橡胶老化寿命预测方法的研究情况简介
硅橡胶老化性能研究及寿命预测

硅橡胶老化性能研究及寿命预测摘要:采用加速老化试验方法对硅橡胶的热氧老化性能进行了研究,以获得不同老化温度及老化时间对硅橡胶力学性能的影响规律,并利用Arrhenius方程对热空气老化环境下的硅橡胶使用寿命做出预测。
结果表明,硅橡胶在热空气中老化时,随老化温度的升高和老化时间的延长,材料的拉伸强度和断裂伸长率均降低; 分别以拉伸强度和断裂伸长率作为考察指标做出寿命预测,推算出的寿命分别约为15a和16.4a。
关键词:硅橡胶;老化性能;寿命预测前言:硅橡胶以线型聚硅氧烷为生胶,通过填充填料并与其他助剂混炼后,再在一定条件下硫化,得到弹性态的硫化胶。
其主要成分聚硅氧烷是以交替Si-O为主链、侧链为有机基团的半无机半有机线性高分子,因此,硅橡胶具有许多优异的性质,硅橡胶兼具有机高分子和无机物的优异性能。
硅橡胶凭借其独特的性能,已广泛应用于社会生产生活中的各个领域,尤其在国防建设。
尖端科技发展等领域发挥着不可替代的作用。
但由于橡胶在贮存过程中会逐渐变质,其各项性能会随着时间增加而逐渐下降,甚至失去使用价值。
目前针对材料老化寿命的研究方法使用较多的是通过热空气老化测定橡胶选定性能的变化及达到指定临界值的时间,并利用Ar-rhenius方程来推算橡胶的贮存寿命。
国家标准GB/T20020-2005详细阐述了应用该方程推算寿命的方法。
本文使用该方法研究了硅橡胶的老化性能,并对硅橡胶使用寿命进行了评估,有利于硅橡胶产品生产过程中改进性能。
改善质量,为硅橡胶交付产品确定保险期(寿命),同时为其应用提供实验研究数据参考和理论依据。
1. 硅橡胶的耐热氧老化性硅橡胶在高温下的老化性能与其分子结构和环境条件密切相关,通常硅橡胶在高温下发生主链降解和侧基氧化反应。
端基为硅羟基(Si-OH)的硅橡胶的主链断裂降解方式存在;而端基为乙烯基(Si-C=C)的甲基硅橡胶可以采用无规断裂方式降解,也可以按残余催化剂参与解扣的方式降解。
加速老化试验预测橡胶使用寿命(自己翻译过来的)

加速试验预测橡胶组件的使用寿命(翻译的)摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。
我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。
这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用三元乙丙橡胶(EPDM),丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。
实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。
为了预测EPDM,NBR的使用寿命,对这两种橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。
通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。
关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。
符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度I 前言橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。
从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。
许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。
如何防止橡胶组件在使用过程中损坏是一个关键问题。
橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。
所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。
橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。
老化不光光影响了性能,同时也影响了组件的使用寿命。
橡胶组件所处环境的不同,使得它们的降解方式也不一样。
橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。
氯丁橡胶的老化和寿命预测研究

是 1 , 4键合 形式 , 其 大分 子 链 上 大部 分 氯 原 子 直 接连 接在 双键 的主链 上 。 由于氯 丁橡 胶分 子链 中 含有 极性 基 团 , 一方 面保 护双键 使其 活性 降低 ; 另
一
老化 环境 为热 空 气 老化 , 老化 温 度 为 5 5℃ 、
关键 词 : 氯丁橡胶 ; 热空气老化 ; 寿命
中图分类号 : TQ 3 3 3 . 5 文献标识码 : A 文章编号 : 1 0 0 5 — 3 1 7 4 ( 2 0 1 3 ) 0 1 — 0 0 2 2 — 0 4
橡 胶 的老化 是 生胶 或 橡 胶 制 品 在 加工 、 储 存
氯丁橡 胶是 自补 强较 好 的橡 胶 , 主 链 上 主要
老化箱 : DHG一 9 0 3 5 A, 上海 一恒 科学 仪器 厂 ; 拉伸 机 : WDT I 1 — 2 0 , 深圳 市凯 强利试 验 仪器 有 限 公司; 冲片机 : C P 一 2 5 , 江都 市道 纯试验 机械 厂 。
研 究 ・I N 1 3 A — 0 2 — E 2 I 5 A , 2 S 3 T ( 1 ( ) M : 2 E 2 R  ̄ I C 2 S 5
氯 丁橡 胶 的老 化 和 寿命 预 测 研 究 *
王
北京 1 0 0 0 9 4 )
锋 , 董 玉华 一 , 郭文 娟 , 丁晓 东 , 周 琼
将硫 化好 的橡胶 裁成 哑铃 型 , 厚 度为 ( 2 . ( ) ( ) ± 0 . 1 0 ) mm, 其它尺寸应符合 G B / T5 2 8 8 2 《 硫 化 橡胶 拉伸 性能 测定 》 的要 求 。
1 . 4 热 空气 老化 实验
橡胶老化研究的方法

橡胶老化研究的方法在早期的老化研究中主要用吸氧量来表征橡胶老化的速度和程度。
该方法有一定的优点,但也存在很大的缺陷,胶料的氧化速度很低,是可以说明它的耐热老化性很好,但氧化速度很高并不能说明胶料的耐老化性很差,这是因为不同胶料发生氧化反应的机理不同,相同摩尔量的胶料消耗氧的量不同。
某宏观表现为有些胶料在一定条件下吸收了相对较多的氧气,但胶料的物理机械性能变化并不显著。
大约在2O世纪2O年代前后,人们开始重视橡胶物理机械性能变化规律的研究。
就在此时吉尔(Gerr)烘箱问世,产生烘箱加速老化方法,同时又有氧弹加速老化和空气弹加速老化方法的出现。
经过Schoch等人长时间的人工加速老化与实际自然老化研究表明,烘箱加速老化与实际自然老化最接近,因此橡胶加速老化研究多以提高烘箱温度的加速老化方法为主。
1、橡胶老化的性能变化与评价方法由于橡胶老化的复杂性、试验和测试手段的限制,人们对老化规律的认识有一定的片面性和反复性,加之要与自然老化相对照,试验周期较长,所以在耐老化性评定方面特别是在定量计算上的研究,在2O世纪5O年代以前的进展是相当缓慢的。
在5O年以前主要是研究橡胶在非受力状态下的老化,测定的性能为拉伸强度S、扯断伸长率E、定伸应力M、抗张积SE、硬度H等。
由于橡胶密封零件在航空航天等现代工业技术中的广泛应用,橡胶在受力状态下的老化引起人们的特别重视,因此在近3O年里对橡胶应力松驰和压缩水久变形的研究较多,而且橡胶老化程度与测试数据相符。
Thomas S.Gates等人认为运用人工加速老化的方法研究材料性能指标的变化规律,对于新材料的筛选和制品长期老化性的评定有重要的指导性。
李咏今也强调运用橡胶老化性能变化的基本规律解决一些实际问题,他认为只有认识和掌握了橡胶热氧老化性能变化的一些基本规律,才能建立橡胶性能变化或制品寿命的快速预测方法;才能正确地评定硫化橡胶的耐热老化性;才能在试验室里研究硫化橡胶在常温下的化学变化行为。
橡胶材料老化机理与寿命预测研究

橡胶材料老化机理与寿命预测研究橡胶材料是我们日常生活中广泛应用的材料,如轮胎、密封制品、管道等等,但是随着时间的推移,橡胶材料会出现老化现象,导致其性能下降,失去原有的功能。
了解橡胶材料老化机理和寿命预测研究对于橡胶材料的使用和生产具有重要意义。
一、橡胶材料老化机理橡胶材料在使用过程中会遭受各种外界因素的影响,导致其材料性能发生变化,出现老化现象。
橡胶材料老化机理可以从以下几个方面进行分析。
1. 氧化老化氧化是导致橡胶老化的主要因素之一。
在空气中含氧量高的环境中,橡胶材料很容易出现氧化现象。
氧化过程中,橡胶分子的长链高分子结构会断裂,并形成一些小分子氧化产物。
2. 光老化使用橡胶材料的环境中可能会有紫外线、紫外线辐射等光源,这些光源能穿透橡胶材料并与其分子发生相互作用。
这些相互作用会导致橡胶材料的分子链结构断裂,从而形成一些小分子氧化产物。
3. 热老化常温下,橡胶材料的长链高分子结构相对稳定,但是当橡胶材料受热作用时,其分子结构会发生变化。
热老化的原因在于分子对热的敏感性,高温会引起橡胶分子的活化,从而使得其细胞结构发生变化。
4. 化学老化在使用橡胶材料过程中,橡胶材料会遭受各种化学因素的影响。
这些化学因素可能是有害物质、油性物质、水、酸、碱等,导致橡胶分子链变化并产生氧化物。
二、橡胶材料寿命预测研究针对橡胶材料的老化现象,科研工作者通过研究橡胶材料寿命预测,找出了一些影响橡胶材料寿命的因素。
1. 贮存条件橡胶材料贮存条件越好,其寿命相对越长。
橡胶材料的贮存温度和湿度对其寿命有很大的影响。
一般而言,橡胶材料要存储在干燥、避光、低温、低湿的环境中。
2. 使用环境橡胶材料在不同的使用环境下有不同的寿命。
在各种外部因素影响下,橡胶材料的寿命也会受到影响。
例如,橡胶管道在被暴露在紫外线和氧化剂等环境中,寿命会比暴露在其他环境下的橡胶管道寿命要短。
3. 橡胶材料类型不同类型的橡胶材料具有不同的寿命。
例如,氟橡胶的耐化学质量很高,该材料能够抵抗多数化学药品的腐蚀,寿命较长。
橡胶寿命预测研究方法

橡胶原产于橡胶 树 , 古时候人们 就从 橡胶 树上取得胶乳 , 制成 较 准确 的数 学公 式 ㈣如下 fP) Be p-Kt) ( = x (- t () 3 各 种 简 易 的生 活 用具 , 盛水 器 等 ; 着 科 学技 术 的发 展 , 如 随 出现 了 合 成橡 胶 , 于是 橡胶 就 分 成 两类 , 产于 橡 胶 树 的 叫 天然 胶 , 业 合 成 的 工 式 中: 0 与温度无关的常数 ; 一 B,一 【 K 速率常数 ; 时间 t 一 叫合成胶 , 而合成胶 由于合成原料的不 同 , 为氯丁橡胶 、 又分 硅橡胶 25 变量 折合 法 {I . i2 i1 - 等许 多 种 。 由于 橡胶 制 品弹 性 好 , 度 高 , 加 工等 特 点 , 胶 制 品 强 易 橡 变 量 折 合 法 是 一 种 数 学 作 图法 , 过任 意 两 个 时 间 点 、 度 点 通 温 已广 泛 应 用 于各 个 领 域 , 比如 民用 、 业 、 工 工程 、 军工 等 。 用在 这 些 的数 据 , 以计 算 出公 式 2中的 b值 , 后 再 将 通 过公 式 将 高 温 的 应 可 然 领域中的橡胶制 品起着密封 、 减震等重要作用 , 我国早在上世纪九 数据转化成常温的数据 , 从而得 出寿命 时间。前苏联以将此方法标 十 年代 就 开 始对 橡 胶 密 封制 品生 产 企业 进 行 生 产许 可证 制 度 , 格 准化作为检验橡胶寿命和性能变化的方法 。 严 要 求企 业 持 续 、 定生 产 质 量 合格 产 品 , 稳 以保 证 人 们 生命 、 产 的安 财 2 数 学模 型 法 . 6 数 学模 型法 就是 利 用 不 同 的 理论 建 立 不 同的 数 学模 型 , 然后 用 全 。然而 , 作为一种高分子材料 , 橡胶制品特别易老化 , 而且老化后 的橡胶将极大的损失其作为优 点的弹性 、 强度等性能。因此了解橡 实验数据来计算寿命的方法 ,目前大多数 的数学模型法 还不成熟 , 由于 计算 机 的迅 猛 发 展 , 于 B 基 P 胶 的老化机理 , 确定橡胶制 品的大概使用年限和储存时间 , 于保 没 有应 用 于 实 际 工 作 中 。近 年 来 , 对 障人 们 生命 、 财产 安 全 有着 重 要 的 意义 。 人 工神 经 网 络橡 胶 老 化预 报 、 寿命 预测 的技 术 逐渐 兴 起 ㈣。 1橡胶 老 化 的原 因 : 3对 于 寿命 预 测 方法 的讨 论 第 一 、 胶老 化 的 内 因 。 胶 材 料本 身结 构上 的弱 点 , 橡 橡 如化 学 组 目前 , 种 寿命 预 测 方 法 都有 其 局 限性 , 验 容 易 操 作 的 方 法 , 每 实 准 因 成( 高分 子 链 的组 成 元 素 )分 子 链 结 构 ( 子链 的长 度 、 象 及 有 机 准 确度 差 些 , 确 度好 的实 验 又 难操 作 , 此在 实 际 的科 研 工 作 中 , 、 分 构 基 团 在链 上 的 分布 )物 理 结 构 ( 晶性 、 璃 化 温 度 及 卷 曲程 度 ) 选择合适 的方法是很重要的。现在 的寿命预测方法 , 、 结 玻 ; 有两个 比较重 加工 后 橡 胶 中产 生 的新 弱点 ( 高分 子 链 断 裂 及 氧化 等 )添 加剂 如 抗 要 的 理想 性 假设 , 是 , 胶 制 品发 生 的老 化 主 要 以热 氧 老 化 为 主 , ; 一 橡 二是 , 橡胶制品所处的环境是理想的 , 温度 、 氧剂 、 增塑剂 、 交联剂及有机溶剂等对材料的影响 。第 二、 橡胶 老化 其它 的因素忽略不计 , 的外 因 : 候 环 境 ( 气 和 臭 氧 的作 用 , 温 和 相 对 湿 度 的 影 响 ) 气 氧 气 和 湿度等外界因素是恒定 的。所以 , 现在的寿命预测方法大多数是针 成 型 加 工条 件 ( 压 、 出 等 )J 模 挤 I 1 。 对橡胶制品的储存寿命预测 , 而不是使用寿命的预测 。不 同的橡胶 科学 家通过对橡胶 自然老化 的研究发现 , 氧气的作用是橡胶老 制品的使 用环境不 同 , 如果对使 用寿命进行预测 , 就必须进行 使用 化 的主 要 因素 [ 2 1 是 橡胶 自然 老 化 的周 期 过 长 , 。但 即使 有研 究结 果 , 环境 的模 拟 实验 , 这无 疑 是 一 个 浩 大 的工 程 。因 此 , 目前 为 止 , 内 国 对 橡 胶 制 品 的 实 际使 用 也 没 有 意 义 , 因此 , 过 加速 老化 的 方 法 对 还 没见 到 橡 胶制 品相 关 的使 用 环境 模 拟 的 数据 报 道 。 通 橡 胶 老 化 性 能进 行 研究 [1 3, - 为橡 胶 的 寿命 预测 提 供 了理论 基 础 和 理 6 国标 ( BT 0 2 — 05硫 化 橡 胶 或 热 塑性 橡 胶 应 用 阿 累 尼 鸟 ( /20 8 2 0 G 论数 据 。 斯 图 推算 寿 命 和最 高 使 用 温度 》 ,给 出 了在 进 行 寿 命 预测 工 作 时 的 指导 , 准中明确规定 了临界值应选择原始值的 5%, 与许多科 标 0 这 2橡胶寿命预测方法 21时间——温度叠加的寿命预测模型[ . 1 ] 研工作中选择临界值为原始值 的 2 %是不 同的。 5 因为橡胶寿命预测 所 时间——温度叠加 的寿命预测模 型的原理是时温等效原理 , 即 在实际工作 中影响因素过多 , 以该国标没有过多的对实验过 程进 高 聚 物 的 同 一 力 学 松 弛 现象 可 以在 较 高 的温 度 、 短 的 时 间 ( 较 行 规 定 , 是 一个 指 导性 的标 准 , 为 它 的 理论 基 础 仍 然 是 阿 累尼 较 或 只 因 所 如 高 的作用频率 ) 观察 到 , 可以在较低 的温度 下 、 长时间 内观察 乌斯 方 程 , 以它 也 是 一个 理想 化 的标 准 , 果 用 来计 算 使 用 寿 命 , 也 较 到 。因此 , 高温 度 与 延 长观 察 时 间对 分 子运 动 是 等效 的 , 高 聚 物 必须 考 虑 到使 用 的 橡胶 制 品使 用 的环 境 , 结果 加 以修 正 。 升 对 对 4 橡胶 寿 命 预 测 的发 展方 向 的 粘 弹行 为也 是 等效 的 。由此 理 论 最终 得 到 的数 学计 算 公 式 如下 : Ea ‘1 对于橡胶寿命预测 , 发展 的方 向将会 以使 用寿命为主 , 了解橡 a x =e p ) 】 () 1 胶 的 实 际 的使 用 寿命 , 以最 大 限 度 的 发 挥橡 胶 制 品 的 作 用 , 到 可 起 式中 0 【 移 因 子 ; aA reis活 化 能 ; 一 体 常数 ;r 参 节 能 环保 的作 用 ,同时 也 能在 橡 胶 制 品 完全 丧 失 功 能 前 停 止使 用 , 平 E — r nu h R气 T一 防患于未然 , 保障人们生命财产 的安全。 计算机行业的软 、 硬件 的高 考温 度 ;一 验 温度 T试 给 如 通 过 这 个 公 式 , 们 可 以设 计 两 个 以上 的温 度 点 的实 验 , 可 速 发 展 , 橡 胶 寿 命 预 测 提 供 了很 好 的 模 拟 平 台 , 果 开 发 出合 适 我 就 以计 算 出平移 因子 O , 而计 算 任 意 温度 下橡 胶 的使用 寿命 。 /从 . 的软 件 , 可 以模 拟 加 速 老 化 的过 程 、 拟 实 际使 用 环 境 等 现 实 中 就 模 需 要 耗 费大 量 的人 力 、 物力 、 力才 能 达 到 的 环 境 , 样 极 大 的 节约 财 这 22扩 散 限 制氧 化 模 型I . ] 扩 散 限制 氧 化 模 型 是 通 过 试 验 确 定 橡 胶 中氧 气 的 浓 度 与 橡 胶 了科 研 成本 , 提 高 了结 果 的准确 性 。 也 参 考 文献 模量的关系, 再通过测定橡胶中氧气 的浓度预测橡胶的寿命 。这种 方 法 的数 学 模 型 比较 复 杂 ,需 要 通 过 复 杂 的公 式 推 导 及 有 限元 分 … 1胡文军等. 橡胶 的热氧加速 老化 试验及 寿命预 测方法【 . J橡胶 工 ] 20 1 析, 同时需要有超敏感的测试设备 。因此 , 日常 的检验中 , 在 操作性 业 ,04年 第 5 卷 .
橡胶材料加速老化试验与寿命预测方法研究进展

橡胶材料加速老化试验与寿命预测方法研究进展摘要:橡胶材料作为一种高分子材料,通病是易老化,在使用及贮存过程中,其性能会随着时间的增加而逐渐下降,甚至丧失使用性能。
自从20世纪60年代报道了橡胶制品在使用过程中因老化现象而造成了巨大的经济损失后,人们广泛开展了自然老化和加速老化方法研究。
自然条件下橡胶的老化通常需要几年的时间,因此利用加速老化方法以进行橡胶材料的老化性能研究成为一种切实可行的办法。
关键词:橡胶材料;加速老化试验;寿命预测方法;橡胶作为高分子三大合成材料之一,通病是易于老化,在使用及贮存过程中,其性能会随着时间的增加而逐渐下降,甚至丧失使用性能,因此橡胶件是影响装备贮存寿命的薄弱环节。
一、橡胶材料加速老化试验1.橡胶材料加速老化试验方法。
在加速老化试验方法研究方面,人们最为常用的是烘箱加速老化试验、湿热老化试验方法。
曾有人设想利用反应机理和分子结构参数模拟橡胶的贮存和使用条件,直接将计算机作为一个“老化箱”进行老化试验,目前这种方法还存在困难。
1)热空气加速老化试验:橡胶材料在贮存条件下主要是热氧老化,其作用机制是热的作用将加速橡胶材料交联、降解等化学变化,宏观表现出物理机械性能的改变,某些性能与老化时间呈单一变化,如:扯断伸长率、应力松弛系数、压缩永久变形率等。
2)湿热老化试验:湿度会使橡胶试样膨胀,分子链间的空隙增大,暴露出较多的分子弱键,增加分子链的应力;使橡胶中的配合剂易扩散损失,促进含卤素链释放卤化氢;使变价金属起催化活化作用;使含酯、醚、酰胺基团的链发生水解反应;加速臭氧氧化的作用。
2.贮存环境对橡胶老化的影响。
1)温度的影响:橡胶属于高度交联的无定形聚合物,使用环境应保证其处于高弹状态,使用温度须高于玻璃化温度、低于粘流温度及分解温度。
温度升高,高分子链的运动加剧,一旦超过化学键的离解能,就会引起高分子链的热降解或基团脱落,从而使材料的物理性能发生显著改变。
因此,温度是贮存试验的主要条件和影响因素之一,它对橡胶的老化有很大影响。
橡胶寿命预测研究方法

符合下面的公式:f (P) B exp( Kt )
[3]李咏今.现行橡胶及其制品贮存期快速测定方法的可靠性研究[J].
lgt-lgt = b( 1 - 1 ) TT
橡胶工业,l994,41(5):289-296. (2) [4]茆诗松,王玲玲.加速寿命试验[M].北京:科学出版社,2000.
式中:t-时间;T-温度;B=U/R;U-活化能;R-常数
基团在链上的分布)、物理结构(结晶性、玻璃化温度及卷曲程度); 选择合适的方法是很重要的。现在的寿命预测方法,有两个比较重
加工后橡胶中产生的新弱点(高分子链断裂及氧化等);添加剂如抗 要的理想性假设,一是,橡胶制品发生的老化主要以热氧老化为主,
氧剂、增塑剂、交联剂及有机溶剂等对材料的影响。第二、橡胶老化 其它的因素忽略不计,二是,橡胶制品所处的环境是理想的,温度、
比较差。
[2]Wise J,Gillen K T.An ultrasensitive technique for testing Arrhe-
2.3 线性关系法[7]
nius extrapolation assumption for thermally aged elas -tomers EJ3.
Dakin 认为电器绝缘有机材料的寿命和温度之间是线性关系, Polymer Degradation and Stability,1995,49:403-418.
数学模型法就是利用不同的理论建立不同的数学模型,然后用
的橡胶将极大的损失其作为优点的弹性、强度等性能。因此了解橡 实验数据来计算寿命的方法,目前大多数的数学模型法还不成熟,
胶的老化机理,确定橡胶制品的大概使用年限和储存时间,对于保 没有应用于实际工作中。近年来,由于计算机的迅猛发展,基于 BP
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RO0・ RH— — R0OH+ ・ + R
用。 此外, 加速寿命试验还作 了以下假设: 在试验温度和外 推温度范围内, 只有一个 或几个具有相 同活化能 的反应 起决定作用; 反应活化能是常数 , 与温度无关; 反应速率只 受温度影响 , 与其它 因索无关 。 际情况要 复杂得多 , 实 所 以加速寿命试验预测 出的橡胶构件贮存寿命只是一个近 似值 ,它 与实际贮存寿命 的接近程度取决于橡胶构件在 老化过程中是否遵循这些假设 。如果对结果的准确程度 要求不高 ,甚至可以使用 比标准方法更为简单的热重点 斜法预估橡胶材料的贮存 寿命 。此法是在橡 } 生能变化 到临界值 P以下 , 建立 t T之间的关系 , 与 在一定 的温度
第 3 0卷第 2 4期
Vo .0 o 2 1 N .4 3
企 业 技 术 开 发
T CHNOL I AL DEV O MEN E
21 年 1 0 1 2月
De . c201l
橡胶 老化 寿命预 测方法 的研 究情况 简介
化试验箱 内,并周期性地检查和测定试 样的外观及性能 变化 ,从而评定其耐热性及 预测某些高分子材料 的贮存 期和使用寿命的一种方法 。之后又 出现了氧弹加速老化 试验 、 人工气候加速老化试验 、 湿热老 化试验 、 臭氧加速
老化试验 、 烟雾腐蚀试验 、 人工抗霉试 验等。 长时间 的人 工加速老化与实际 自然 老化研究表 明, 烘箱加速老化与 实际 自然老化最接近 , 因此橡胶加速老化研究 多以提高 温度 的烘箱加速老化方法为主。 研究表 明: 用于电容器密 封的天然橡胶 ( R) 乙丙橡胶 ( P E D 、 N , E M、 P M) 丁苯橡胶 (B 、 S R)丁基橡胶 (I 、 I 硅橡胶 ( V ) 等 , R) N Q等 使用过程 中的老化都属于热氧老化 。
中图 分 类号 :Q 3 . T 301 4 文 献标 识 码 : A 文章 编 号 :0 6 83 (0 12 — 00 0 10— 97 2 1 )4 03 — 2
橡胶材料及其制 品由于独特 的性能 ,已广泛应用于 老 化 试 验 方 法 ( 名 烘 箱 加 速 老 化 试 验 方法 )这 种 方 法 又 。 军民品生产的各个领域。 橡胶材料是一种 高分子材料 , 最 是将试验样品悬 挂在给定条件 ( 如温度 、 风速等 ) 的热 老
大缺点是易老化 , 在使用及贮存过程中 , 其性能会随着时 间的增加而逐渐下降 , 甚至丧失使用性能。 橡胶制 品在使 用过程 中因老化现象而造成了巨大 的经济损失 。因此在 橡胶的使用及贮存过程中 , 预知橡胶的寿命 , 避免橡胶 因 老化 丧失使用性 能而造成 巨大 的经 济损失 显得尤 为重 要。 了解橡胶材料的老化性能及预测其使用和贮存寿命 , 不仅有利 于改善性能 , 提高质量 , 还可 以为橡胶 材料使用 中的保险期提供依据 。 虽然与 自然老化试 验相 比, 加速老化试验可 以快速 便 捷地预测 和评估橡胶 等材料制 品 的使用 寿命 或贮存 期。 但是 , 加速老化与真实环境下所得值相 比还是有比较 大的出人 ,其原 因在于加速老化与真实环境下的老化机 理不尽相同 , 且在真实环境条件下 , 影响橡胶老化的因素 是随机 的或综合影响 ,加速老化试验很难模拟真实环境 下的 自然老化。 因此 , 通过加速老化试验建立老化模型应 结合实际使用环境, 选择合适 的加速老化试验方法和老 化模型才能提高寿命预测 的可信度 。
下 , 贮存 期 t P与 呈如 下 关 系 :
P k =t ( 1)
链转 移 R O - R + O O H - O・ ・ H  ̄
2 ROOH- ̄ ・ ROO ・ H2 - RO + - + O
式中, K是反应速度常数 , 随温度 t 而变 ,一对拉伸 P
性能试验为任一 时间的拉断伸长率 L与老化前拉断伸长 率 I 的比值 ; 压缩应力松驰 为松驰系数 ; 缩永久 _ 0 对 对压 R O・R O _ 稳定产物 + 2 O + O ・÷ O R・ RO0・ ROOR + — 变形为(—8) £为时间 t 1 , 的压缩永久变形率。 在特定情况下 两者服从 阿累尼乌斯 ( r enu ) A r — i 公 h s 上述反应式 中,H表示橡胶大分子 , ・ R R 表示 自由 式: 基。 O・ R 表示氧化 自由基 , O 表示过氧化 自由基。 R O・
3 橡胶寿命的预测方法
31 D kn寿命推算法 . ai 阿伦尼乌斯公式是 一个经验公式,实践证 明如果试 验温度范围较宽或者对于较复杂的反应, 此公式并不适
1 橡 胶老 化 的机 理
橡胶材料在贮存条件下主要是热氧老化 ,作用机制 是热的作用下加速橡胶材料 的交联 、 降解等化学变化 , 使 得橡胶对物理机械性能改变 , : 断伸 长率 、 如 拉 应力松弛 系数 、 压缩永久变形率等 。 光 ) 热( 氧老化属于 自由基链式 自催化氧化反应 , 机理如下 : 链引发 R —R・ ・ ( 、 光或催化剂作用 ) H + H 热 氧、
链终止 R + _ R ・R + —R
2 橡胶预测方法的简介
k A -R = eFT J
段 家松
( 长江大学 , 湖北 荆州 4 4 2 ) 3 03
摘 要 : 章 综 述橡 胶 原 理 , 文 并介 绍 了用 数 学模 型预 测橡 胶 寿 命 的 一 些 方 法 , 索 它 们 的 特 点 及 优 缺 点 , 出 探 提
相 关 处理 方 法 。
关键词: 胶 ; 橡 密封 件 ; 速橡 胶 老 化 试 验 ; 命 预 测 加 寿