高考解答题专项训练三

合集下载

2021年高考数学解答题专项练习《解三角形》(含答案)

2021年高考数学解答题专项练习《解三角形》(含答案)

2021年高考数学解答题专项练习《解三角形》(含答案)1.已知△ABC中,b=3,c=4,C=2B,求cosB的值。

2.已知△ABC中,b=2,求角B的值;若△ABC的面积为S,求S。

3.已知a,b,c分别是△ABC三个内角A,B,C的对边,acosC+csinA=b+c,求A;若a=2,b+c=3,求b,c。

4.已知△ABC中,B=150°,a=c=2,求△ABC的面积;若sinA+sinC=1,求C。

5.已知△ABC中,b=3,c=4,求角A;若a=5,求△ABC的面积。

6.已知△ABC中,ab+a^2=c^2,证明:△ABC是直角三角形;若△ABC的面积为S,求角C的大小。

7.已知锐角△ABC中,b=2,c=3,求角C的大小;若a=4,求△ABC的面积。

8.已知△ABC中,b+c=5,且△ABC的面积为S,求角A的大小;若a=3,求S;若a=4,求角B的大小。

9.已知△ABC中,sinA=3/5,求∠B的大小;若a=4,求b+c的范围;若S=6,求a的值。

10.已知△ABC中,cosB=1/2,求角B的大小;求cosA+cosB+cosC的取值范围。

11.已知△ABC中,sin2A-sin2B-sin2C=sinBsinC,求A;若BC=3,求△XXX周长的最大值。

12.已知△ABC中,c=2,ccosAcosB=asinCcosB-ccosC,求角B的大小;若S=16,求△ABC的周长的取值范围。

13.已知△ABC中,a=3,b=4,满足cosAcosB=1/4,求角A 的值;若S=5,求c的值。

14.已知△ABC中,a=8,ccosAcosB=2asinCcosB-ccosC,求tanB的值;若S=16,求b的值。

已知三角形ABC的内角A,B,C的对边分别为a,b,c,且3(acos C-b)=asin C,求角A。

解:(1)根据正弦定理和已知条件,可得sin A = sin (π - B - C) = sin (B + C) = sin B cos C + cos B sin C = sin B cos C + √(1 - sin^2 B) sin C将sin B = a/2c代入上式,得sin A = a/2c cos C + √(1 - a^2/4c^2) sin C又因为3(acos C - b) = asin C,可得3a/2c cos C - 3b = √(1 - a^2/4c^2) a将a/b = cosp,代入上式,得3p cos C - 3 = √(1 - p^2) 2sin C将sin C = √(1 - cos^2 C)代入上式,整理可得9p^2 - 4) cos^2 C - 18p cos C + 9 = 0解得cos C = 3/2p或cos C = 1/3.因为b ≥ a,所以p ≤ 1/2,故cos C = 3/2p。

专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析

专题3.1 以立体几何中探索性问题为背景的解答题——新高考数学专项练习题附解析

专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由.类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M ,使平面?说明理由.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为233.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 所成的锐二面角的余弦值为30?若存在,确定点E 的位置;若不存在,请说明理由.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =,试判断线段PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为15,若存在,求出PQ OB 的值;若不存在,说明理由.3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由;(Ⅱ)当二面角D FC B --的余弦值为24时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为正方形,已知PA ⊥平面ABCD ,2AB =,2PA =.(1)证明:BD PC ⊥;(2)求PC 与平面PBD 所成角的正弦值;(3)在棱PC 上是否存在一点E ,使得平面BDE ⊥平面BDP ?若存在,求PEPC的值并证明,若不存在,说明理由.5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值. 6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值;(2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.14. 【河南省开封市2019届高三上学期第一次模拟考试】如图所示,是边长为2的正方形,平面,且.(Ⅰ)求证:平面平面;(Ⅱ)线段上是否存在一点,使二面角所成角的余弦值为?若存在,请找出点的位置;若不存在,请说明理由.15.如图,五面体11A BCC B -中,14AB =,底面ABC 是正三角形,2AB =,四边形11BCC B 是矩形,二面角1A BC C --为直二面角.(1)D 在AC 上运动,当D 在何处时,有1//AB 平面1BDC ,并说明理由; (2)当1//AB 平面1BDC 时,求二面角1C BC D --余弦值.专题三压轴解答题第一关以立体几何中探索性问题为背景的解答题【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.2.以“平行”为背景的存在判断型问题典例1 (2019·山东省实验中学高考模拟)如图所示的矩形ABCD中,AB=12AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.【答案】(1)见解析;(2)33,2【解析】(1)取线段EF的中点M,有GM∥平面BDF.证明如下:如图所示,取线段EF的中点M,∵G为线段ED的中点,M为线段EF的中点,∴GM为△EDF的中位线,故GM∥DF,又GM⊄平面BDF,DF⊂平面BDF,故GM∥平面BDF;(2)∵CF ∥DE ,且AE 与CF 的夹角为60°,故AE 与DE 的夹角为60°,即60AED ∠=︒, 过D 作DP ⊥AE 交AE 于P ,由已知得DE ⊥EF ,AE ⊥EF ,∴EF ⊥平面AED , EF ⊥DP,又AE EF=E,∴DP ⊥平面AEFB , 即DP 为点D 到平面ABFE 的距离,且3DP x =, 设DE =x ,则AE =BF =4﹣x , 由(1)知GM ∥DF ,G BDF M BDF D MBF V V V ---===11131(4)3322MBF S DP x x ⎡⎤⋅⋅=⨯⨯⨯-⨯⎢⎥⎣⎦()24333(4)x x x x -+=-⋅=,当且仅当4﹣x =x 时等号成立,此时x =DE =2. 故三棱锥G ﹣BDF 的体积的最大值为33,此时DE 的长度为2. 【名师指点】本题是直线和平面平行的存在性问题,这种问题可以利用空间直角坐标系,通过建系设点,利用空间向量求解,如果利用传统立体几何的方法,就需利用分析法,利用直线和平面平行的性质定理寻求点的位置.【举一反三】如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.(1)求证:;(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说明理由. 【解析】(1)证明:由四边形为正方形可知,连接必与相交于中点故∵面∴面(2)线段上存在一点满足题意,且点是中点理由如下:由点分别为中点可得:∵面∴面由(1)可知,面且故面面类型2 以“垂直”为背景的存在判断型问题典例2 如图,在四棱锥中,四边形为平行四边形,,为中点,(1)求证:平面;(2)若是正三角形,且.(Ⅰ)当点在线段上什么位置时,有平面?(Ⅱ)在(Ⅰ)的条件下,点在线段上什么位置时,有平面平面?【解析】(1)证明:连接,,=,因为ABCD是平行四边形,则为中点,连接,又为中点,面,面平面.(2)解(Ⅰ)当点在线段中点时,有平面取中点,连接,又,又,,平面,又是正三角形,平面(Ⅱ)当时,有平面平面过作于,由(Ⅰ)知,平面,所以平面平面易得【名师指点】以直线和平面垂直、直线和直线垂直为背景的垂直问题,可以通过建立空间直角坐标系,通过直线的方向向量与平面的法向量共线或者直线方向向量垂直求得,也可以利用传统立体几何知识利用分析的方法,确定线、面垂直关系来求解.【举一反三】【北京市通州区2018-2019学年第一学期高三年级期末考试】如图,在三棱柱中,底面,△ABC是边长为的正三角形,,D,E分别为AB,BC的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在一点M,使平面?说明理由.【解析】(Ⅰ)证明:在三棱柱中,因为底面,CD⊂平面ABC,所以.又为等边三角形,为的中点,所以.因为,所以平面;(Ⅱ)取中点,连结,则因为,分别为,的中点,所以.由(Ⅰ)知,,如图建立空间直角坐标系.由题意得,,,,,,,,,.设平面法向量,则即令,则,.即.平面BAE法向量.因为,,,所以由题意知二面角为锐角,所以它的余弦值为.(Ⅲ)解:在线段上不存在点M,使平面.理由如下.假设线段上存在点M,使平面.则,使得.因为,所以.又,所以.由(Ⅱ)可知,平面法向量,平面,当且仅当,即,使得.所以 解得.这与矛盾.所以在线段上不存在点M ,使平面.类型3 以“角”为背景的探索性问题典例3 (2019·山东高三月考)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD ∆是等边三角形,平面SAD ⊥平面ABCD ,1AB =,E 为棱SA 上一点,P 为AD 的中点,四棱锥S ABCD -的体积为23.(1)若E 为棱SA 的中点,F 是SB 的中点,求证:平面∥PEF 平面SCD ; (2)是否存在点E ,使得平面PEB 与平面SAD 30E 的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 位于AS 的靠近A 点的三等分点. 【解析】(1)证明:因为E 、F 分别是SA 、SB 的中点, 所以EF AB ∥,在矩形ABCD 中,AB CD ∥, 所以EF CD ∥,又因为E 、P 分别是SA 、AD 的中点, 所以∥EP SD ,又因为EF CD ∥,EF EP E ⋂=,,EF EP ⊂平面PEF ,,SD CD ⊂平面SCD ,所以平面∥PEF 平面SCD .(2)解:假设棱SA 上存在点E 满足题意. 在等边三角形SAD 中,P 为AD 的中点, 于是SP AD ⊥,又平面SAD ⊥平面ABCD , 平面SAD ⋂平面ABCD AD =,SP ⊂平面SAD ,所以SP ⊥平面ABCD ,所以SP 是四棱锥S ABCD -的高, 设AD m =,则SP =,ABCD S m =矩形,所以1133S ABCD ABDD V S SP m -=⋅==矩形 所以2m =,以P 为坐标原点,PA 所在直线为x 轴,过点P 与AB 平行的直线为y 轴,PS 所在直线为z 轴,建立如图所示的空间直角坐标系.则()0,0,0P ,()1,0,0A ,()1,1,0B,(S ,设(()()01AE AS λλλλ==-=-≤≤,()()1,0,0PE PA AE λ=+=+-()1λ=-,()1,1,0PB =,设平面PEB 的一个法向量为()1,,n x y z =,有()1110n PE x z n PB x y λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩, 令3x λ=,则()13,,1n λλ=-,易知平面SAD 的一个法向量()20,1,0n =,所以12122123cos ,721n n n n n n λλλ-⋅==-+30=, 因为01λ≤≤, 所以13λ=, 所以存在点E ,位于AS 的靠近A 点的三等分点.【名师指点】与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【举一反三】(2019·山东枣庄八中高三月考(理))如图,直三棱柱111-ABC A B C 中,120ACB ∠=且12AC BC AA ===,E 是棱1CC 上动点,F 是AB 中点.(Ⅰ)当E 是中点C 1C 时,求证:CF 平面 AE 1B ;(Ⅱ)在棱1CC 上是否存在点E ,使得平面AE 1B 与平面ABC 所的成锐二面角为6π,若存在,求CE 的长,若不存在,请说明理由.【答案】(1)见解析;(2)1CE =.【解析】(1)取1AB 中点G ,连结EG FG 、,则FG ∥1BB 且112FG BB =. 因为当E 为1CC中点时,CE ∥1BB 且112CE BB =, 所以FG ∥CE 且FG = CE .所以四边形CEGF 为平行四边形,CF ∥EG , 又因为1CF AEB ⊄平面,1EG AEB ⊂平面, 所以//CF 平面1AEB ;(2)假设存在满足条件的点E ,设()01CE λλ=≤≤.以F 为原点,向量1FB FC AA 、、方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系. 则()3,0,0A -,()13,0,2B ,()0,1,E λ,平面ABC 的法向量()0,0,1m =,平面1AEB 的法向量()333,3n λ=--,,()23cos 23991m n m n m nλ⋅===++-,,解得1λ=,所以存在满足条件的点E ,此时1CE =.【精选名校模拟】1. (·山东高考模拟(理))如图,在四棱锥P ABCD -中,,AD PCD PD CD ⊥⊥平面,底面ABCD 是梯形,//,1,2,AB DC AB AD PD CD AB Q ====为棱PC 上一点. (Ⅰ)若点Q 是PC 的中点,证明://PQ PAD 平面; (Ⅱ)PQ PC λ=试确定λ的值使得二面角Q BD P --为60°. 【答案】(1)见解析(2)36【解析】 (Ⅰ)取PD 的中点M ,连接AM ,M Q ,Q PC点是的中点,∴M Q∥CD,1.2MQ CD=又AB∥CD,1,2AB CD QM=则∥AB,QM=AB,则四边形ABQM是平行四边形.BQ∴∥AM.又AM⊂平面PAD,BQ⊄平面PAD,BQ∴∥平面PAD.(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为,,x y z轴建立如图所示的空间直角坐标系,则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).令()()()000000,,,,,1,0,2,1.Q x y z PQ x y z PC=-=-则()()000,,,10,2,1,PQ PC x y zλλ=∴-=-()0,2,1.Qλλ∴-又易证BC⊥平面PBD,()1,1,0.n PBD∴=-是平面的一个法向量设平面QBD的法向量为(),,,m x y z=(),0,0,2210,.0,1x yx ym DBy z z ym DQλλλλ=-⎧+=⎧⎧⋅=⎪⎨⎨⎨+-==⋅=⎩⎩⎪-⎩则有即解得令21,1,1,.1y mλλ⎛⎫==-⎪-⎝⎭则60Q BD P 二面角为--,21cos,,22221m n m n m nλλ⋅∴===⎛⎫⋅+ ⎪-⎝⎭解得3 6.λ=±Q 在棱PC 上,01,3 6.λλ<<∴=-2. (2019·夏津第一中学高三月考)如图所示,等腰梯形ABCD 中,AB CD ∥,2AD AB BC ===,4CD =,E 为CD 中点,AE 与BD 交于点O ,将ADE 沿AE 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:平面POB ⊥平面ABCE ; (2)若6PB =PB 上是否存在一点Q (不含端点),使得直线PC 与平面AEQ 所成角的正弦值为155,若存在,求出PQ OB 的值;若不存在,说明理由.【答案】(1)证明见解析(215【解析】(1)证明:连接BE ,在等腰梯形中ABCD ,2AD AB BC ===,4CD =,E 为中点, ∴四边形ABED 为菱形,∴BD AE ⊥,∴OB AE ⊥,OD AE ⊥,即OB AE ⊥,OP AE ⊥,且OBOP O =,OB ⊂平面POB ,OP ⊂平面POB ,∴AE ⊥平面POB .又AE ⊂平面ABCE ,∴平面POB ⊥平面ABCE . (2)由(1)可知四边形ABED 为菱形,∴2AD DE ==, 在等腰梯形ABCD 中2AE BC ==,∴PAE △正三角形, ∴3OP =3OB =∵6PB =,∴222OP OB PB +=,∴OP OB ⊥.由(1)可知OP AE ⊥,OB AE ⊥,以O 为原点,OE ,OB ,OP 分别为x 轴,y 轴,为z 轴,建立空间直角坐标系O xyz -, 由题意得,各点坐标为()0,0,3P ,()1,0,0A -,()0,3,0B,()2,3,0C ,()1,0,0E ,∴(3,3PB =-,(3,3PC =-,()2,0,0AE =,设()01PQ PB λλ=<<,()1,333AQ AP PQ AP PB λλλ=+=+=, 设平面AEQ 的一个法向量为(),,n x y z =,则00n AE n AQ ⎧⋅=⎨⋅=⎩,即()203330x x y λλ=⎧⎪⎨++=⎪⎩,取0x =,1y =,得1z λλ=-,∴0,1,1n λλ⎛⎫= ⎪-⎝⎭,设直线PC 与平面AEQ 所成角为θ,π0,2θ⎡⎤∈⎢⎥⎣⎦, 则15sin cos ,5PC nPC n PC nθ⋅===,即2331511011λλλλ+-=⎛⎫+ ⎪-⎝⎭化简得:24410λλ-+=,解得12λ=, ∴存在点Q 为PB 的中点时,使直线PC 与平面AEQ 所成角的正弦值为155. 3. (2018·山东济南外国语学校高三月考(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,90DAB ADP ∠=︒∠=︒,平面ADP ⊥平面ABCD ,点F 为棱PD 的中点.(Ⅰ)在棱AB 上是否存在一点E ,使得AF 平面PCE ,并说明理由; (Ⅱ)当二面角D FC B --的余弦值为2时,求直线PB 与平面ABCD 所成的角. 【答案】(1)见解析(2)60︒ 【解析】(Ⅰ)在棱AB 上存在点E ,使得//AF 平面PCE ,点E 为棱AB 的中点. 理由如下:取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =, //AE CD 且12AE CD =,故//AE FQ 且AE FQ =.所以,四边形AEQF 为平行四边形.所以,//AF EQ ,又EQ ⊥平面PEC ,AF ⊥平面PEC ,所以,//AF 平面PEC . (Ⅱ)由题意知ABD ∆为正三角形,所以ED AB ⊥,亦即ED CD ⊥,又90ADP ∠=︒,所以PD AD ⊥,且平面ADP ⊥平面ABCD ,平面ADP ⋂平面ABCD AD =, 所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图空间直角坐标系,设FD a =,则由题意知()0,0,0D ,()0,0,F a ,()0,2,0C ,)3,1,0B,()0,2,FC a =-,()3,1,0CB =-,设平面FBC 的法向量为(),,m x y z =,则由m FCm CB⎧⋅=⎨⋅=⎩得2030y azx y-=⎧⎪⎨-=⎪⎩,令1x=,则3y=,23z=,所以取231,3,m⎛⎫= ⎪⎪⎝⎭,显然可取平面DFC的法向量()1,0,0n=,由题意:22cos,41213m na==++,所以3a=.由于PD⊥平面ABCD,所以PB在平面ABCD内的射影为BD,所以PBD∠为直线PB与平面ABCD所成的角,易知在Rt PBD∆中,tan3PDPBD aBD∠===,从而60PBD∠=︒,所以直线PB与平面ABCD所成的角为60︒.4. (2019·北京北师大实验中学高三月考)如图所示,在四棱锥P ABCD-中,底面四边形ABCD为正方形,已知PA⊥平面ABCD,2AB=,2PA=.(1)证明:BD PC⊥;(2)求PC与平面PBD所成角的正弦值;(3)在棱PC上是否存在一点E,使得平面BDE⊥平面BDP?若存在,求PEPC的值并证明,若不存在,说明理由.【答案】(1)证明见解析;(210;(3)存在,23PEPC=,理由见解析【解析】(1)如图,连接AC交BD于点O,由于PA⊥平面ABCD,BD⊂平面ABCD所以PA BD⊥,即BD PA⊥由于BD PA ⊥,BD AC ⊥,PA AC A =,所以BD ⊥平面PAC又因为PC ⊂平面PAC ,因此BD PC ⊥ (2)由于PA ⊥平面ABCD ,AB平面ABCD ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥又AB AD ⊥,所以PA ,AB ,AD 两两垂直, 因比,如图建立空间直角坐标系A xyz -(2,0,0)B ,(2,2,0)C ,(0,2,0)D,P因此(2,2,PC =,(2,0,PB =,(0,2,PD =设平面PBD 的法向量为(,,)m x y z =,则00m PB m PD ⎧⋅=⎨⋅=⎩即2020x y ⎧=⎪⎨=⎪⎩ 取1x =,1y =,z =,则(1,1,2)m =设直线PC 与平面PBD 所成角为θ,10sin |cos ,|=||10||||m PC m PC m PC θ⋅=<>=⋅(3)存在,设[0,1]PEPCλ=∈,则(2,2))E λλλ- 则(22,2))BE λλλ=--,(2,2,0)BD =-设平面BDE 的法向量为(,,)n a b c =,则0n BE n BD ⎧⋅=⎨⋅=⎩,即2(1)2(1)0220a b a bλλλ⎧-+-=⎪⎨-+=⎪⎩,即1a λ=-,1b λ=-,2)c λ=-则(1,12))n λλλ=---,若平面BDE ⊥平面BDP ,则0m n ⋅=即1(1)1(1)2)0λλλ⋅-+⋅-+-=,则2[0,1]3λ=∈ 因此在棱PC 上存在点E ,使得平面BDE ⊥平面BDP ,23PE PC =5.【黑龙江省哈尔滨市第六中学2019届高三上学期期末考试】如图,在棱长为2的正方体中,点分别是棱上的动点,且.(1)求证:;(2)当三棱锥的体积取得最大值时,求二面角的正切值.【解析】设AE=BF=x.以D为原点建立空间直角坐标系,得下列坐标:D(0,0,0),A(2,0,0),B (2,2,0),C(0,2,0),D1(0,0,2),A1(2,0,2),B1(2,2,2),C1(0,2,2),E(2,x,0),F(2﹣x,2,0).(1)因为,,所以.所以A1F⊥C1E.(2)因为,所以当S△BEF取得最大值时,三棱锥B1﹣BEF的体积取得最大值.因为,所以当x=1时,即E,F分别是棱AB,BC的中点时,三棱锥B1﹣BEF的体积取得最大值,此时E,F坐标分别为E(2,1,0),F(1,2,0).设平面B1EF的法向量为,则得取a=2,b=2,c=﹣1,得.显然底面ABCD的法向量为.设二面角B1﹣EF﹣B的平面角为θ,由题意知θ为锐角.因为,所以,于是.所以,即二面角B1﹣EF﹣B的正切值为.6. 【湖北省2019届高三联考测试】如图,在四棱锥中,,,,且PC=BC=2AD=2CD=2,.(1)平面;(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.【解析】(1)∵在底面中,,且∴,∴又∵,,平面,平面∴平面又∵平面∴∵,∴又∵,,平面,平面∴平面(2)方法一:在线段上取点,使则又由(1)得平面∴平面又∵平面∴作于又∵,平面,平面∴平面又∵平面∴又∵∴是二面角的一个平面角设则,这样,二面角的大小为即即∴满足要求的点存在,且方法二:取的中点,则、、三条直线两两垂直∴可以分别以直线、、为、、轴建立空间直角坐标系且由(1)知是平面的一个法向量设则,∴,设是平面的一个法向量则∴令,则,它背向二面角又∵平面的法向量,它指向二面角这样,二面角的大小为即即∴满足要求的点存在,且7. 【福建省龙岩市2019届高三第一学期期末教学质量检查】如图,四边形是边长为2的正方形,平面平面,且.(1)证明:平面平面;(2)当,且与平面所成角的正切值为时,求二面角的正弦值.【解析】(1)由题设知,平面平面,交线为.因为,平面,所以平面,因此,又,,所以平面.而平面,所以平面平面.(2)以为坐标原点,的方向为轴正方向建立如图所示的直角坐标系,则有,过点作于,设,则.因为,所以,,由题设可得,即,解得或,因为,所以,所以,.由,知是平面的法向量,,.设平面的法向量为,则取得,设二面角为,则,因为,.综上,二面角的正弦值为.8. 【福建省厦门市2019届高三年级第一学期期末质检】如图,在四棱锥中,平面,四边形为平行四边形,且,.(1)证明:平面;(2)当直线与平面所成角的正切值为时,求二面角的余弦值. 【解析】(1)证明:由已知,得,在中,,∴,即,∵平面,平面,∴,又∵,平面,平面,∴平面(2)∵平面,∴为直线与平面所成角,∴,∴,在中,,取的中点,连结,则,∵平面,平面,∴,又∵,平面,平面,∴平面,以点为坐标原点,建立如图空间直角坐标系,则,,,,∴,,设平面的法向量为,则,取,解得,又平面的法向量为,∴.∴二面角的余弦值为.9. 【北京市朝阳区2018-2019高三数学期末考试】如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【解析】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以. 又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为. (ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有10. 如图,在多面体ABCDMN 中,四边形ABCD 为直角梯形, //AB CD , 22AB =, BC DC ⊥,2BC DC AM DM ====,四边形BDMN 为矩形.(1)求证:平面ADM ⊥平面ABCD ;(2)线段MN 上是否存在点H ,使得二面角H AD M --的大小为4π?若存在,确定点H 的位置并加以证明.【解析】(1)证明:由平面几何的知识,易得2BD =, 2AD =,又22AB =,所以在ABD ∆中,满足222AD BD AB +=,所以ABD ∆为直角三角形,且BD AD ⊥. 因为四边形BDMN 为矩形,所以BD DM ⊥. 由BD AD ⊥, BD DM ⊥, DM AD D ⋂=, 可得 BD ADM ⊥平面. 又BD ABD ⊂平面,所以平面ADM ⊥平面ABCD .(2)存在点H ,使得二面角H AD M --为大小为,点H 为线段AB 的中点.事实上,以D 为原点, DA 为x 轴, DB 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系D xyz -,则()()()0,0,0,2,0,0,0,2,0D A B , ()1,0,1M , 设(),,H x y z ,由MH MN DB λλ==,即()()1,,10,2,0x y z λ--=,得()1,2,1H λ. 设平面ADH 的一个法向量为()1111,,n x y z =,则,即,不妨设11y =,取()10,1,2n λ=-. 平面ADM 的一个法向量为()20,1,0n =. 二面角H AD M --为大小为于是.解得 或(舍去).所以当点H 为线段MN 的中点时,二面角H AD M --为大小为.11. 在三棱锥P ABC -中, AB AC =, D 为BC 的中点, PO ⊥平面ABC ,垂足O 落在线段AD 上,已知4,3,2,1BC PO AO OD ====. (1)证明: AP BC ⊥;(2)在线段AP 上是否存在一点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.法二:如图,以O 为原点,分别以过O 点与DB 共线同向的向量, OD , OP 方向上的单位向量为单位正交基建立空间直角坐标系O xyz -,则()()()()()0,0,0,0,2,0,2,1,0,2,1,0,0,0,3,O A B C P --()()()0,2,3,4,0,0,2,3,0AP BC AC ==-=-∴0AP BC ⋅= ∴AP BC ⊥ ∴AP BC ⊥(2)假设M 点存在,设AM AP λ=, (),,M x y z ,则(),2,AM x y z =+,∴()(),2,0,2,3x y z λ+=,∴0{22 3x y z λλ=+==,∴()0,22,3M λλ-, ∴()2,23,3BM λλ=--设平面MBC 的法向量为()1111,,n x y z =,平面APC 的法向量为()2222,,n x y z = 由110{n BM n BC ⋅=⋅=得()111122330{40x y z x λλ-+-+=-=,令11y =,可得1320,1,3n λλ-⎛⎫= ⎪⎝⎭, 由220{n AC n AP ⋅=⋅=得2222230{230x y y z -+=+=,令16y =,可得()29,6,4n =-,若二面角A MC B --为直二面角,则120n n ⋅=,得326403λλ--⋅=, 解得613λ=,∴613AM =故线段AP 上是否存在一点M ,满足题意, AM 的长为613. 12 【安徽省江南十校2019届高三第二次大联考】如图,已知四边形中,对角线,,为等边三角形.(1)求面积的最大值; (2)当的面积最大时,将四边形沿折起成直二面角,在上是否存在点使直线与平面所成的角满足:,若不存在,说明理由;若存在,指出点的位置. 【解析】(1)在中,记,,则由余弦定理:,(当且仅当时,上式取等号)此时,,的面积的最大值为.(2)由(1)知,,,设存在,在三棱锥中,取的中点,连接,易知.作于,由平面平面平面.故在平面上的投影为.与平面所成的角为,由.设,得,,故.故存在,且,满足题意.(2)另解:由(1),,设存在,则在三棱锥中,取的中点,连接,易求.以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,平面的法向量为,设,得,得,又.由.故存在,且,满足题意.13. 【云南省昆明市2019届高三1月复习诊断测试】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.(1)若平面,证明:;(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.【解析】(1)连接交于,连接,则是平面与平面的交线.因为平面,平面,所以.又因为是中点,所以是的中点.所以.(2)由已知条件可知,所以,以为原点,为轴,为轴,为轴建立空间直角坐标系.。

高考解答题专项突破(三) 数列的综合问题--2025年高考数学复习讲义及练习解析

高考解答题专项突破(三) 数列的综合问题--2025年高考数学复习讲义及练习解析

[考情分析]预计2025年高考会从以下两个角度对数列的综合问题进行考查:(1)考查等差、等比数列的基本运算和数列求和的问题,可能与函数、方程、不等式等知识综合起来进行考查;(2)以新定义为载体,考查对新数列性质的理解及应用,以创新型题目的形式出现.考点一等差、等比数列的综合问题例1(2024·山东滨州模拟)已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.解(1)设等差数列{a n }的公差为d ,因为b 2=4,所以a 2=2log 2b 2=4,所以d =a 2-a 1=2,所以a n =2+(n -1)×2=2n .又a n =2log 2b n ,即2n =2log 2b n ,所以n =log 2b n ,所以b n =2n .(2)由(1)得b n =2n =2·2n -1=a 2n -1,即b n 是数列{a n }中的第2n -1项.设数列{a n }的前n 项和为P n ,数列{b n }的前n 项和为Q n ,因为b 7=a 26=a 64,b 8=a 27=a 128,所以数列{c n }的前100项是由数列{a n }的前107项去掉数列{b n }的前7项后构成的,所以S 100=P 107-Q 7=107×(2+214)2-2-281-2=11302.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.利用方程思想和通项公式、前n 项和公式求解,求解时注意对性质的灵活运用.1.(2022·浙江高考)已知等差数列{a n }的首项a 1=-1,公差d >1.记{a n }的前n项和为S n (n ∈N *).(1)若S 4-2a 2a 3+6=0,求S n ;(2)若对于每个n ∈N *,存在实数c n ,使a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,求d 的取值范围.解(1)因为S 4-2a 2a 3+6=0,a 1=-1,所以-4+6d -2(-1+d )(-1+2d )+6=0,所以d 2-3d =0,又d >1,所以d =3,所以a n =3n -4,所以S n =n (a 1+a n )2=3n 2-5n2.(2)因为a n +c n ,a n +1+4c n ,a n +2+15c n 成等比数列,所以(a n +1+4c n )2=(a n +c n )(a n +2+15c n ),(nd -1+4c n )2=(-1+nd -d +c n )(-1+nd +d +15c n ),c 2n +(14d -8nd +8)c n +d 2=0,由已知可得方程c 2n +(14d -8nd +8)c n +d 2=0的判别式大于等于0,所以Δ=(14d -8nd +8)2-4d 2≥0,所以(16d -8nd +8)(12d -8nd +8)≥0对于任意的n ∈N *恒成立,所以[(n -2)d -1][(2n -3)d -2]≥0对于任意的n ∈N *恒成立,当n =1时,[(n -2)d -1][(2n -3)d -2]=(d +1)(d +2)≥0,当n =2时,由(2d -2d -1)(4d -3d -2)≥0,可得d ≤2,当n ≥3时,[(n -2)d -1][(2n -3)d -2]>(n -3)(2n -5)≥0,又d >1,所以1<d ≤2,即d 的取值范围为(1,2].考点二通项与求和问题例2(2023·黑龙江哈九中模拟)在①S 3=2a 3-15;②a 2+6是a 1,a 3的等差中项;③2S n =t n +1-3(t ≠0)这三个条件中任选一个作为已知条件,补充在下面的问题中,并解答.已知正项等比数列{a n }的前n 项和为S n ,a 1=3,且满足________.(1)求数列{a n }的通项公式;(2)设a n =b n -1b n ,求数列2n n 项和T n .注:若选择多个条件分别解答,按第一个解答计分.解(1)设正项等比数列{a n }的公比为q (q >0),若选①:由S 3=2a 3-15,得a 1+a 2+a 3=2a 3-15,所以a 3-a 2-a 1=15,又由a 1=3,可得3q 2-3q -18=0,解得q =3或q =-2(舍去),所以a n =3×3n -1=3n (n ∈N *).若选②:由a 2+6是a 1,a 3的等差中项,可得a 1+a 3=2(a 2+6),又因为a 1=3,可得3+3q 2=2(3q +6),即q 2-2q -3=0,解得q =3或q =-1(舍去),所以a n =3×3n -1=3n (n ∈N *).若选③:由2S n =t n +1-3(t ≠0),当n =1时,2a 1=6=2S 1=t 2-3,解得t =3或t =-3(舍去),所以2S n =3n +1-3,当n ≥2时,2a n =2S n -2S n -1=3n +1-3-(3n -3)=2·3n ,所以a n =3n (n ≥2).经验证当n =1时,满足a n =3n ,所以a n =3n (n ∈N *).(2)由(1)知a n =3n ,所以b n -1b n =3n ,n =9n ,所以b 2n +1b 2n=9n+2,所以T n 2122 (2)n (91+2)+(92+2)+…+(9n +2)=91+92+…+9n+2n =9(1-9n )1-9+2n =9n +1+16n -98.解决非等差、等比数列求和问题的两种思路思路一转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成思路二不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和2.(2024·广东深圳中学月考)若一个数列的奇数项为公差为正的等差数列,偶数项为公比为正的等比数列,且公差、公比相同,则称数列为“摇摆数列”,其表达式为a n =1+n -12d ,n =2k +1,k ∈N ,2qn -22,n =2k ,k ∈N *,若数列{a n }(n ∈N *)为“摇摆数列”且a 1=1,a 1+a 2=a 3,a 2a 3=20.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前2n 项和T 2n ∑ni =1i 2解(1)+a 2=a 3,2a 3=202=4,3=52=-5,3=-4(舍去),∴d =q =4,∴a n n -1,n =2k +1,k ∈N ,n ,n =2k ,k ∈N *.(2)b n =na n n 2-n ,n =2k +1,k ∈N ,·2n ,n =2k ,k ∈N *.先求奇数项的和:b n =2n 2-n ,n =2k +1,k ∈N ,S n =2×[12+32+…+(2n -1)2]-n 2,引入W n =22+42+…+(2n )2=4(12+22+…+n 2),12(S n +n 2)+W n =∑2ni =1i 2=n (2n +1)(4n +1)3⇒S n=2(∑2ni =1i 2-W n )-n 2=2n (2n +1)(4n +1)3-4×n (n +1)(2n +1)6-n 2=8n 3-3n 2-2n 3,再求偶数项的和:b n =n ·2n ,n =2k ,k ∈N *,S n ′=2×22+4×24+…+2n ×22n ,4S n ′=2×24+4×26+…+2(n -1)×22n +2n ×22n +2,两式相减,得-3S n ′=2×22+2×24+2×26+…+2×22n -2n ×22n+2=8×(1-4n )1-4-2n ×22n +2=(1-3n )×22n +3-83,∴S n ′=(3n -1)22n +3+89,∴T 2n =S n +S n ′=8n 3-3n 2-2n3+(3n -1)22n +3+89.考点三数列与不等式的综合问题例3(2023·安徽十校联考)已知数列{a n }满足a 1+a 2+…+a n -1-a n =-2(n ≥2且n ∈N *),a 2=4.(1)求数列{a n }的通项公式;(2)n 项和为T n ,求证:23≤T n <1.解(1)因为a 1+a 2+…+a n -1-a n =-2,所以a 1+a 2+…+a n -a n +1=-2,两式相减得a n +1=2a n (n ≥2),当n =2时,a 1-a 2=-2,又a 2=4,所以a 1=2,a 2=2a 1,所以a n +1=2a n (n ∈N *),所以{a n }是首项为2,公比为2的等比数列,所以a n =2n (n ∈N *).(2)证明:因为2n(a n -1)(a n +1-1)=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以T n …1-12n +1-1<1,由n ≥1,得2n +1≥4,所以1-12n +1-1≥23,综上,2≤T n <1.1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.2.放缩法常见的放缩技巧(1)1k 2<1k 2-1=121k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k.(3)2(n +1-n )<1n<2(n -n -1).(4)12n +1<12n +1<12n ,13n <13n -1≤12·3n -1.3.(2023·河南五市高三二模)已知数列{a n }满足a 1=23,且2a n +1-a n +1a n =1,n∈N *.(1){a n }的通项公式;(2)记T n =a 1a 2a 3…a n ,n ∈N *,S n =T 21+T 22+…+T 2n .证明:S n 解(1)由2a n +1-a n +1a n =1,得a n +1=12-a n ,则11-a n +1-11-a n=1,是首项为11-a 1=3,公差d =1的等差数列,所以11-a n =3+(n -1)=n +2,整理得a n =n +1n +2(n ∈N *),经检验,符合要求.(2)证明:由(1)得a n =n +1n +2(n ∈N *),T n =a 1a 2…a n =2n +2,∴T 2n =4(n +2)2>4(n +2)(n +3)=∴S n =T 21+T 22+…+T 2n -14+…+1n +2-即S n 考点四数列与函数的综合问题例4(2024·江苏辅仁中学阶段考试)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列前n 项和T n .解(1)由已知,得b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 的图象在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.则a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,从而a n =n ,b n =2n .所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n 2n -1.因此2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n.所以T n =2n +1-n -22n.数列与函数综合问题的常见类型及注意事项常见类型类型一已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题类型二已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形注意事项注意点一数列是一类特殊的函数,其定义域是正整数集(或有限子集),它的图象是一群孤立的点注意点二转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题注意点三利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化4.(2024·湖南湘潭一中阶段考试)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式;(2)设{x n }的前n 项和为S n ,求sin S n .解(1)令f ′(x )=12+cos x =0,所以cos x =-12,解得x =2k π±2π3(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-2π3(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-2n π3=n (n +1)π-2n π3,所以sin S n =sinn (n +1)π-2n π3.因为n (n +1)表示两个连续正整数的乘积,所以n (n +1)一定为偶数,所以sin S n =-sin2n π3.当n =3m -2(m ∈N *)时,sinS n =-m π=-32;当n =3m -1(m ∈N *)时,sin S n =-m π=32;当n =3m (m ∈N *)时,sin S n =-sin2m π=0.综上所述,sin S nn =3m -2(m ∈N *),=3m -1(m ∈N *),3m (m∈N *).课时作业1.(2023·新课标Ⅱ卷){a n }为等差数列,b n n -6,n 为奇数,a n ,n 为偶数,记S n ,T n 分别为数列{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .解(1)设等差数列{a n }的公差为d ,而b n n -6,n 为奇数,a n ,n 为偶数,则b 1=a 1-6,b 2=2a 2=2a 1+2d ,b 3=a 3-6=a 1+2d -6,4=4a 1+6d =32,3=4a 1+4d -12=16,1=5,=2,所以a n =a 1+(n -1)d =2n +3,所以{a n }的通项公式是a n =2n +3.(2)证法一:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,b n -1+b n =2(n -1)-3+4n +6=6n +1,T n =13+(6n +1)2·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,T n =T n +1-b n +1=32(n +1)2+72(n +1)-[4(n +1)+6]=32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .证法二:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-1+2(n -1)-32·n 2+14+4n +62·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,若n ≥3,则T n =(b 1+b 3+…+b n )+(b 2+b 4+…+b n -1)=-1+2n -32·n +12+14+4(n -1)+62·n -12=32n2+52n -5,显然T 1=b 1=-1满足上式,因此当n 为奇数时,T n =32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .2.(2023·江苏徐州第七中学校考一模)已知等比数列{a n }的前n 项和为S n =12·3n +b (b 为常数).(1)求b 的值和数列{a n }的通项公式;(2)记c m 为{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数,求数列{a m c m }的前n 项和T n .解(1)由题设S n =12·3n +b ,显然等比数列{a n }的公比不为1,设{a n }的公比为q ,则S n =a 1(1-q n )1-q=a 11-q -a 1q n1-q ,∴b =a 11-q =-12且q =3,∴a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)令-3m ≤3n -1≤3m ,n ∈N *,解得0≤n -1≤m ,∴1≤n ≤m +1,数列{a n }在区间[-3m ,3m ](m ∈N *)内的项的个数为m +1,则c m =m +1,∴a m c m =(m +1)×3m -1,∵T n =2×30+3×31+…+(n +1)×3n -1,①3T n =2×31+3×32+…+(n +1)×3n ,②两式相减,得-2T n =2×30+31+…+3n-1-(n +1)×3n=1+1-3n1-3-(n +1)·3n =(-1-2n )·3n +12,∴T n n -14.3.(2024·河南郑州外国语学校阶段考试)已知f (x )=-4+1x2,数列{a n }的前n 项和为S n ,点P n n ∈N *)在曲线y =f (x )上,且a 1=1,a n >0.(1)求数列{a n }的通项公式;(2)数列{b n }的前n 项和为T n ,且满足T n +1a 2n =T na 2n +1+16n 2-8n -3,确定b 1的值使得数列{b n }是等差数列.解(1)因为f (x )=-4+1x2,且点P n ,n ∈N *)在曲线y =f (x )上,所以1a n +1=4+1a 2n ,即1a 2n +1-1a 2n=4,1为首项,4为公差的等差数列,所以1a 2n=1+4(n -1)=4n -3,即a n =14n -3(n ∈N *).(2)由(1)知T n +1a 2n =T n a 2n +1+16n 2-8n -3,即为(4n -3)T n +1=(4n +1)T n +(4n -3)(4n +1),整理得T n +14n +1-T n 4n -3=1,T 1为首项,1为公差的等差数列,则T n 4n -3=T 1+n -1,即T n =(4n -3)(T 1+n -1),当n ≥2时,b n =T n -T n -1=4b 1+8n -11,若{b n }是等差数列,则b 1适合上式,令n =1,得b 1=4b 1-3,解得b 1=1.4.(2023·黑龙江齐齐哈尔模拟)在①S n =32a n -3,其中S n 为数列{a n }的前n 项和;②a 1=1,a n -a n +1=a n a n +1这两个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }满足________.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得a m +a m +1为数列{a n }中的项?若存在,求出m ;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分.解若选择条件①:(1)令n =1,则a 1=321-3,所以a 1=6,由于S n =32a n -3,则当n ≥2时,S n -1=32a n -1-3,两式相减,得a n =32a n -32a n -1,则a n a n -1=3,所以{a n }是首项为6,公比为3的等比数列,则数列{a n }的通项公式为a n =6×3n -1=2×3n .(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则2×3m +2×3m +1=2×3k ,所以4×3m =3k ,此等式左边为偶数,右边为奇数,所以不存在正整数m 满足题意.若选择条件②:(1)因为a 1=1,a n -a n +1=a n a n +1,所以a n ≠0,1a n +1-1a n=1,是首项为1a 1=1,公差为1的等差数列,所以1a n =1+(n -1)×1=n ,所以a n =1n.(2)假设存在正整数m ,使得a m +a m +1=a k (k ∈N *),则1m +1m +1=1k,化简得m 2+(1-2k )m -k =0,解得m =2k -1+1+4k 22,因为2k <1+4k 2<2k +1,所以2k -12<m <2k ,m 无正整数解,故不存在正整数m 满足题意.5.已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ成立,求实数λ的取值范围.解(1)由a 2+a 7+a 12=-6,得a 7=-2,∴a 1=4,∴a n =5-n ,S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1,设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m 1-1281m ,的值随m 增加而减小,∴{T m }为递增数列,得4≤T m <8.又S n =n (9-n )2=-12(n 2-9n )-814,故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ,则10<8+λ,解得λ>2.故实数λ的取值范围为(2,+∞).6.(2024·河北衡水调研)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.(1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:1271S n <7528.解(1)由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3an +1-3,即1a n +1-1又因为1a 1-1=73-1=43,是首项为43,公比为43的等比数列,所以1a n -1,所以a n =11.(2)证明:由(1)可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-<7528.综上所述,1271S n <7528成立.。

2023高考数学复习专项训练《等比数列》(含答案)

2023高考数学复习专项训练《等比数列》(含答案)

2023高考数学复习专项训练《等比数列》一、单选题(本大题共12小题,共60分)1.(5分)等比数列{a n}满足a1+a2+a3=13,a2+a3+a4=133,则a5=()A. 1B. 13C. 427D. 192.(5分)给出以下命题:①存在两个不等实数α,β,使得等式sin(α+β)=sinα+sinβ成立;②若数列{a n}是等差数列,且a m+a n=a s+a t(m、n、s、t∈N∗),则m+n=s+t;③若S n是等比数列{a n}的前n项和,则S6,S12−S6,S18−S12成等比数列;④若S n是等比数列{a n}的前n项和,且S n=Aq n+B;(其中A、B是非零常数,n∈N∗),则A+B为零;⑤已知ΔABC的三个内角A,B,C所对的边分别为a,b,c,若a2+b2>c2,则ΔABC一定是锐角三角形.其中正确的命题的个数是()A. 1个B. 2个C. 3个D. 4个3.(5分)设T n为等比数列{a n}的前n项之积,且a1=−6,a4=−34,则当T n最大时,n的值为()A. 4B. 6C. 8D. 104.(5分)等比数列{a n},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52= 15,则a1−a2+a3−a4+a5的值是()A. 3B. √5C. −√5D. 55.(5分)已知在等比数列{a n}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为()A. 514B. 513C. 512D. 5106.(5分)已知正项数列{a n},{b n}分别为等差、等比数列,公差、公比分别为d,q(d,q∈N∗),且d=q,a1+b1=1,a3+b3=3.若a n+b n=2013(n>3),则n= ()A. 2013B. 2012C. 100D. 997.(5分)若a,b,c成等比数列,则关于x的方程a x2+bx+c=0( )A. 必有两个不等实根B. 必有两个相等实根C. 必无实根D. 以上三种情况均有可能8.(5分)公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则log2a10=()9.(5分)记Sn为等比数列{a n}的前n项和,已知S2=2,S3=−6.则{a n}的通项公式为()A. a n=(−2)nB. a n=−2nC. a n=(−3)nD. a n=−3n10.(5分)正项等比数列{a n}中,a3=2,a4.a6=64,则a5+a6a1+a2的值是()A. 4B. 8C. 16D. 6411.(5分)在等比数列{a n}中,a7,a11是方程x2+5x+2=0的二根,则a3.a9.a15a5.a13的值为()A. −2+√22B. −√2C. √2D. −√2或√212.(5分)已知等比数列{a n}的前n项和为S n,9S3=S6=63,则S10=A. 255B. 511C.1023 D. 2047二、填空题(本大题共5小题,共25分)13.(5分)已知等差数列{a n}的公差d≠0,且a3+a9=a10−a8.若a n=0,则n=__________14.(5分)若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=____.15.(5分)在等比数列{an}中,已知前n项和Sn=5n+1+a,则a的值为____________.16.(5分)若等比数列{a n}的首项为23,且a4=∫41(1+2x)dx,则公比q等于______.17.(5分)如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第1群,第2群,……,第n群,……,第n群恰好有n个数,则第n群中n个数的和是____________.123465812107162420149324840281811…三、解答题(本大题共6小题,共72分)18.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3−x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.19.(12分)如果等比数列{a n}中公比q>1,那么{a n}一定是递增数列吗?为什么?20.(12分)数列{a n}满足a1=1,a n=2a n−1-3n+6(n≥2,n∈N+).(1)设b n=a n-3n,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式.21.(12分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12−4n−1,n∈N∗,且a2,a5,a14构成等比数列.(1)证明:a2=√4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.22.(12分)已知数列{a n}是等差数列,其首项为2,且公差为2,若b n=2a n(n∈N∗).(Ⅰ)求证:数列{b n}是等比数列;(Ⅱ)设c n=a n+b n,求数列{c n right}的前n项和A n.23.(12分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+⋯+b2n−1.四、多选题(本大题共5小题,共25分)24.(5分)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则下列说法正确的是()A. a1+a5+a9a2+a3的值为3 B. a1+a5+a9a2+a3的值为2C. 数列{a n}的公差和首项相等D. 数列{a n}的公差和首项不相等25.(5分)设数列{a n},{b n}的前n项和分别为S n,T n,则下列命题正确的是()A. 若a n+1-a n=2(n∈N∗),则数列{a n}为等差数列B. 若b n+1=2b n(n∈N∗),则数列{b n}为等比数列C. 若数列{a n}是等差数列,则S n,S2n-S n,S3n-S2n⋯⋯(n∈N∗)成等差数列D. 若数列{b n}是等比数列,则T n,T2n-T n,T3n-T2n⋯⋯(n∈N∗)成等比数列26.(5分)在公比q为整数的等比数列{a n}中,S n是数列{a n}的前n项,若a1+a4= 18,a2+a3=12,则下列说法正确的是()A. q=2B. 数列{S n+2}是等比数列C. S8=510D. 数列\left{ lg a n}是公差为2的等差数列27.(5分)已知等差数列{a n}的首项为1,公差d=4,前n项和为S n,则下列结论成立的有()A. 数列{S nn}的前10项和为100B. 若a1,a3,a m成等比数列,则m=21C. 若∑n i=11a i a i+1>625,则n的最小值为6D. 若a m+a n=a2+a10,则1m +16n的最小值为251228.(5分)已知数列{a n}为等差数列,{b n}为等比数列,{a n}的前n项和为S n,若a1+ a6+a11=3π,b1b5b9=8,则()A. S11=11πB. sin a2+a10b4b6=12C. a3+a7+a8=3πD. b3+b7⩾4答案和解析1.【答案】D;【解析】解:设等比数列{a n }的公比为q ,由a 2+a 3+a 4=(a 1+a 2+a 3)q ,得133=13q ,解得q =13, 又a 1+a 2+a 3=a 1+13a 1+19a 1=139a 1=13,解得a 1=9,所以a 5=a 1q 4=9×(13)4=19, 故选:D.设等比数列{a n }的公比为q ,通过a 2+a 3+a 4=(a 1+a 2+a 3)q 可求出q 值,进一步根据a 1+a 2+a 3=a 1+a 1q +a 1q 2=13可求出a 1,最后利用a 5=a 1q 4进行求解即可. 此题主要考查等比数列的通项公式,考查学生逻辑推理和运算求解的能力,属于基础题.2.【答案】B; 【解析】该题考查命题真假的判断,考查学生灵活运用等差、等比数列的性质,三角函数以及三角形的判断,是一道综合题,属于中档题.利用特殊值判断①的正误;利用特殊数列即可推出命题②的正误;根据等比数列的性质,判断③的正误;根据等比数列的前n 项的和推出A ,B 判断④的正误.利用特殊三角形判断⑤的正误;解:对于①,实数α=0,β≠0,则sin (α+β)=sinβ,sinα+sinβ=sinβ,所以等式成立;故①正确;对于②,当公差d =0时,命题显然不正确,例如a 1+a 2=a 3+a 4,1+2≠3+4,故②不正确;对于③,设a n =(−1)n ,则S 6=0,S 12−S 6=0,S 18−S 12=0,∴此数列不是等比数列,故③不正确;对于④,S n 是等比数列{a n }的前n 项和,且S n =Aq n +B ;(其中A 、B 是非零常数,n ∈N ∗),所以此数列为首项是a 1,公比为q ≠1的等比数列, 则S n =a 1(1−q n )1−q ,所以A =−a11−q ,B =a11−q ,∴A +B =0,故④正确;对于⑤,如果三角形是直角三角形,a =5,b =3,c =4,满足a 2+b 2>c 2,故⑤不正确;故选:B .3.【答案】A;【解析】解:因为等比数列{a n }中,a 1=−6,a 4=−34,则由a 4=a 1q 3可得q =12. ∵T n 为等比数列{a n }的前n 项之积,∴T n =(−6)n .(12)n(n−1)2,因为求最大值,故只需考虑n 为偶数的情况, ∵T 2n +2T 2n =36×(12)4n +1,由T 2n +2T 2n⩾1可得n =1,∴T 2<T 4>T 6>T 8>⋯.则公比q =12,当T n 最大时,n 的值为4.故选:A .由已知可得q =12.只需考虑n 为偶数的情况,由T 2n +2T 2n⩾1可得n =1,即可求解.该题考查了等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.4.【答案】D;【解析】解:设数列{a n }的公比为q ,且q ≠1,则 a 1+a 2+a 3+a 4+a 5=a 1(1−q 5)1−q =3①, a 12+a 22+a 32+a 42+a 52=a 12(1−q 10)1−q 2=15②∴②÷①得a 12(1−q 10)1−q 2÷a 1(1−q 5)1−q=a 1(1+q 5)1+q=5,∴a 1−a 2+a 3−a 4+a 5=a 1(1+q 5)1+q=5.故选:D.先设等比数列{a n }公比为q ,分别用a 1和q 表示出a 12+a 22+a 32+a 42+a 52,a 1+a 2+a 3+a 4+a 5和a 1−a 2+a 3−a 4+a 5,发现a 12+a 22+a 32+a 42+a 52除以a 1+a 2+a 3+a 4+a 5正好与a 1−a 2+a 3−a 4+a 5相等,进而得到答案.此题主要考查了等比数列的性质.属基础题.解题时要认真审题,注意等比数列的性质的灵活运用.5.【答案】D;【解析】由已知得{a 1+a 1q 3=18a 1q +a 1q 2=12,解得:q =2或q =12.∵q 为整数,∴q =2.∴a 1=2.∴S 8=2(1−28)1−2=29−2=510.6.【答案】A;【解析】此题主要考查等差数列和等比数列的通项公式和性质的应用.计算时要认真仔细.解:∵{_1+b1=1a3+b3=3,∴{_1+b1=1a1+2d+b1q2=3,∵d=q,所以{_1+b1=1a1+2q+b1q2=3,解得d=q=1,∴a n+b n=a1+(n−1)d+b1q n−1=a1+n−1+b1=2013,∴n=2013.故选A.7.【答案】C;【解析】若a,b,c成等比数列,则b²=ac由题意得△=b²-4ac=b²-4b²=-3b²等比数列中没有为0的项,∴-3b²<0∴△小于0,即方程a x2+bx+c=0必无实根故选C。

春季高考数学解答题专项练习:(三)三角函数

春季高考数学解答题专项练习:(三)三角函数

春季高考数学解答题专项练习三角函数1.已知()sin f x x x =.(1)求()f x 的周期,最大值和最小值.(2)把()f x 的图象向左平移π3后得到()y g x =的图象,求()y g x =的解析式.2.已知函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭. (1)求函数()f x 的单调递减区间及其图象的对称中心;(2)已知函数()f x 的图象经过先平移后伸缩得到sin y x =的图象,试写出其变换过程.3.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.4.已知函数()()2sin (0,0)f x x ωϕωϕπ=+><<最小正周期为π,图象过点4π⎛ ⎝. (1)求函数()f x 解析式(2)求函数()f x 的单调递增区间.5.已知向量()2sin ,1a x =,()2cos ,1b x =,x R ∈.(1)当4x π=时,求向量a b +的坐标;(2)设函数()f x a b =⋅,将函数()f x 图象上所有点向左平移4π个单位长度得到()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的最小值.6.已知0ϕπ≤<,函数2())sin f x x x ϕ=++. (Ⅰ)若6πϕ=,求()f x 的单调递增区间;(Ⅱ)若()f x 的最大值是32,求ϕ的值.7.已知函数1π()sin()(0,R)23f x x x ωω=−>∈的最小正周期为π. (1)求()f x 的单调递减区间;(2)求()f x 在区间π3π,24⎡⎤⎢⎥⎣⎦上的最大值与最小值.8.某同学解答一道三角函数题:“已知函数()2sin(),06f x x ωωπ=+>,其最小正周期为π. (1)求(0)f 和ω的值;(2)求函数()f x 在区间[,]63ππ−上的最小值及相应x 的值.” 该同学解答过程如下:下表列出了某些数学知识:请写出该同学在解答过程中用到了此表中的哪些数学知识.9.已知函数()3sin 24f x x π⎛⎫=− ⎪⎝⎭. (1)写出()f x 的最小正周期;(2)求()f x 的最小值,并求取得最小值时自变量x 的集合.10.已知函数()π2sin 2,R 4f x x x ⎛⎫=−∈ ⎪⎝⎭ (1)求()f x 的最大值及对应的x 的集合;(2)求()f x 在[]0,π上的单调递增区间;11.已知函数()sin2f x x x =−.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合;(3)讨论()f x 在ππ,62⎡⎤−⎢⎥⎣⎦上的单调性.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若c 1b =,120C =,求:(1)角B ;(2)△ABC 的面积S .13.已知△ABC 角,,A B C 所对的边分别为,,a b c ,△ABC 的周长为2,且sin sin A B C +.(1)求边c 的长;(2)若△ABC 的面积为23sin C ,求角C 的度数.14.在△ABC 中,内角,,A B C 的对边分别为,,a b c .已知π,4C a ==. (1)求sin A 的值;(2)若c ,求b 的值.15.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且sin cos 0a B A =.(1)求角A 的大小;(2)若4b =,△ABC 的面积S =△ABC 的周长.16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos cos b A c A a C =+.(1)求A ;(2)若4a =,求△ABC 面积的最大值.17.在△ABC 中,有222a c b ab −+=.(1)求角C 的大小;(2)若3a b ==,求△ABC 的面积.18.已知函数cos sin ()()()s x x x x f x =∈R .(1)求()f x 的最小正周期和单调增区间;(2)在△ABC 中,角,,A B C 的对边分别为,,a b c .若2B f ⎛⎫= ⎪⎝⎭,6b =,求△ABC 的面积的最大值.19.在△ABC 中,角,,A B C 的对边分别为,,a b c ,sin 2sin C A =,a =(1)求c ;(2)若3b =,求sin A .20.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知222a b c −−.(1)求B ;(2)若5b =,cos C c .21.在△ABC 中,已知c =b =1,B =30°.(1)求角A ;(2)求△ABC 的面积.22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,(sin ,sin ),(cos ,cos ),sin2==⋅=−m A B n B A m n C ,(1)求C 的大小;(2)已知6==C A π,求b 的值.23.在锐角△ABC 中,,,A B C 的对边分别为,,a b c 2sin c A =(1)确定角C 的大小;(2)若c 6ab =,求边,a b .24.设 △ABC 的内角 、、A B C 的对边分别为 a b c 、、, 且 sin cos a b C B c−=(1)求角 C 的大小:(2)若边 AC 上的高为4b , 求 cos B 的值.25.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()()()b c b c a a c −+=+.(1)求角B ;(2)当1b =时,求△ABC 面积的最大值.26.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,sinsin 2B C b a B += (1)求角A ;(2)若6b =,BC c .27.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c )cos sin a C b c A −=.(1)求角A ;(2)若AD 为BC 边上中线,5AD AB ==,求△ABC 的面积.28.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知()22332a c b ac −=−(1)求cos B 的值;(2)若53a b =,求sin A 的值.29.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,角A ,B ,C 成等差数列,a =2.(1)若c =1,求b ;(2)若△ABCc .30.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin cos a C A =. (1)求角A .(2)若a =2c =求△ABC 的面积.31.在△ABC 中,内角,,A B C 对应的边分别为,,a b c ,已知cos sin a B A . (1)求B ;(2)若a 3c =,求b 的值.。

2013年高考解答题魔鬼训练三《立体几何》

2013年高考解答题魔鬼训练三《立体几何》

2013年高考解答题魔鬼训练三《立体几何》1. 如图,三棱柱111ABC A B C -中,侧面11AAC C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点. (Ⅰ)证明:1AO ⊥平面ABC ; (Ⅱ)求直线1AC 与平面1A AB 所成角的正弦值; (Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置.1A B COA 1B 12.如图,四棱锥P ABCD -的底面是直角梯形,//AB CD ,AB AD ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4DC =,O 为BD 的中点,E 为PA 的中点. (Ⅰ)求证:PO ⊥平面ABCD ; (Ⅱ)求证://OE 平面PDC ;(Ⅲ)求直线CB 与平面PDC 所成角的正弦值.A D OC PBE3. 在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E 为PC 中点,底面ABCD 是直角梯形,//AB CD ,90ADC ∠= ,1AB AD PD ===,2CD =. (Ⅰ)求证://BE 平面PAD ; (Ⅱ)求证:BC ⊥平面PBD ;(Ⅲ)设Q 为侧棱PC 上一点,PQ PC λ=,试确定λ的值,使得二面角Q BD P --为45.ACDEP4.已知四棱锥P ABCD -的底面ABCD 为菱形,且060,ABC ∠=2PB PD AB ===,PA PC =,AC 与BD 相交于点O . (Ⅰ)求证:⊥PO 底面ABCD ;(Ⅱ)求直线PB 与平面PCD 所成角的正弦值;(Ⅲ)若M 是PB 上的一点,且PB CM ⊥,求PMMB的值.APDCOB-中,底面ABCD是正方形,其他四个侧面都是等边三角形,5.如图,在四棱锥S ABCDAC与BD的交点为O,E为侧棱SC上一点.(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;(Ⅱ)求证:平面BDE⊥平面SAC;--的大小为45︒时,试判断点E在SC上的位置,并说明理由.(Ⅲ)当二面角E BD C6.如图,已知菱形ABCD 的边长为6,60BAD ∠= ,AC BD O = .将菱形ABCD 沿对角线AC折起,使BD =B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ; (Ⅱ)求二面角A BD O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N点的位置,使得CN =你的结论.M7.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A DC B--.(1)试判断直线AB与平面DEF的位置关系,并说明理由;(2)求二面角E DF C--的余弦值;(3)在线段BC上是否存在一点P,使AP DE⊥?证明你的结论.ABC DEFAB CDEF8.(2013届北京丰台区一模理科)如图,四边形ABCD是边长为2的正方形,MD⊥平面ABCD,NB∥MD,且NB=1,MD=2;(Ⅰ)求证:AM∥平面BCN;(Ⅱ)求AN与平面MNC所成角的正弦值;(Ⅲ)E为直线MN上一点,且平面ADE⊥平面MNC,求MEMN的值.9.(2013届北京市延庆县一模数学理)如图,四棱锥ABCD P -的底面ABCD 为菱形,60=∠ABC ,侧面PAB 是边长为2的正三角形,侧面PAB ⊥底面ABCD .(Ⅰ)设AB 的中点为Q ,求证:⊥PQ 平面ABCD ; (Ⅱ)求斜线PD 与平面ABCD 所成角的正弦值;(Ⅲ)在侧棱PC 上存在一点M ,使得二面角C BD M --的大小为 60,求CPCM的值.B10.(2013届北京西城区一模理科)在如图所示的几何体中,面CDEF 为正方形,面ABCD为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论.11.(2013届房山区一模理科数学)在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD , ABCD 为直角梯形,BC //AD ,90ADC ∠=︒,112BC CD AD ===,PA PD =,E F ,为AD PC , 的中点.(Ⅰ)求证:P A //平面BEF ;(Ⅱ)若PC 与AB 所成角为45︒,求PE 的长;(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A 的余弦值.DFECBAP12.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知几何体A —BCED 的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角 三角形,正视图为直角梯形. (Ⅰ)求此几何体的体积V 的大小;(Ⅱ)求异面直线DE 与AB 所成角的余弦值;(Ⅲ)试探究在棱DE 上是否存在点Q ,使得AQ BQ ,若存在,求出DQ 的长,不存在说明理由.侧视图俯视图正视图13.(北京市海淀区北师特学校2013届高三第四次月考理科数学)如图所示,正方形DD AA 11与矩形ABCD 所在平面互相垂直,22==AD AB ,点E 为AB 的中点。

专题3.6 高考解答题热点题型(三)利用导数探究函数的零点问题(解析版)

2021年高考理科数学一轮复习:题型全归纳与高效训练突破专题3.6 高考解答题热点题型(三)利用导数探究函数的零点问题目录一、题型全归纳 (1)题型一 判断、证明或讨论函数零点的个数 (1)题型二 已知零点存在情况求参数范围 (4)题型三 函数零点性质研究 (6)二、高效训练突破 (8)一、题型全归纳题型一 判断、证明或讨论函数零点的个数【题型要点】判断函数零点个数的3种方法【例1】(2020年新课标全国三卷)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b . (2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b =-;(2)证明见解析 【解析】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭ 则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-, 令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增, 且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>, 又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x ,即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<, 又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【例2】(2019·高考全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明:(1)f ′(x )在区间⎪⎭⎫ ⎝⎛-2,1π存在唯一极大值点; (2)f (x )有且仅有2个零点.【证明】 (1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2. 当x ∈⎪⎭⎫ ⎝⎛-2,1π时,g ′(x )单调递减,而g ′(0)>0,⎪⎭⎫ ⎝⎛'2πg <0,可得g ′(x )在⎪⎭⎫ ⎝⎛-2,1π有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎪⎭⎫ ⎝⎛2,πα时,g ′(x )<0. 所以g (x )在(-1,α)单调递增,在⎪⎭⎫ ⎝⎛2,πα单调递减, 故g (x )在⎪⎭⎫ ⎝⎛-2,1π存在唯一极大值点,即f ′(x )在⎪⎭⎫ ⎝⎛-2,1π存在唯一极大值点. (2)f (x )的定义域为(-1,+∞).(∈)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0, 故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(∈)当x ∈⎥⎦⎤ ⎝⎛2,0π时,由(1)知,f ′(x )在(0,α)单调递增,在⎪⎭⎫ ⎝⎛2,πα单调递减,而f ′(0)=0,⎪⎭⎫ ⎝⎛'2πf <0,所以存在β∈⎪⎭⎫ ⎝⎛2,πα,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎪⎭⎫ ⎝⎛2,πβ时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎪⎭⎫ ⎝⎛2,πβ单调递减.又f (0)=0,⎪⎭⎫ ⎝⎛2πf =1-ln ⎪⎭⎫ ⎝⎛+21π>0,所以当x ∈⎥⎦⎤ ⎝⎛2,0π时,f (x )>0.从而f (x )在⎥⎦⎤ ⎝⎛2,0π有零点. (∈)当x ∈⎥⎦⎤ ⎝⎛2,2ππ时,f ′(x )<0,所以f (x )在⎪⎭⎫ ⎝⎛ππ,2单调递减.而⎪⎭⎫ ⎝⎛2πf >0,f (π)<0,所以f (x )在⎥⎦⎤ ⎝⎛2,2ππ有唯一零点.(∈)当x ∈()π,+∞时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点.综上,f (x )有且仅有2个零点.题型二 已知零点存在情况求参数范围【题型要点】解决此类问题常从以下两个方面考虑(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件.(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.【例1】(2020·重庆调研)设函数f (x )=-x 2+ax +ln x (a ∈R ).(1)当a =-1时,求函数f (x )的单调区间;(2)设函数f (x )在⎥⎦⎤⎢⎣⎡3,31上有两个零点,求实数a 的取值范围. 【解】(1)函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x, 令f ′(x )=0,得x =12(负值舍去). 当0<x <12时,f ′(x )>0.当x >12时,f ′(x )<0, 所以f (x )的单调递增区间为⎪⎭⎫ ⎝⎛21,0,单调递减区间为⎪⎭⎫ ⎝⎛+∞,21.(2)令f (x )=-x 2+ax +ln x =0,得a =x -ln x x, 令g (x )=x -ln x x ,其中x ∈⎥⎦⎤⎢⎣⎡3,31, 则g ′(x )=1-1x ·x -ln x x 2=x 2+ln x -1x 2,令g ′(x )=0,得x =1,当13≤x <1时,g ′(x )<0,当1<x ≤3时,g ′(x )>0,所以g (x )的单调递减区间为⎪⎭⎫⎢⎣⎡1,31,单调递增区间为(1,3],所以g (x )min =g (1)=1,由于函数f (x )在⎥⎦⎤⎢⎣⎡3,31上有两个零点,⎪⎭⎫ ⎝⎛31g =3ln 3+13,g (3)=3-ln 33,3ln 3+13>3-ln 33, 所以实数a 的取值范围是.⎥⎦⎤ ⎝⎛-33ln 3,1 【例2】已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .【解析】(1)当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点等价于h (x )在(0,+∞)只有一个零点.(∈)当a ≤0时,h (x )>0,h (x )没有零点;(∈)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h (2)=1-4a e 2是h (x )在(0,+∞)的最小值. ∈若h (2)>0,即a <e 24,h (x )在(0,+∞)没有零点; ∈若h (2)=0,即a =e 24,h (x )在(0,+∞)只有一个零点; ∈若h (2)<0,即a >e 24,由于h (0)=1,所以h (x )在(0,2)有一个零点. 由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0, 故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点.综上,f (x )在(0,+∞)只有一个零点时,a =e 24. 题型三 函数零点性质研究【题型要点】本题型包括两个方向:一是与函数零点性质有关的问题(更多涉及构造函数法);二是可以转化为函数零点的函数问题(更多涉及整体转化、数形结合等方法技巧).能够利用等价转换构造函数法求解的问题常涉及参数的最值、曲线交点、零点的大小关系等.求解时一般先通过等价转换,将已知转化为函数零点问题,再构造函数,然后利用导数研究函数的单调性、极值、最值等,并结合分类讨论,通过确定函数的零点达到解决问题的目的.【例1】 (2019·高考全国卷Ⅰ)已知函数f (x )=ln x -x +1x -1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.【解】 (1)f (x )的定义域为(0,1)∈(1,+∞).因为f ′(x )=1x +2(x -1)2>0,所以f (x )在(0,1),(1,+∞)单调递增. 因为f (e)=1-e +1e -1<0,f (e 2)=2-e 2+1e 2-1=e 2-3e 2-1>0,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又0<1x 1<1,⎪⎪⎭⎫ ⎝⎛11x f =-ln x 1+x 1+1x 1-1=-f (x 1)=0, 故f (x )在(0,1)有唯一零点1x 1. 综上,f (x )有且仅有两个零点.(2)证明:因为1x 0=e -ln x 0,故点B ⎪⎪⎭⎫ ⎝⎛-001,ln x x 在曲线y =e x 上. 由题设知f (x 0)=0,即ln x 0=x 0+1x 0-1,连接AB ,则直线AB 的斜率k =1x 0-ln x 0-ln x 0-x 0=1x 0-x 0+1x 0-1-x 0+1x 0-1-x 0=1x 0. 曲线y =e x在点B ⎪⎪⎭⎫ ⎝⎛-001,ln x x 处切线的斜率是1x 0,曲线y =ln x 在点A (x 0,ln x 0)处切线的斜率也是1x 0,所以曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.【例2】已知函数f (x )=12x 2+(1-a )x -a ln x ,a ∈R . (1)若f (x )存在极值点为1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2.【解析】(1)由已知得f ′(x )=x +1-a -a x,因为f (x )存在极值点为1,所以f ′(1)=0,即2-2a =0,a =1,经检验符合题意,所以a =1.(2)证明:f ′(x )=x +1-a -a x =(x +1)(1-a x)(x >0), ∈当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上为增函数,不符合题意;∈当a >0时,由f ′(x )=0得x =a ,当x >a 时,f ′(x )>0,所以f (x )单调递增,当0<x <a 时,f ′(x )<0,所以f (x )单调递减,所以当x =a 时,f (x )取得极小值f (a ).又f (x )存在两个不同的零点x 1,x 2,所以f (a )<0,即12a 2+(1-a )a -a ln a <0, 整理得ln a >1-12a , 作y =f (x )关于直线x =a 的对称曲线g (x )=f (2a -x ),令h (x )=g (x )-f (x )=f (2a -x )-f (x )=2a -2x -a ln2a -x x , 则h ′(x )=-2+2a 2(2a -x )x =-2+2a 2-(x -a )2+a 2≥0, 所以h (x )在(0,2a )上单调递增,不妨设x 1<a <x 2,则h (x 2)>h (a )=0,即g (x 2)=f (2a -x 2)>f (x 2)=f (x 1),又2a -x 2∈(0,a ),x 1∈(0,a ),且f (x )在(0,a )上为减函数,所以2a -x 2<x 1,即x 1+x 2>2a ,又ln a >1-12a ,易知a >1成立,故x 1+x 2>2.二、高效训练突破1.已知函数f (x )=e x -ax2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .【解析】:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点当且仅当h (x )在(0,+∞)只有一个零点.(∈)当a ≤0时,h (x )>0,h (x )没有零点;(∈)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)单调递减,在(2,+∞)单调递增.故h (2)=1-4a e 2是h (x )在[0,+∞)的最小值. ∈若h (2)>0,即a <e 24,h (x )在(0,+∞)没有零点; ∈若h (2)=0,即a =e 24,h (x )在(0,+∞)只有一个零点; ∈若h (2)<0,即a >e 24,由于h (0)=1,所以h (x )在(0,2)有一个零点. 由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0. 故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点.综上,f (x )在(0,+∞)只有一个零点时,a =e 24. 2.(2020·武汉调研)已知函数f (x )=e x -ax -1(a ∈R )(e =2.718 28…是自然对数的底数).(1)求f (x )的单调区间;(2)讨论g (x )=f (x )(x -12)在区间[0,1]上零点的个数. 【解析】:(1)因为f (x )=e x -ax -1,所以f ′(x )=e x -a ,当a ≤0时,f ′(x )>0恒成立,所以f (x )的单调递增区间为(-∞,+∞),无单调递减区间;当a >0时,令f ′(x )<0,得x <ln a ,令f ′(x )>0,得x >ln a ,所以f (x )的单调递减区间为(-∞,ln a ),单调递增区间为(ln a ,+∞).(2)令g (x )=0,得f (x )=0或x =12, 先考虑f (x )在区间[0,1]上的零点个数,当a ≤1时,f (x )在(0,+∞)上单调递增且f (0)=0,所以f (x )在[0,1]上有一个零点; 当a ≥e 时,f (x )在(-∞,1)上单调递减,所以f (x )在[0,1]上有一个零点;当1<a <e 时,f (x )在(0,ln a )上单调递减,在(ln a ,1)上单调递增,而f (1)=e -a -1,当e -a -1≥0,即1<a ≤e -1时,f (x )在[0,1]上有两个零点,当e -a -1<0,即e -1<a <e 时,f (x )在[0,1]上有一个零点.当x =12时,由f (12)=0得a =2(e -1), 所以当a ≤1或a >e -1或a =2(e -1)时,g (x )在[0,1]上有两个零点;当1<a ≤e -1且a ≠2(e -1)时,g (x )在[0,1]上有三个零点.3.(2020·长春市质量监测(二))已知函数f (x )=e x +bx -1(b ∈R ).(1)讨论f (x )的单调性;(2)若方程f (x )=ln x 有两个实数根,求实数b 的取值范围.【解析】:(1)由题意可得f ′(x )=e x +b ,当b ≥0时,f ′(x )>0,f (x )在(-∞,+∞)上单调递增.当b <0时,若x ≥ln(-b ),则f ′(x )≥0,f (x )在[ln(-b ),+∞)上单调递增;若x <ln(-b ),则f ′(x )<0,f (x )在(-∞,ln(-b ))上单调递减.(2)令g (x )=e x +bx -1-ln x ,则g ′(x )=e x +b -1x,易知g ′(x )单调递增且一定有大于0的零点,设g ′(x )大于0的零点为x 0,则g ′(x 0)=0,即e x 0+b -1x 0=0,b =1x 0-e x 0.方程f (x )=ln x 有两个实数根,即g (x )有两个零点,则需满足g (x 0)<0,即e x 0+bx 0-1-ln x 0=e x 0+⎪⎪⎭⎫⎝⎛-001x e x x 0-1-ln x 0=e x 0-e x0x 0-ln x 0<0, 令h (x )=e x -e x x -ln x (x >0),则h ′(x )=-e x x -1x <0,所以h (x )在(0,+∞)上单调递减,又h (1)=0,所以e x 0-e x 0x 0-ln x 0<0的解集为(1,+∞),所以b =1x 0-e x 0<1-e.当b <1-e 时,e x +bx -1-ln x >x +bx -ln x ,有g (e b )>e b +b e b -ln e b =(b +1)e b -b , 令G (x )=(x +1)e x -x =(x +1)(e x -1)+1,x <1-e ,所以x +1<2-e<0,0<e x <1,故G (x )=(x +1)e x -x >0,所以g (e b )>0,故g (e b )g (x 0)<0,g (x )在(0,x 0)上有唯一零点,另一方面,在(x 0,+∞)上,当x →+∞时,因为e x 的增长速度快,所以g (x )>0,g (x )在(x 0,+∞)上有唯一零点. 综上,b 的取值范围是(-∞,1-e).4.(2020·江西八所重点中学联考)已知函数f (x )=12ax -a +1-ln xx (其中a 为常数,且a ∈R ).(1)若函数f (x )为减函数,求实数a 的取值范围;(2)若函数f (x )有两个不同的零点,求实数a 的取值范围,并说明理由. 【解析】:(1)因为f (x )=12ax -a +1-ln x x ,所以f ′(x )=12a -1-ln xx 2,若函数f (x )为减函数,则f ′(x )≤0对x ∈(0,+∞)恒成立,即12a ≤1-ln xx 2对x ∈(0,+∞)恒成立.设m (x )=1-ln x x 2,则m ′(x )=2ln x -3x 3,令m ′(x )=0,得x =e 32,可得m (x )在区间(0,e 32)上单调递减,在区间(e 32,+∞)上单调递增,所以m (x )min =m (e 32)=-12e 3,所以12a ≤-12e 3,即a ≤-e -3,故实数a 的取值范围是(-∞,-e -3].(2)易知函数f (x )的定义域为(0,+∞),因为f (x )=12ax 2-(a -1)x -ln x x,所以可设h (x )=12ax 2-(a -1)x -ln x ,则函数f (x )有两个不同的零点等价于函数h (x )有两个不同的零点.因为h ′(x )=ax -(a -1)-1x =ax 2-(a -1)x -1x =(ax +1)(x -1)x,所以当a ≥0时,函数h (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以h (x )在(0,+∞)上有最小值为h (1).若函数h (x )有两个不同的零点,则必有h (1)=-12a +1<0,即a >2,此时,在x ∈(1,+∞)上有h (2)=2a -2(a -1)-ln 2=2-ln 2>0, 在x ∈(0,1)上,h (x )=12a (x 2-2x )+x -ln x ,因为-1<x 2-2x <0,所以h (x )>-12a +x -ln x ,所以h (e-12a)>-12a +e -12a a -ln(e -12a )=e -12a>0,所以h (x )在区间(0,1),(1,+∞)上各有一个零点,故a >2符合题意.当a =-1时,h ′(x )≤0,所以函数h (x )在区间(0,+∞)上单调递减,所以函数h (x )至多有一个零点,不符合题意.当-1<a <0时,函数h (x )在区间(0,1)上单调递减,在区间⎪⎭⎫ ⎝⎛-a 1,1上单调递增,在区间⎪⎭⎫⎝⎛+∞-,1a 上单调递减,所以函数h (x )的极小值为h (1)=-12a +1>0,所以函数h (x )至多有一个零点,不符合题意;当a <-1时,函数h (x )在区间⎪⎭⎫ ⎝⎛-a 1,0上单调递减,在区间⎪⎭⎫ ⎝⎛-1,1a 上单调递增,在区间(1,+∞)上单调递减,所以函数h (x )的极小值为⎪⎭⎫ ⎝⎛-a h 1=12a +1a (a -1)-⎪⎭⎫⎝⎛-a 1ln =1-12a +ln(-a )>0, 所以函数h (x )至多有一个零点,不符合题意. 综上所述,实数a 的取值范围是(2,+∞).5.(2020·唐山模拟)已知函数f (x )=x 22-4ax +a ln x +3a 2+2a (a >0).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1,x 2,当a 变化时,求f (x 1)+f (x 2)的最大值.【解析】(1)函数f (x )的定义域为x >0,对f (x )求导得f ′(x )=x -4a +a x =x 2-4ax +ax ,x >0,a >0.令M (x )=x 2-4ax +a ,则Δ=16a 2-4a =4a (4a -1).∈当0<a ≤14时,Δ≤0,M (x )≥0在(0,+∞)上恒成立,则f ′(x )≥0,f (x )在(0,+∞)上单调递增;∈当a >14时,Δ>0,f ′(x )=0的根为x 1=2a -4a 2-a ,x 2=2a +4a 2-a ,由f ′(x )>0得0<x <2a -4a 2-a 或x >2a +4a 2-a ; 由f ′(x )<0得2a -4a 2-a <x <2a +4a 2-a .所以f (x )在(0,2a -4a 2-a ),(2a +4a 2-a ,+∞)上单调递增;在(2a -4a 2-a ,2a +4a 2-a )上单调递减.(2)由(1)得a >14,x 1=2a -4a 2-a ,x 2=2a +4a 2-a ,所以x 1+x 2=4a ,x 1x 2=a ,从而f (x 1)+f (x 2)=12(x 21+x 22)-4a (x 1+x 2)+a ln x 1x 2+6a 2+4a =12(x 1+x 2)2-x 1x 2-10a 2+4a +a ln a =a ln a -2a 2+3a . 令g (a )=a ln a -2a 2+3a ,则g ′(a )=ln a -4a +4. 令h (a )=ln a -4a +4,则h ′(a )=1a-4.因为a >14,所以h ′(a )<0,所以h (a )在(14,+∞)上单调递减.又h (1)=0,所以a ∈(14,1)时,h (a )>0,g ′(a )>0,g (a )在(14,1)上单调递增;a ∈(1,+∞)时,h (a )<0,g ′(a )<0,g (a )在(1,+∞)上单调递减,所以a =1时,g (a )取得最大值1. 故f (x 1)+f (x 2)的最大值为1.6.(2019·全国卷Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.【解】(1)证明:设g (x )=f ′(x ),则g (x )=cos x +x sin x -1,g ′(x )=x cos x .当x ∈⎪⎭⎫ ⎝⎛2,0π时,g ′(x )>0;当x ∈⎪⎭⎫ ⎝⎛ππ,2时,g ′(x )<0,所以g (x )在⎪⎭⎫ ⎝⎛2,0π上单调递增,在⎪⎭⎫⎝⎛ππ,2上单调递减.又g (0)=0,⎪⎭⎫⎝⎛2πg >0,g (π)=-2, 故g (x )在(0,π)存在唯一零点. 所以f ′(x )在区间(0,π)存在唯一零点. (2)由题设知f (π)≥a π,f (π)=0,可得a ≤0.由(1)知,f ′(x )在(0,π)只有一个零点,设为x 0,且当x ∈(0,x 0)时,f ′(x )>0; 当x ∈(x 0,π)时,f ′(x )<0,所以f (x )在(0,x 0)上单调递增,在(x 0,π)上单调递减. 又f (0)=0,f (π)=0,所以当x ∈[0,π]时,f (x )≥0. 又当a ≤0,x ∈[0,π]时,ax ≤0,故f (x )≥ax . 因此,a 的取值范围是(-∞,0].7.(2020年新课标全国一卷)已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】(1)当1a =时,()(2)x f x e x =-+,'()1xf x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++,令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.8.(2020年新课标全国三卷)已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围. 【答案】(1)详见解析;(2)4(0,)27. 【解析】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x << 令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增. (2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<, 当4027k <<>20f k =>, 所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<, 所以()f x在(1,k --上有唯一一个零点, 又()f x在(上有唯一一个零点,所以()f x 有三个零点, 综上可知k 的取值范围为4(0,)27.。

2023高考数学复习专项训练《面面垂直的判定》(含解析)

2023高考数学复习专项训练《面面垂直的判定》一、单选题(本大题共12小题,共60分)1.(5分)已知A={ x|3a−1<x<2a+3},B={ x|x2−x−2⩽0},A⊆B,则a的取值范围为()A. { a|a⩽−12} B. { a|a⩽12或a⩾0}C. { a|a⩾4}D. { a|a⩽0或a⩾4}2.(5分)定义:设函数f(x)的定义域为D,如果[m,n]⊆D,使得f(x)在[m,n]上的值域为[m,n],则称函数f(x)在[m,n]上为“等域函数”,若定义域为[1e,e2]的函数g(x)= c x(c>0,c≠1)在其定义域的某个区间上为“等域函数”,则实数c的取值范围为()A. [2e2,1e) B. [2e2,1e]C. [e2e2,e1e] D. [e2e2,e1e)3.(5分)设x、y∈R,则“x≥2且y≥2”是“x2+y2≥4”.()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件4.(5分)命题p:关于x的不等式ax2+ax−x−1<0的解集为(−∞,−1)∪(1a,+∞)的一个充分不必要条件是().A、a⩽−1B、a>0C、−2<a<0D、a<−2A. a⩽−1B. a>0C. −2<a<0D. a<−25.(5分)函数y=loga (2x−3)+√22(a>0且a≠1)的图像恒过定点P,且点P在幂函数f(x)的图像上,则f(4)=()A. 2B. 12C. 14D. 166.(5分)设ab>0,下面四个不等式:①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a−b|;④|a+b|>|a|−|b|;正确的是()A. ①和②B. ①和③C. ①和④D. ②和④7.(5分)已知ΔABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2<a 2,且cos 2A −3sin A +1=0,则sin (C −A)+√32cos (2A −B)的取值范围为 ( )A. (−12,−√34) B. (−12,−√34] C. [0,√34] D. (−23,−12) 8.(5分)函数y =x 2+ln |x|的图象大致为( )A. B.C.D.9.(5分)已知函数f(x)=x 1−|x|(x ∈D),有下列四个结论:①对任意x ∈D ,f(−x)+f(x)=0恒成立;②对任意m ∈(0,1),方程|f(x)|=m 有两个不相等的实数根; ③存在函数g(x)使得g(x)的图象与f(x)的图象关于直线y =x 对称; ④对任意k ∈(1,+∞),函数g(x)=f(x)−kx 在D 上有三个零点. 则上述结论中正确的个数为()A. 1B. 2C. 3D. 410.(5分)已知函数f (x )的定义域为R ,f (x +2)为偶函数,f (2x +1)为奇函数,则( )A. f (−12)=0B. f (−1)=0C. f (2)=0D. f (4)=011.(5分)已知定义在R 上的奇函数f(x),且当x ∈[0,+∞)时,f(x)单调递增,则不等式f(2x +1)+f(1)⩾0的解集是()A. (−∞,1)B. (−1,+∞)C. [−1,+∞)D. (−∞,1]12.(5分)已知集合A ={x|1<x <3},集合B ={x|log 2(x +1)⩽2},则A ∪B =()A 、{x|1<x <3}B 、{x|x ⩽3}C 、{x|−1<x <3}D 、{x|1−<x ⩽3} A. {x|1<x <3} B. {x|x ⩽3} C. {x|−1<x <3}D. {x|1−<x ⩽3}二 、填空题(本大题共5小题,共25分)13.(5分)函数f(x)=x−1x中,若f(x)=0,则x=__________.14.(5分)某班有36名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则只参加物理小组的有__________人,同时参加数学和化学小组的有__________人.15.(5分)写出一个同时具有下列性质①②③的函数f(x): ______ .①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.16.(5分)已知函数f(x)满足以下条件:①在R上单调递增;②对任意x1,x2,均有f(x1)⋅f(x2)=4f(x1+x2),则f(x)的一个解析式为 ______.17.(5分)已知等式sin230°+sin230°+sin30°⋅sin30°=34sin220°+sin240°+sin20°⋅sin40°=34sin210°+sin250°+sin10°⋅sin50°=34请你写出一个具有一般性的等式,使你写出的等式包含了已知的等式,这个等式是______.三、解答题(本大题共6小题,共72分)18.(12分)已知集合A={x|1⩽x−1⩽4},B={x|−2<x⩽3},C={x|2a−1< x<2a+1}.(1)若x∈C是“x∈A”的充分条件,求实数a的取值范围;(2)若(A∩B)⊆C,求实数a的取值范围.19.(12分)已知函数f(x)=√3sinx+mcosx(m∈R).(Ⅰ)若m=1,求f(π12)的值;(Ⅰ)若m=√6,且f(x)=0,求tan2x.20.(12分)立德中学高一年级共有200名学生报名参加学校团委与学生会组织的社团组织.据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有多少人?21.(12分)已知sin(α−β)=12,sin(α+β)=13.(1)证明:tanα+5tanβ=0;(2)计算:tan(α−β)−tanα+tanβtan2α·tan(α−β)的值.22.(12分)在①两个相邻对称中心的距离为π2,②两条相邻对称轴的距离为π2,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解.问题:函数f(x)=cos(ωx+φ)(ω>0,0<φ<π2)的图象过点(0,12),且满足________,当α∈(0,π2)时,f(α2)=−√22,求sinα的值.23.(12分)已知函数f(x)=ax−2b x 2+1是定义在[−1,1]上的奇函数,且f(1)=1.(1)求a ,b 的值;(2)判断函数f(x)的单调性并用定义加以证明;(3)求使f(m −1)+f(2m −1)<0成立的实数m 的取值范围. 四 、多选题(本大题共5小题,共25分) 24.(5分)下列说法正确的是()A. “a >1”是“1a <1”的充分不必要条件B. 命题“∀x >1,x 2<1”的否定是“∃x <1,x 2⩾1”C. “x >1”是“(x −1)(x +2)>0”的必要条件D. 设a ,b ∈R ,则“a ≠0”是“ab ≠0”的必要不充分条件 25.(5分)设a >1,b >1且ab −(a +b)=1,那么( )A. a +b 有最小值2+2√2B. a +b 有最大值2+2√2C. ab 有最小值3+2√2D. ab 有最大值1+√226.(5分)已知x ,y ∈R ,x >0,y >0,且x +2y =1.则下列选项正确的是()A. 1x +1y 的最小值为4√2 B. x 2+y 2的最小值为15 C.x−2y x 2+y 2>1D. 2x+1+4y ⩾427.(5分)已知M 、N 均为实数集R 的子集,且N ∩∁R M =∅,则下列结论中正确的是( )A. M ∩∁R N =∅B. M ∪∁R N =RC. ∁R M ∪∁R N =∁R MD. ∁R M ∩∁R N =∁R M28.(5分)已知函数f(x)=2cos (ωx +ϕ)(ω>0,|ϕ|<π2)的图象上,对称中心与对称轴x =π12的最小距离为π4,则下列结论正确的是( )A. f (x )+f (5π6−x)=0 B. 当x ∈[π6,π2]时,f (x )⩾−√3C. 若g(x)=2cos2x ,则g (x −π6)=f (x )D. 若sin 4α−cos 4α=−45,α∈(0,π2),则f (α+π4)的值为4−3√35答案和解析1.【答案】C;【解析】解:由题意知B ={ x |−1⩽x ⩽2}, (1)A =∅时,3a −1⩾2a +3,解得a ⩾4,满足题意;(2)A ≠∅时,a <4,由A ⊆B ,即有{2a +3⩽2,解得{a ⩽−12,可得a ∈∅; 综上,a ⩾4. 故选:C.分别讨论A 是否为空集,结合集合的关系,可得a 的不等式组,解不等式可得所求范围. 此题主要考查集合关系中的含参问题,注意对集合A 分空集和不是空集2种情况进行讨论,属于较易问题.2.【答案】D;【解析】解:由题意得,函数g(x)的图象与直线y =x 在[1e ,e 2]上有两个交点,即方程c x =x 在[1e,e 2]上有两个不等实根,即lnc =lnx x在[1e ,e 2]上有两个不等实根.设函数ℎ(x)=lnx x(1e⩽x ⩽e 2),ℎ′(x)=1−lnx x 2,当1e⩽x <e 时,ℎ′(x)>0,函数ℎ(x)单调递增; 当e <x ⩽e 2时,ℎ′(x)<0,函数ℎ(x)单调递减. 所以ℎ(x)在x =e 处取得极大值,也是最大值,为ℎ(e)=1e .又ℎ(1e )=−e,ℎ(e 2)=2e 2, 故2e 2⩽lnc <1e ,解得e 2e 2⩽c <e 1e.故选:D.由题意可得函数g(x)的图象与直线y =x 在[1e ,e 2]上有两个交点,即lnc =lnx x在[1e ,e 2]上有两个不等实根.构造函数,通过导数求函数的最值与区间端点值,数形结合求解即可.此题主要考查了导数的新定义问题,考查转化思想,属于中档题.3.【答案】A; 【解析】略4.【答案】null; 【解析】此题主要考查了一元二次不等式的解法,充分必要条件的应用,属于中档题. 先根据命题p 成立的充要条件,求出a 的取值范围,然后根据充分不必要条件的定义结合各选项可得答案.解:由题意命题p 即(ax −1)(x +1)<0的解集为(−∞,−1)∪(1a ,+∞),即充要条件为{a <0−1⩽1a ,解得a ⩽−1,因为(−∞,−2)⫋(−∞,−1]所以a <−2是a ⩽−1的一个充分不必要条件, 故选D.5.【答案】B; 【解析】此题主要考查了对数的恒过定点问题以及幂函数的解析式和求值,属于基础题.将定点代入幂函数解析式,可得a ,进而可求f(4).解:可知函数y =log a (2x −3)+√22(a >0且a ≠1)的图象恒过定点P(2,√22), 令幂函数为f(x)=x a ,代入P 点坐标, 可得√22=2a ,则a =−12, f(x)=x −12, 则f(4)=4−12=12.故选B.6.【答案】C;【解析】此题主要考查了不等式与绝对值不等式,根据ab >0,逐项判断即可得到答案.解:∵ab >0,∴a 、b 同号,∴ |a +b|>|a|,|a +b|=|a|+|b|,∴①④正确,故选C.7.【答案】A; 【解析】此题主要考查了二倍角公式,解三角形,以及三角恒等变换等内容,需要学生熟练掌握并巧妙变换.由题意,利用二倍角公式将cos2A −3sin A +1=0化成关于sin A 的一元二次方程,解出sin A 的值,利用cos A <0求出A 的取值;将A 的值和B =π−A −C 代入并化简,可以得到关于C 的三角函数,利用三角函数单调性求出值域,即所求.解:因为cos2A −3sin A +1=0, 所以1−2sin2A −3sin A +1=0, 所以sin A =12或−2(舍), 又因为cos A <0, 所以A =5π6, 所以sin (C −A)+√32cos (2A −B)=sin (C −5π6)+√32cos [2×−(π−5π6−C)]=sin (C −5π6)+√32sin C =−12cos C , 又因为C ∈(0,π6), 所以cos C ∈(√32,1), 所以−12cos C ∈(−12,−√34) .故选A.8.【答案】A;【解析】此题主要考查了函数图象的识别,关键是掌握函数的奇偶性和函数的单调性和函数值的变化趋势,属于基础题.先求出函数为偶函数,再根据函数值的变化趋势或函数的单调性即可判断. 解:∵f(−x)=x 2+ln |x|=f(x), ∴y =f(x)为偶函数,∴y =f(x)的图象关于y 轴对称,故排除B ,C , 当x >0时,y =x 2+ln x 为增函数,故排除D. 故选A .9.【答案】C;【解析】解:①函数的定义域是{x|x ≠±1},f(−x)+f(x)=−x 1−|−x|+x 1−|x|=0,故①正确;②y =|f(x)|=|x1−|x||={x x−1,x >1x 1−x ,0<x <1−x1+x,−1<x <0−x x+1,x <−1,函数的图象如图所示:y =m 与函数图象有2个交点,故②正确;③设函数g(x)上的任一点为P(x,y)关于y =x 的对称点为(y,x)在函数f(x)上, 则x =y 1−|y|,当y >0时,y =xx+1,当y ⩽0时,y =x 1−x,当x =2时,y =23或y =−2,存在一个x 对着两个y 的值,所以不存在函数g(x)使得g(x)的图象与f(x)的图象关于直线v =x 对称,故③不正确; ④x1−|x|−kx =0,当x =0时,满足方程,所以方程的一个实数根是x =0,当x ≠0时,k =11−|x|,|x|=1−1k ,当k >1时,1−1k >0,x =±(1−1k ),),所以函数有3个零所以满足方程g(x)=f(x)−kx=0的有三个实数根据0,±(1−1k点,故④正确.故正确的个数有3个.故选:C.①根据解析式计算f(−x)+f(x)=0;②画出函数y=|f(x)|的图象,由图象的交点个数判断实数根的个数;③假设存在函数g(x)满足条件,再根据函数的定义,判断选项;④根据f(x)−kx=0,求方程的实数根的个数,再判断定义域上的零点个数.此题主要考查函数的图象和性质,零点,重点考查数形结合分析问题的能力,推理能力,属于中档题型.10.【答案】B;【解析】本题是对函数奇偶性和周期性的综合考查,属于拔高题.推导出函数f(x)是以4为周期的周期函数,由已知条件得出f(1)=0,结合已知条件可得出结论.解:因为函数f(x+2)为偶函数,则f(2+x)=f(2−x),可得f(x+3)=f(1−x),因为函数f(2x+1)为奇函数,则f(1−2x)=−f(2x+1),所以,f(1−x)=−f(x+1),所以,f(x+3)=−f(x+1)=f(x−1),即f(x)=f(x+4),故函数f(x)是以4为周期的周期函数,因为函数F(x)=f(2x+1)为奇函数,则F(0)=f(1)=0,故f(−1)=−f(1)=0,其它三个选项未知.故选B.11.【答案】C;【解析】此题主要考查综合运用函数的单调性与奇偶性解不等式,属于中档题.解:因为函数在[0,+∞)上是增函数,且函数是奇函数,所以函数在(−∞,0)上是增函数,函数在x=0处连续,所以函数在R上是增函数,又f(−1)=−f(1),所以不等式可化为f(2x+1)⩾−f(1)=f(−1),所以2x+1⩾−1,解得x⩾−1,即不等式的解集为[−1,+∞).故选C.12.【答案】null;【解析】解:集合A={x|1<x<3},集合B={x|log2(x+1)⩽2}={x|−1<x⩽3},则A∪B={x|−1<x⩽3}.故选:D.求出集合A,集合B,利用并集定义能求出A∪B.此题主要考查集合的运算,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.13.【答案】1或-1;【解析】略14.【答案】5;8;【解析】此题主要考查运用集合间的关系确定元素个数问题以及venn图的运用,属于基础题.把集合间的关系利用方程表示出来,再解方程即可.解:由条件知,每名同学至多参加两个小组,故不可能出现一名同学同时参加数学、物理、化学小组,因为参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,所以只参加物理的有15−6−4=5人.设同时参加数学和化学小组的人数有x人,则只参加数学的有26−6−x=20−x,只参加化学的有13−4−x=9−x.又总人数为36人,即20−x+x+6+4+5+9−x=36,所以44−x=36,解得x=8.即同时参加数学和化学小组的人数有8人,15.【答案】f(x)=x2;【解析】此题主要考查了幂函数的求导公式,奇函数的定义及判断,考查了计算能力,属于基础题.函数f(x)=x 2,f(x 1x 2)=(x 1x 2)2=x 12x 22=f(x 1)f(x 2)满足①,求出导函数,可判断满足②③.解:f(x)=x 2时,f(x 1x 2)=(x 1x 2)2=x 12x 22=f(x 1)f(x 2);当x ∈(0,+∞)时,f′(x)=2x >0;f′(x)=2x 是奇函数. 故答案为:f(x)=x 2.16.【答案】f (x )=2x+2;【解析】解:因为函数f(x)满足对任意x 1,x 2,均有f(x 1)⋅f(x 2)=4f(x 1+x 2), 故考虑基本初等函数中的指数函数, 又f(x)在R 上单调递增, 则指数函数的底数大于1,所以f(x)的一个解析式为f(x)=2x+2. 故答案为:f(x)=2x+2.由条件②,考虑为基本初等函数中的指数函数,再利用单调性,即可得到答案. 此题主要考查了基本初等函数性质的理解与应用,指数函数性质的理解与应用,考查了逻辑推理能力,属于基础题.17.【答案】si n 2α+si n 2(60°-α)+sinα•sin (60°-α)=34;【解析】解:等式的右边为常数34,等式左边的两个角之和为60°,故由归纳推理可知,满足条件的一个结论可以是:sin 2α+sin 2(60°−α)+sinα⋅sin(60°−α)=34.故答案为:sin 2α+sin 2(60°−α)+sinα⋅sin(60°−α)=34.根据两个等式的特点,确定角和角之间的关系,然后利用归纳推理归纳出结论. 此题主要考查归纳推理的应用,根据归纳推理,先从条件中确定等式的规律是解决此类问题的基本思路,属于基础题.18.【答案】解:(1)集合A={x|1≤x -1≤4}={x|2≤x≤5},C={x|2a-1<x <2a+1}, ∵x ∈C 是“x ∈A”的充分条件,∴{2a +1≤52a −1≥2,解得32≤a ≤2, ∴实数a 的取值范围是[32,2];(2)∵集合A={x|1≤x -1≤4}={x|2≤x≤5},B={x|-2<x≤3},C={x|2a-1<x <2a+1}, ∴A∩B={x|2≤x≤3},(A∩B )⊆C ,∴{2a −1<22a +1>3,解得1<a <32, ∴实数a 的取值范围是(1,32).;【解析】(1)求出集合A ,利用x ∈C 是“x ∈A ”的充分条件,列出不等式组,由此能求出实数a 的取值范围;(2)利用交集定义求出A ∩B ,利用(A ∩B)⊆C ,列出不等式组,由此能求出实数a 的取值范围.此题主要考查集合的运算,考查充分条件、子集、交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.19.【答案】解:(Ⅰ)若m=1,则函数f (x )=√3sinx+cosx=2sin (x+π6), ∴f (π12)=2sin π4=√2.(Ⅱ)∵m=√6,f (x )=√3sinx+√6cosx=0, ∴√3sinx-=-√6cosx ,∴tanx=-√2, ∴tan2x=2tanx 1−tan 2x =2√2.;【解析】(Ⅰ)由题意,利用两角和差的三角公式化简函数f(x)的解析式,从而得到f(π12)的值.(Ⅰ)先由题意求得tanx 的值,再利用二倍角的正切公式,计算tan2x 的值. 此题主要考查两角和差的三角公式,二倍角的正切公式,属于基础题.20.【答案】解:由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有103+120-200=23人,所以同时参加这2个社团的最多有103名学生,最少有23名学生.; 【解析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 此题主要考查集合的应用,考查运算求解能力,属于基础题.21.【答案】解:(1)证明:由条件sin(α−β)=12,sin(α+β)=13, 即sinαcosβ−cosαsinβ=12,sinαcosβ+cosαsinβ=13, 解得sinαcosβ=512,cosαsinβ=−112,可得tanαtanβ=-5, 从而可得tanα=-5tanβ,tanα+5tanβ=0得证.(2)由tan(α−β)=tanα−tanβ1+tanαtanβ,可得tanα-tanβ=tan (α-β)(1+tanαtanβ),∴原式=tan(α−β)−tanα+tanβtan 2αtan(α−β)=tan(α−β)−tan(α−β)(1+tanαtanβ)tan 2αtan(α−β)=−tan(α−β)·tanαtanβtan 2αtan(α−β)=−tanβtanα=15.;【解析】(1)由题意,把所给条件利用两角和差的三角公式展开,化简可得结论. (2)由题意,把两角差的正切公式展开变形,代入要求的式子化简,可得结论. 此题主要考查两角和差的三角公式的应用,同角三角函数的基本关系,属于中档题.22.【答案】解:由函数f(x)=cos(ωx +φ)的图象过点(0,12),得f(0)=cosφ=12, 又因为0<φ<π2,所以φ=π3,在①②③三个条件中任选一个,可知最小正周期T =π, 根据T =2π|ω|, 得ω=2,所以f(x)=cos(2x +π3), 由f(α2)=−√22,得cos(α+π3)=−√22, 由α∈(0,π2),得α+π3∈(π3,5π6),所以sin(α+π3)=√1−cos 2(α+π3)=√22, sinα=sin[(α+π3)−π3]=sin(α+π3)cos π3−cos(α+π3)sin π3 =√22×12−(−√22)×√32=√2+√64. ;【解析】此题主要考查三角恒等变换和三角函数的图象和性质,属于中档题. 先由f(0)=12求出φ,由三个条件中任选一个,可知最小正周期T =π,得ω=2,求出f(x) ,结合条件以及同角三角函数关系求得sin(α+π3),再利用两角差的正弦公式即可求解.23.【答案】null; 【解析】(1)由奇函数的性质可得f(0)=0,可求得b 的值,再由f(1)=1可求得a 的值,从而可得a ,b 的值;(2)f(x)在[−1,1]上是增函数,利用增函数的定义即可证明;(3)根据函数的奇偶性与单调性将不等式转化为关于m 的一次不等式,求解即可. 此题主要考查函数奇偶性与单调性的综合,考查不等式的解法,考查转化思想与运算求解能力,属于中档题.24.【答案】AD;【解析】解:对于A :当“a >1”时“1a <1”成立,反之不成立,故“a >1”是“1a <1”的充分不必要条件,故A 正确;对于B :命题“任意x >1,都有x 2<1”的否定是“存在x >1,使得x 2⩾1”故B 不正确; 对于C :x >1,则(x −1)(x +2)>0,但由(x −1)(x +2)>0,不能推出x >1,故“x >1”是“(x −1)(x +2)>0”的充分不必要条件,故C 不正确;对于D :设a ,b ∈R ,则“a ≠0”推不出“ab ≠0”,由“ab ≠0”能够推出“a ≠0”,故“a ≠0”是“ab ≠0”的必要不充分条件,故D 正确. 故选:AD.直接利用充分条件和必要条件,命题的否定,简易逻辑中的相关知识的应用判断A 、B 、C 、D 的结论此题主要考查的知识要点:充分条件和必要条件,命题的否定,简易逻辑,主要考查学生的运算能力和数学思维能力,属于基础题.25.【答案】AC;【解析】解:∵a >1,b >1, ∴ab =1+(a +b)⩽(a+b 2)2(当且仅当a =b >1时,取等号),即(a +b)2−4(a +b)−4⩾0且a +b >2, ∴a +b ⩾2+2√2,∴a +b 有最小值2+2√2,即选项A 正确,B 错误;由ab −(a +b)=1,得ab −1=a +b ⩾2√ab (当且仅当a =b >1时,取等号), 即ab −2√ab −1⩾0且ab>1, ∴ab ⩾3+2√2,∴ab 有最小值3+2√2,即选项C 正确,D 错误. 故选:AC . 由(a +b)⩽(a+b 2)2,可推出a +b 的最小值;由a +b ⩾2√ab ,可推出ab 的最小值.该题考查基本不等式的应用,熟练掌握基本不等式的各种变形是解答该题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.26.【答案】BD;【解析】解:对于A :已知x ,y ∈R ,x >0,y >0,且x +2y =1,所以1x +1y =x+2y x+x+2y y=1+3+2y x+xy ⩾4+2√2,当且仅当x 2=2y 2等号成立,故A 错误;对于B :x 2+y 2=(1−2y)2+y 2=5y 2−4y +1=5(y −25)2+15,当y =25时,最小值为15;故B 正确;对于C :当x =12,y =14时,x−2yx 2+y 2>1不成立,故C 错误;对于D :2x+1+4y =2x+1+22y ⩾2√2x+2y+1=4,当且仅当y =12时,等号成立,故D正确.故选:BD.直接利用不等式的性质和基本不等式的应用判断A、B、C、D的结论.此题主要考查的知识要点:不等式的性质,基本不等式的应用,主要考查学生的运算能力和数学思维能力,属于中档题.27.【答案】BD;【解析】解:因为N∩∁R M=∅,所以N⊆M,所以M∩∁R N≠∅,选项A错误;M∪∁R N=R,选项B正确;∁R M∪∁R N=∁R N,选项C错误;∁R M∩∁R N=∁R M,选项D正确.故选:BD.根据题意知N⊆M,利用交集、并集和补集的定义,判断正误即可.此题主要考查了集合的定义与运算问题,也考查了推理与判断能力,是基础题.28.【答案】BD;【解析】此题主要考查了余弦函数的图象及性质,同角三角函数关系及两角差的余弦公式,属于中档题.根据对称中心与对称轴的最小距离求出周期T,得到ω=2,再根据对称轴方程求出ϕ=−π6,再根据余弦函数的图象及性质对四个选项一一判断即可,选项D先利用同角三角函数关系及二倍角公式化简,再求出f(α+π4).解:由题有T=π,则ω=2,又由对称轴x=π12可得,2×π12+ϕ=kπ,k∈Z,又|ϕ|<π2,则ϕ=−π6,故f(x)=2cos(2x−π6),对于A,因为f(x)+f(5π6−x)=2cos(2x−π6)+2cos(53π−2x−π6)=2cos(2x−π6)−2sin2x=2cos2x cosπ6+2sin2x sinπ6−2sin2x=√3cos2x−sin2x则f(x)+f(5π6−x)=0错误,故A选项不正确.对于B,x∈[π6,π2],则2x−π6∈[π6,5π6],则f(x)∈[−√3,√3],故B选项正确;对于C,f(x)=2cos2(x−π12),应将g(x)=2cos2x的图象向右平移π12个单位,故C选项错误.对于D,sin4α−cos4α=−cos2α=−45,且α∈(0,π2),则2α∈(0,π),故cos2α=45,sin2α=35,而f (α+π4)=2cos (2α+π3)=cos 2α−√3sin 2α=4−3√35,故D 选项正确; 故选BD .。

2022版新教材高考数学一轮复习高考大题专项三数列课件新人教A版202105192230


=
2
2
,当且仅当 n=1 时,取得最大值3,所以选择
3
条件②时,存在 k=1,使得对任意 n∈N*,anbn≤akbk 恒成立.
方案三:选择条件③.
bn=bn-1+2(n≥2),可知数列{bn}是公差为2的等差数列,
又因为b1=1,所以bn=2n-1.

2 n
cn=anbn=(2n-1)(3) ,
个条件中任选一个,补充在下面问题中,并解答.
已知等差数列{an}的公差为d(d>1),前n项和为Sn,等比数列{bn}的公比为q,
且a1=b1,d=q,
.
(1)求数列{an},{bn}的通项公式;

(2)记cn=

,求数列{cn}的前n项和Tn.
解 方案一:选条件①.
(1)∵a3=5,a2+a5=6b2,a1=b1,d=q,d>1,
*
1
P2n,若|P2n+1|<
,
2 020
解 (1)公差d不为零的等差数列{an},由a3是a1与a9的等比中项,可得
a1·
a9=32 ,即 a1(a1+8d)=(1 + 2)2 ,解得 a1=d.
又因为S3=3a1+3d=6,可得a1=d=1,
所以数列{an}是以1为首项和公差的等差数列,
1
1 1 2
1 n-1
1 n
∴2Tn=1+2[2+(2) +…+(2) ]-(2n-1)×(2)
1
1 -1
[1-( )
]
2
2
1
12
=1+2×
1 n
1 n

2022数学大题专项三数列学案文含解析新人教A版

数列高考大题专项(三)数列考情分析从近五年高考试题分析来看,高考数列解答题主要题型有:等差、等比数列的综合问题;证明一个数列为等差或等比数列;求数列的通项公式及非等差、等比数列的前n项和;证明数列型不等式。

命题规律是解答题每两年出现一次,命题特点是试题题型规范、方法可循、难度稳定在中档。

典例剖析题型一等差、等比数列的综合问题【例1】(2020山东济宁5月模拟,18)已知数列{a n}为等差数列,且a2=3,a4+a5+a6=0。

(1)求数列{a n}的通项公式a n及前n项和S n。

(2)请你在数列{a n}的前4项中选出三项,组成公比的绝对值小于1的等比数列{b n}的前3项,并记数列{b n}的前n 项和为T n。

若对任意正整数k,m,n,不等式S m<T n+k恒成立,试求k的最小值.解题心得1。

对于等差、等比数列,求其通项公式及求前n 项的和时,只需利用等差数列或等比数列的通项公式及求和公式求解即可。

2.有些数列可以通过变形、整理,把它转化为等差数列或等比数列,进而利用等差数列或等比数列的通项公式或求和公式解决问题.对点训练1(2020陕西西安中学八模,文17)已知数列{a n}的前n项和为S n,且a n是S n与2的等差中项;在数列{b n}中,b1=1,点P(b n,b n+1)在直线x—y+2=0上。

(1)求数列{a n},{b n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和T n。

题型二可转化为等差、等比数列的综合问题a n-1,【例2】已知数列{a n}的前n项的和为S n,S n=32(1)求数列{a n}的前n项和S n;(2)判断数列{S n+1}是递增数列还是递减数列,并证明.S n解题心得无论是求数列的通项公式还是求数列的前n项和,通过变形整理后,能够把数列转化为等差数列或等比数列,进而对点训练2(2020安徽合肥一中模拟,17)已知数列{a n}满足a1+2a2+3a3+…+na n=14[(2n-1)·3n+1].(1)求{a n}的通项公式;(2)若b n=12a n-1,证明:b1+b2+…+b n〈32.题型三证明数列为等差或等比数列【例3】(2018全国1,文17)已知数列{a n}满足a1=1,na n+1=2(n+1)a n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考解答题专项训练三
1、已知向量2(3sin ,1),(cos ,cos )444
x x x m n ==,()f x m n =⋅. (I )若()1f x =,求cos(
)3
x π
+值;
(II )在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=, 求函数()f A 的取值范围.
2、如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA=AB=
12
PD.
(I )证明:平面PQC ⊥平面DCQ; (II )求二面角Q-BP-C 的余弦值.

3、在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;(2)判断性别与休闲方式是否有关系. .
4、已知函数()f x =|||2|x a x ++-.
(Ⅰ)当3a =-时,求不等式 ()f x ≥3的解集;
(Ⅱ) 若
()f x ≤|4|x -的解集包含[1,2],求a 的取值范围.
1、【解析】(I )()f x m n =⋅
=2cos cos 444x x x
+ ----------------1分
=
11
cos 22222x x ++
----------------3分 =1sin()262x π++
----------------4分
∵()1f x = ∴1sin()262x π+=∴2cos()12sin ()326x x ππ+=-+=12
-------6分 (II )∵(2)cos cos a c B b C -=,
由正弦定理得(2sin sin )cos sin cos A C B B C -= -----------------8分 ∴2sin sin cos sin cos AcosB C B B C -=
∴2sin cos sin()A B B C =+- ----------------9分 ∵A B C π++=∴sin()sin B C A +=,且sin 0A ≠
∴1cos ,2B =∵0B <<π∴3B π
= ----------------10分
∴203A π
<< ----------------11分
∴1,sin()16262226A A ππππ<+<<+< ----------------12分
∴131sin()2622A π<++< ∴()f A =1
sin()262A π++3(1,)2∈
---13分
2、【解析】(I )方法一:由条件知,PDAQ 是直角梯形, 因为A Q ⊥平面ABCD,所以平面PDAQ ⊥平面ABCD,交线是AD.
又四边形ABCD 是正方形,DC ⊥AD,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.
在直角梯形PDAQ 中可得
,则PQ ⊥QD.
所以PQ ⊥平面DCQ.因为PQ ⊂平面PQC,所以平面PQC ⊥平面DCQ.
方法二:如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间之间坐标系D-xyz.
依题意由Q(1,1,0),C(0,0,1),P(0,2,0).
则DQ =(1,1,0),DC =(0,0,1), PQ =(1,-1,0).
所以0PQ DQ ⋅=,0PQ DC ⋅=,
即PQ DQ ⊥,PQ DC ⊥.故PQ ⊥平面DCQ , 又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ. (II )依题意得B(1,0,1),(1,1,0),(1,2,1)CB BP ==--,
设n =(x,y,z)是平面PBC 的法向量,则0,0.n CB n BP ⎧⋅=⎪⎨⋅=⎪⎩即0,
20.x x y z =⎧⎨-+-=⎩
因此,取n =(0,-1,-2).设m 是平面PBQ 的法向量,则0,
0.
m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩
可取m =(1,1,1),
所以cos ,m n <>=
-,故二面角Q-BP-C 的余弦值为3、解:(1)2×2的列联表
计算 2
2
124(43332721) 6.20170546460
χ⨯⨯-⨯=
≈⨯⨯⨯
因为2 5.024γ≥,所以有理由认为假设“休闲方式与性别无关”是不合理的, 即有97.5%的把握认为“休闲方式与性别有关”. 4、
解析:(Ⅰ)当3a
=-时,
()f x =25,21, 2325,3x x x x x -+≤⎧⎪
<<⎨⎪-≥⎩

当x ≤2时,由
()f x ≥3得253x -+≥,解得x ≤1;
当2<x <3时,()f x ≥3,无解;
当x ≥3时,由()f x ≥3得25x -≥3,解得x ≥4, ∴()f x ≥3的解集为{x |x ≤1或x ≥4};
(Ⅱ) ()f x ≤|4|x -⇔|4||2|||x x x a ---≥+,
当x ∈[1,2]时,|||4||2|x a x x +≤---=42x x -+-=2,
∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,
故满足条件的a 的取值范围为[-3,0].。

相关文档
最新文档