持在所要求的温度值时,设蒸汽的流量及品质保持不变,冷流体的流量 及品质也保持不变,则控制系统处于平衡状态,并将保持这个动态平衡, 直至有新的扰动量发生,或人们对被加热物料的出口温度有新的要求。

单回路测控仪说明书

单回路测控仪说明书

单回路测控仪说明书篇一:单回路数显控制仪说明书篇二:单回路控制系统参数整定课程设计报告( XX-- XX年度第2学期)名称:过程控制系统题目:院系:班级:学号:学生姓名:指导教师:设计周数:第十七周成绩:日期:XX年6月23日《过程控制系统》课程设计任务书一、目的与要求1.掌握单回路控制系统整定方法; 2.掌握PID参数对控制品质影响规律; 3.运用相应软件开发单回路控制系统整定程序。

二、主要内容1.学习基于被控对象模型的单回路控制系统参数整定方法; 2.开发单回路控制系统PID参数整定程序; 3.寻找不同PID参数对控制品质影响规律。

三、进度计划四、设计成果要求1.阐明基于被控对象模型的单回路控制系统参数整定方法的基本原理; 2.完整的、可运行的单回路控制系统PID参数整定程序;3.验证整定的PID参数下的控制效果,给出控制曲线图,同时给出其它PID参数下的控制曲线图,总结不同PID参数对控制品质影响规律。

五、考核方式1.设计报告; 2.设计答辩。

二、设计(实验)正文1.学习基于被控对象模型的单回路控制系统参数整定方法; 1)经验法内容:经验法实际是一种试凑法,是在生产实践中总结出来的参数整定法,该法在现场中得到了广泛的应用。

利用经验法对系统的参数进行整定时,首先根据经验设置一组调节器参数,然后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程;若调节过程不满足要求,则修改调节器参数,再作阶跃扰动试验,观察调节过程;反复上述试验,直到调节过程满意为止。

实验步骤:(1) 首先将调节器的积分时间Ti置最大,微分时间Td 置最小,根据经验设置比例带δ的数值,完成后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变比例带δ的值,重复上述试验,直到满意为止;(2) 将调节器的积分时间Ti由最大调整到某一值,由于积分作用的引入导致系统的稳定性下降,因而应将比例带适当增大,一般为纯比例作用的1.2倍。

单回路控制系统原理

单回路控制系统原理

调单回路控制系统原理一、过程控制的特点与其它自动控制系统相比,过程控制的主要特点是:1、系统由工业上系列生产的过程检测控制仪表组成。

一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。

如图1:液位控制系统HQ1Q2f(t)x(t)e(t)节p(t调)节被控q(t)y(t)z(t)测量变:调节器的静态放大系数:调节阀的静态放大系数K:被控对象的静态放大系数:变送器的静态放大系数2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。

3、控制方案的多样性。

有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。

这是其它自动控制系统所不能比拟的。

4、控制过程属慢过程,多半属参量控制。

即需对表征生产过程的温度、流量、压力、液位、成分、等进行控制。

5、在过程控制系统中,其给定值是恒定的(定值控制)或是已知时间的函数(程序控制)。

控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。

工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的特性参数,使系统运行在最佳状态。

过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。

二、单回路控制系统原理如图1所示单回路控制系统由对象、测量变送器、调节器、调节阀等环节组成。

由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。

单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。

如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。

过程控制1章单回路

过程控制1章单回路
④干扰(扰动) 除操纵变量外,作用于对象并使被控变量发生变化旳原因称为
干扰(扰动)。
(2)工作原理
假定控制阀为气关式(气闭式), 控制器为反作用 。
①F1旳变化造成 L 变化 ( F1 > F2 )→ L ↑ → u ↓ → F2 ↑→ L ↓ ( F1 < F2 )→ L ↓ → u ↑ → F2 ↓→ L ↑
(3)所选旳间接指标参数必须具有足够大旳变化敏捷度。 (4) 在被控变量选择时还需考虑到工艺旳合理性和国内、 外仪表生产旳现状。
1.3 操纵变量旳选择 操纵变量选择原则: 1. 选择操纵变量必须满足工艺上旳可实现性与合理性 可实现性——工艺上是可控旳。
如加热燃料旳流量与成份,流量是可控旳,成份是不 可控旳。
各环节特征: 检测元件:
Km 1 5s
干燥筒8.5S 1)(8.5S 1
K2 (100S 1)(100S 1)
混合过程: K3
1 10S
e 风管: 3s
选择: 1)乳液流量动态特征最佳,但工艺不合理,故不取。 2)空气量通道动态特征优于蒸汽流量,故空气流量选为
被控变量旳选择措施: (1)首选直接参数; (2)其次选择间接参数。
1.首选直接参数做被控变量 直接参数——能直接反应生产过程产品产量和质量、
稳定性以及安全运营旳参数。一般对于以温度、压力、流 量、液位为操作指标旳生产过程,就选择温度、压力、流 量、液位作为被控变量。 例:蒸汽锅炉锅水位控制系统,水位就是直接参数;
①被控对象 需要实现控制旳、与被控参数有关联旳设备或生产
过程称为被控对象,简称对象。
②被控变量 对象中需要进行控制(保持数值在某一范围内或按预
定规律变化)旳物理量称为被控变量。如本例中旳贮槽液 位。

单回路控制系统概述

单回路控制系统概述

单回路控制系统概述
设定值r 偏差e 调节`器
u
调节阀
干扰 f (t)
μ
被控过程
测量值x
测量变送器
y(t) 被调参数
对于过程控制系统设计和应用来说,控制方案的设计和 调节器参数的整定是其中两个重要内容。如果控制方案设计 不正确,仅凭调节器参数的整定是不可能获得较好的控制质 量的;若控制方案很好,但是调节器参数整定不合适,也不 能使系统运行在最佳状态。
⑷ 执行器 执行器的图形符号是由执行机构和调节机构的图形符号
组合而成的。
单回路控制系统
单回路控制系统概述
2.仪表位号
在检测控制系统中,构成回路的每个仪表(或元件)都用仪表位 号来标识。仪表位号由字母代号组合和回路编号两部分组成.首 字母表示被控变量,后继字母表示仪表的功能。回路的编号由 工序号和顺序号组成,一般用3-5位阿拉伯数字表示。
单回路控制系统
单回路控制系统概述
1.1 单回路控制系统的构成
单回路控制系统示例
液位控制系统
温度控制系统
压力控制系统
单回路控制系统
单回路控制系统概述
1.2 控制系统的工程表示
工艺控制系统流程图(管道仪表流程图):
液位控制系统
温度控制系统
压力控制系统
带测控点工艺流程图是自控设计的文字代号、图形 符号在工艺流程图上描述生产过程控制的原理图, 是控制系统设计、施工中采用的一种图示形式。
国家行业标准HG20505-92过程检测和控制系统用文字代号和图形符号
单回路控制系统
单回路控制系统概述
一些常用的图形符号和文字代号
1.图形符号
过程检测和控制系统图形符号包括测量点、连接线(引线、信 号线)和仪表圆圈等。 ⑴ 测量点

过程控制系统单回路控制系统

An automatic control system is a control system that is self-regulating, without any human intervention.
8/8/2024
1
第2页/共54页
2.1.2开环控制系统与闭环控制系统 ➢开环控制系统/Open-loop control system
8/8/2024
11
第12页/共54页
2.1.3 闭环控制系统的组成和基本环 节
1-给定环节(Set Point);2-比较环节(Comparator);3-校正
环节(Adjustor);4-放大环节(Amplifier);
5-执行机构(Actuator);6-被控对象(Plant);7-检测装置
8/8/2024
16
第17页/共54页
近20年来,随着计算机技术的发展,已将计算机用于过程控 制系统,称之为计算机过程控制系统。计算机过程控制是当 代大型机械设备自动化控制的基本形式。
➢计算机过程控制系统/Computer Process control system
计算机过程控制系统主要由 被控对象、 传感变 送器 、计算机装置和 执行机构四部分组成。
不失一般性,设系统的单位阶跃响应如图:(BP15~16)
8/8/2024
29
第30页/共54页
综上所述,对于稳定的系统,对于一个有界的输入,当时 间趋于无穷大时,微分方程的全解将趋于一个稳态的函数,使 系统达到一个新的平衡状态。工程上称为进入稳态过程。
系统达到稳态过程之前的过程称为瞬态过程。瞬态分析是 分析瞬态过程中输出响应的各种运动特性。理论上说,只有当 时间趋于无穷大时,才进入稳态过程,但这在工程上显然是无 法进行的。在工程上只讨论输入作用加入一段时间里的瞬态过 程,在这段时间里,反映了主要的瞬态性能指标。

单回路控制


控制器正反作用的判定
3、对于测量元件及变送器,其作用方向一般都是“正”的。 4、 对于执行器,它的作用方向取决于是气开阀还是气关阀 (注意不要与执行机构和控制阀的“正作用”及“反作用” 混淆)。执行器的气开或气关型式主要应从工艺安全角度来 确定。气动薄膜调节阀可分为气关(NO或FO)和气开(NC 或FC)两种型式。有信号压力时阀关、无信号压力时阀开的 为气关式。反之,为气开式。气开阀是“正”方向。气关阀 是“反”方向。 5、对于被控对象的作用方向。当操纵变量增加时,被控变量也 增加的对象属于“正作用”的。反之,属于“反作用”的。 6、控制器的作用方向要根据对象及执行器的作用方向来确定, 以使整个控制系统构成负反馈的闭环系统。
控制器正反作用的判定
扰动 Qi(t) 设定值 hsp + _ 偏差 e(t) 液体贮罐 干扰 通道

液位 控制器
控制信号 u(t)

出水 控制阀
操纵变量 Qo(t)

控制 通道 +
+
被控变量 h(t)
测量值 hm(t)

液位传感 测量变送器
举例:假设液位出水控制阀为气开。则KV为正,过程对象KP 为负,液位测量单元为正,要使KC*KV*KP*KT=正,则必须 KC= 负。所以液位控制器为正作用。
1 .2
T p 1 K p
控制器正反作用的判断
控制器的偏差正反作用选择 1、控制器正负偏差的规定 控制理论上以及仪表制造厂家规定: 正偏差:测量-给定=偏差 负偏差:给定-测量 2、正反作用规定:正作用:偏差增加,控制器输出增加(Z m-Sp)↑→Pc↑ 反作用:偏差增加控制输出减少(Zm-Sp)↑→Pc↓
PID三个基本参数kp 、ki 、kd 对PID控制作用和影响

PID控制器参数整定


控制器 P PI PID
Ti ∞ T T
Td 0 0 τ/2
取值
0
0.2
注意:上述整定规则不受τ/T 取值的限制
仿真举例 #1
Output of Transmitter 63 62.5 62 61.5
广义对象特性参数: K = 1.75
T = 6.5,τ= 3.3 min
在线整定仿真举例
Output of Transmitter 66
加热炉 工艺介质 Ti (t) 燃料油 ym(t) u(t) CO, %
TC 27
65 64 63
Ti = 6000 min, Td = 0 min Tu Kc = 2 set point
Kc = 4
T(t)
TT 27
Kc = 3.5
PID控制器参数整定
谢磊 浙江大学智能系统与控制研究所
PID(比例-积分-微分)控制器
理论PID 控制器
工业 PID 控制器(如何构造其仿真模型?)
Td s 1 1 Gc ( s) K c 1 Td A s 1 Ti s d
离线整定仿真举例 步骤 1:阶跃响应测试
Controller Output 6256 54
工艺介质 Ti (t) 燃料油
T(t)
TT 27
0
10
20
30
40
50
60
70
80
90
100
Transmitter Output 80
ym(t) u(t) CO, %
TC 27
TO, %
%
Ti = 20.8 min
Lambda 法:Kc = 0.30, Ti = 6.5 min

控制器的参数整定

简单控制系统的参数整定:(摘自化学工业出版社《过程控制技术》)表7-1 控制规律选择参考表:表7-2 控制器参数的大致范围:当控制系统已经构成“负反馈”,并且控制器的控制规律也已经正确选定,那么控制系统的品质主要决定于控制器参数的整定值。

即如何确定最合适的比例度δ、积分时间Ti和微分时间Td。

控制器参数的整定方法很多,现介绍几种工程上常用的方法。

1.经验试凑法这是一种在实践中很常用的方法。

具体做法是:在闭环控制系统中,根据被控对象情况,先将控制器参数设在一个常见的范围内,如表7-2所示。

然后施加一定的干扰,以δ、Ti、Td对过程的影响为指导,对δ、Ti、Td逐个整定,直到满意为止,凑试的顺序有两种。

(1)先凑试比例度,直到取得两个完整的波形的过渡过程为止。

然后,把δ稍放大10%到20%,再把积分时间Ti由大到小不断凑试,直到取得满意波形为止。

最后再加微分,进一步提高质量。

在整定中,若观察到曲线振荡频繁,应当加大比例度(目的是减小比例作用)以减小振荡;曲线最大偏差大且趋于非周期时,说明比例控制作用小了,应当加强,即应减小比例度;当曲线偏离设定值,长时间不回复,应减小积分时间;如果曲线总是波动,说明振荡严重,应当加长积分时间以减弱积分作用;如果曲线振荡的频率快,很可能是微分作用强了,应当减小微分时间;如果曲线波动大而且衰减慢,说明微分作用小了,未能抑制住波动,应加长微分时间。

总之,一面看曲线,一面分析和调整,直到满意为止。

(2)是从表7-2中取Ti的某个值。

如果需要微分,则取Td=(1/3~1/4)Ti。

然后对δ进行凑试,也能较快达到要求。

实践证明,在一定范围内适当组合δ与Ti的数值,可以获得相同的衰减比曲线。

也就是说,δ的减小可用增加Ti的办法来补偿,而基本上不影响控制过程的质量。

所以,先确定Ti、Td再确定δ也是可以的。

2.衰减曲线法衰减曲线法比较简单,可分两种方法。

(1)4:1衰减曲线法当系统稳定时,在纯比例作用下,用改变设定值的办法加入阶跃扰动,观察记录曲线的衰减比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单回路控制系统参数整定

This model paper was revised by LINDA on December 15, 2012. 课程设计报告 ( 2015-- 2016年度第2学期) 名 称: 过程控制系统 题 目: 单回路控制系统参数整定 院 系: 班 级: 学 号: 学生姓名: 指导教师: 设计周数: 第十七周 成 绩: 日期:2016年6月23日《过程控制系统》课程设计 任 务 书 一、 目的与要求 1. 掌握单回路控制系统整定方法; 2. 掌握PID参数对控制品质影响规律; 3. 运用相应软件开发单回路控制系统整定程序。 二、 主要内容 1. 学习基于被控对象模型的单回路控制系统参数整定方法; 2. 开发单回路控制系统PID参数整定程序; 3. 寻找不同PID参数对控制品质影响规律。 三、 进度计划

序号 设计内容 完成时间 备注 1 学习控制系统参数整定方法 一天 2 开发、调试PID参数整定程序 三天 3 总结并撰写设计报告 一天 四、 设计成果要求 1. 阐明基于被控对象模型的单回路控制系统参数整定方法的基本原理; 2. 完整的、可运行的单回路控制系统PID参数整定程序; 3. 验证整定的PID参数下的控制效果,给出控制曲线图,同时给出其它PID参数下的控制曲线图,总结不同PID参数对控制品质影响规律。

五、 考核方式 1. 设计报告; 2. 设计答辩。 二、设计(实验)正文 1.学习基于被控对象模型的单回路控制系统参数整定方法; 1)经验法 内容: 经验法实际是一种试凑法,是在生产实践中总结出来的参数整定法,该法在现场中得到了广泛的应用。利用经验法对系统的参数进行整定时,首先根据经验设置一组调节器参数,然后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程;若调节过程不满足要求,则修改调节器参数,再作阶跃扰动试验,观察调节过程;反复上述试验,直到调节过程满意为止。

实验步骤: (1) 首先将调节器的积分时间Ti置最大,微分时间Td置最小,根据经验设置比例带δ的数值,完成后将系统投入闭环运行,待系统稳定后作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变比例带δ的值,重复上述试验,直到满意为止;

(2) 将调节器的积分时间Ti由最大调整到某一值,由于积分作用的引入导致系统的稳定性下降,因而应将比例带适当增大,一般为纯比例作用的倍。系统投入闭环运行,待系统稳定后,作阶跃扰动试验,观察调节过程,若过渡过程有希望的衰减率则可,否则改变积分时间Ti的值,重复上述试验,直到满意为止;

(3) 将调节器的微分时间由小到大调整到某一数值,系统投入闭环运行,待系统稳定后,作阶跃扰动试验,观察调节过程,修改微分时间重复试验,直到满意为止;

2)临界比例带法 内容: 临界比例带法又称边界稳定法,首先将调节器设置成纯比例调节器,然后系统闭环投入运行,将比例带由大到小改变,观察系统输出,直到系统产生等幅振荡为止。记下此状态下的比例带数值(即为临界比例带δk)和振荡周期Tk,然后根据经验公式计算调节器的其它参数。

实验步骤: (1) 将调节器的积分时间Ti置于最大,微分时间Td置最小,即Ti→∞,Td=0;置比例带δ为一个较大的值;

(2) 系统闭环投入运行,待系统稳定后调整比例带δ的数值直到出现等幅振荡。记录并计算临界状态下临界比例带δcr和振荡周期Tcr,根据表2-1计算调节器的参数;

(3)根据δcr和Tcr,由计算公式求得控制器的各个参数。 (4) 将调节器按计算出的参数设置好,系统闭环投入运行,待系统稳定后作阶跃扰动试验,观察系统的调节过程,适当修改参数,直到满意为止。

临界比例带法计算公式:

3)衰减曲线法

内容:

衰减曲线法是在临界比例带法的基础上发展起来的,它既不象经验法那样要经过大量的试凑过程,也不象临界比例带法那样要求系统产生临界振荡过程。它是利用比例作用下产生的4:1衰减振荡(ψ=)过程时的调节器比例带δs及衰减周期Ts,或10:1衰减振荡(ψ=)过程时的调节器比例带δs及过程上升时间tr,根据经验公式确定调节器的参数。

实验步骤: (1) 置调节器参数Ti→∞,Td=0,比例带δ为一个较大的值,将系统投入闭环运行;

(2) 待系统稳定后作阶跃扰动试验,观察控制过程。若ψ大于要求的数值,则逐步减小比例带δ并重复试验,直到出现ψ=或ψ=的控制过程为止,并记下此时的比例带δs;

(3) 根据控制过程曲线求取ψ=衰减周期Ts或ψ=时的上升时间tr; (4) 计算调节器的参数δ、Ti、Td。

控制规律 δ Ti Td P PI PID 2δcr δcr δcr —— —— —— (5) 按计算结果设置调节器的参数,作阶跃扰动试验,观察调节过程,适当修改调节参数,直到满意为止。

衰减曲线法计算公式: ψ 规律 δ Ti Td ψ 规律 δ Ti Td

P PI PID δs δs δs —— —— —— P PI PID δs δs δs —— 2tr —— ——

4)响应曲线法 内容: 响应曲线法则是根据对象的阶跃响应曲线,求得对象的一组特征参数ε、τ(无自平衡能力的对象)或ε、ρ、τ(有自平衡能力的对象),然后按公式计算调节器的整定参数。

2.采用临界比例带法,开发单回路控制系统PID参数整定程序。 1).PID控制原理 常规PID控制系统主要由PID控制器和被控对象组成。 PID控制器是一种线性控制器,它根据给定值r(t)与实际输出值y(t)构成控制偏差e(t),将偏差按比例、积分和微分通过线性组合构成控制量u(t),对被控对象进行控制。控制器的输出和输入之间的关系可描述为:

式中,PK 为比例系数,iT 为积分时间常数,dT为微分时间常数。 2)MATLAB编程实现 设被控对象的数学模型为

反馈环节为单位负反馈。 (1)置调节器参数Ti→∞,Td=0,比例带δk为一个较大的值,将系统投入闭环运行;

(2)系统闭环投入运行,待系统稳定后调整比例带δk的数值直到出现等幅振荡。记录并计算临界状态下临界比例带δcr和振荡周期Tcr。

被控对象阶跃响应: G0=tf(1,[,,2,1]); G=feedback(G0,1); step(G) title('被控对象阶跃响应'); grid on; 调节Kp,直至出现等幅震荡。 G0=tf(1,[,,2,1]); P=; axis([0 25 0 ]); % figure; hold on G=feedback(P*G0,1);

127.18.01)(230SSSsGstep(G)

grid on; 记录此时δcr=1/,Tcr=。 (3)根据δcr和Tcr,由计算公式求得控制器的各个参数。 δ= δcr=%,Ti==,Td==。 (4)将调节器按计算出的参数设置好,系统闭环投入运行,待系统稳定后作阶跃扰动试验,观察系统的调节过程,适当修改参数,直到满意为止。

整定后阶跃响应曲线: G0=tf(1,[,,2,1]); Kp=;Ti=;Td=; Gc=tf(Kp*[Ti*Td,Ti,1],[Ti,0]); axis([0 25 0 ]); % figure; hold on G=feedback(Gc*G0,1); step(G) grid on; 适当调整参数,δ= 50%,Ti=2,Td=。 3). PID控制器参数对控制性能的影响 (1)K取不同值时的阶跃响应 G0=tf(1,[,,2,1]); Kp=[2::4]; Ti=2; Td=; figure; hold on for i=:length(Kp) Gc=tf(Kp(i)*[Ti*Td,Ti,1],[Ti,0]); G=feedback(G0*Gc,1); step(G) end grid on (2)Ti取不同值时的阶跃响应 G0=tf(1,[,,2,1]); Kp=2; Ti=[1::3]; Td=; t=0::20; figure; hold on for i=1:length(Ti) Gc=tf(Kp*[Ti(i)*Td,Ti(i),1],[Ti(i),0]); G=feedback(G0*Gc,1); step(G) end grid on (3)Td取不同值时的阶跃响应 G0=tf(1,[,,2,1]); Kp=2; Ti=2; Td=[::]; t=0::20; figure; hold on for i=1:length(Td) Gc=tf(Kp*[Ti*Td(i),Ti,1],[Ti,0]); G=feedback(G0*Gc,1); step(G) end grid on 三、课程设计总结或结论 PID控制器参数对控制性能的影响 1)比例系数 比例系数加大,偏差越小,但会引起被调量的来回波动,造成系统不稳定。比例系数越小,可以使被调量变化平稳甚至没有超调,但稳态偏差会很大,而且调节时间较长。

2)积分时间常数

相关文档
最新文档