气体动理论(2)课件

合集下载

气体动理论

气体动理论
(答案:前者是由于分子碰撞次数增加导致,后者是由于运动 加剧导致)
2.两种不同种类的理想气体,压强相同,温度相同,体积不同, 试
问单位体积内的分子数是否相同?
(答案:相同)
3.两瓶不同种类的气体,分子平均平动动能相同,但气体的分 子数密度不同,试问他们的压强是否相同? (答案:不同)
4.两瓶不同种类的气体,体积不同,但温度和压强相同,问气体 分子的平均平动动能是否相同?单位体积中的分子的总平动 动能是否相同?方均根速率是否相同?(答案:相同,相同,不同)
2. 理想气体的内能包括哪些? 理想气体的内能=所有气体分子动能量的总和;
3. 内能与机械能有什么区别?
机械能可以为零,而内能永不为零。
一摩尔理想气体的内能:
Emol N
i KT i RT
2
2
M千克理想气体的内能: E M i RT i vRT
M mol 2
2
问题:
1.三个容器内分别储有1mol氦气(He),1mol氢气(H2),1mol氨 气(NH3)( 三种气体均 视为刚性分子的理想气体),若它们的 温度都升高 1K , 则三种气体内能的增加分别是多少? (答案:12.5J, 20.8J, 24.9J) 2.写出下列各量的表达式:
(2) 分子沿各个方向运动的机会是均等的,没有任何一个 方向上气体分子的运动比其它方向更占优势。即沿着各 个方向运动的平均分子数应该相等;
(3) 分子速度在各个方向的分量的各种平均值相等。
五、气体动理论的统计方法 (statistical metheds)
用对大量分子的平均性质的了解代替个别分子的 真实性质。对个别分子(或原子)运用牛顿定律求 出其微观量,如:质量、速度、能量等,再用统计的 方法,求出大量分子关于微观量的统计平均值,并 用来解释在实验中直接观测到的物体的宏观性质, 如:温度、压强、热容等。

气体动理论

气体动理论
单位: Pa (Nm-2) atm 标准大气压 帕斯卡 cmHg 厘米汞柱
1atm = 76 cmHg =1.013×105Pa
2. 体积: 分子活动的空间 (并非分子大小的总和) 3. 温度: 物体冷热程度的量度
(反映分子热运动剧烈程度的量)
热力学温标: T= t +273.15 K
3
概念
平衡态: 一个孤立系统,宏观状态参量都不随时间 变化的状态。 (热动平衡)
宏观上各量均不变,而微观上分子热运动永不停息。
平衡过程: 在过程进行的每一时刻,系统都无限的 接近平衡态。 (准静态过程)
1 2 1 2
4
说明
(1) 平衡(准静态)过程是一个无摩擦 的、无限缓慢进行的理想化过程; (2) 除一些进行得极快的过程(如 爆炸过程)外,大多数情况下 都可以把实际过程看成是准静 态过程; (3) 准静态过程在状态图上可用一 条曲线表示, 如图: 图中每一个点代表一个平衡态, 一条曲线代表一个平衡过程。
15
§9-5 麦克斯韦速率分布律
一、速率分布

ห้องสมุดไป่ตู้



宏观上足够小 ——不计偏差,此区间内粒子速率均为 微观上足够大 ——区间内仍包含大量分子
速率 v1 ~ v2 ΔN1 ΔN1/N v2 ~ v3 ΔN2 ΔN2/N
… …
vi ~ vi +Δv ΔNi ΔNi/N
… …
分子数按速率 的分布 分子数比率 按速率的分布
结论 (1) 统计规律是大量偶然事件的总体所遵从的规律 (2) 统计规律和涨落现象是分不开的。
11
§9-4 理想气体的压强公式
一、理想气体的模型
宏观模型: 在任何情况下严格符合气体三个实验定律。

气体动理论

气体动理论
压强是大量分子对器壁冲量的统计平均效果,单个 分子的压强没有意义。
17
§2.1.3理想气体的温度
1.宏观意义:冷热程度,是决定某一系统 与另一系统是否处于热平衡的宏观标志。
2.微观意义:由状态方程可得
pV = N RT NA
状态方程:
p=
N V
R NA
T = nkBT
波尔兹曼常数:
kB
=
R NA
= 1.38 10-23 J
K -1
18
温度的统计意义
p = 2 nω 3
p = nkT
ω = 3 kT 2
此式称为理想气体分子温度公式. 温度的统计意义:
(1)温度是分子平均平动动能的量度,反映无 规则热运动的剧烈程度;
(2)温度是大量分子集体表现,对个别分子 温度没有意义。
相等。
2.气体分子沿各方向运动的概率相等 即分子速度在各方向上分量的各种平均值相
等。
在直角坐标系中有: vx2 = vy2 = vz2
vx2 + vy2 + vz2 = v2
vx2
=
vy2
=
vz2
=
1 v2 3
11
§2.1.2理想气体的压强
1.产生
固体、液体的 :重力原因 气体压强:大量分子不断碰撞的结果。
单个分子碰撞器壁的作用力是不 连续的、偶然的、不均匀的。从 总的效果上来看,分子碰撞对器 壁产生一个持续的平均作用力。
PA=F/SA
12
2 .理想气体压强公式的导出
公式导出 见图:

PA=F/SA
长方形容器内分子总数为N。
设分子质量为m,速率为vx、vy、vz;

高二物理竞赛气体动理论的压强和温度公式课件

高二物理竞赛气体动理论的压强和温度公式课件
第五章 气体动理论
§5-3 气体动理论的压强和温度公式
5. 气体动理论
5.1 热运动的描述 理想气体模型和状态方程 5.2 分子热运动和统计规律 5.3 气体动理论的压强和温度公式 5.4 能量均分定理 理想气体①的理内想能气体的微观模型 5.5 麦克斯韦速率分布律 ② 理想气体压强公式的推导 5.6* 麦克斯韦-玻尔兹曼能量分布律
v2 331m / s 16
13
气体分子的方均根速率
计算:5,11,32,67,89 平均数、方均根值.
方均根速率:是分子速率的一种统计平均值。
v2 3kT 3RT 3RT
m
mN A
M mol
k
1 2
mv2
3 2
kT
说明:
大气中氢含量少
m:每个分子的质量.
在相同温度时,各种分子的平均平动动能相等,但方均根速 率并不相等,质量大的分子其值小。 教材P176,表5-1
11、热忽运略•动分的分子描大述子小 理(的看想作气平质体点模均)型和平状态动方程动能仅与温度成正比;
分温子度线 是度表•征<系<物分质统子内间部的平分均子温距不离规度。则运越动激高烈程,度的分物理子量。的平均平动能就越大;
当∵ 分体子积的不•运变气动时是,体用压不强的停随息温温的度,的度升高是而增气大。体分子平均平动动能的量度。
解:(1)在温度t=10000C时
k
3 2
kT= 3 1.381023 1273J 2
2.631020 J
v2
3RT = M mol
3 8.311273 28 103
1060m /
s
(2)在温度t=00C时
k 5.651021 J

12章气体动理论

12章气体动理论

二、分子力
分子力是指分子之间存在的吸引或排斥的相互作 用力。它们是造成固体、液体、和封闭气体等许多物理
性质的原因。
吸引力——固体、液体聚集在一起; 排斥力——固体、液体较难压缩。 分子力 f 与分子之间的距离r有关。 存在一个r0——平衡位置 r= r0时,分子力为零 r < r 0分子力表现在排斥力 r > r0分子力表现在吸引力 r > 10 r0分子力可以忽略不计
2 x 2 y 2 z
1 1 1 1 2 2 2 m v x m v y m v z kT 2 2 2 2
结论:分子的每一个平动自由度上具有相同的平均平动动
能,都是kT/2 ,或者说分子的平均平动动能3kT/2是均匀地 分配在分子的每一个自由度上
推广:在温度为T 的平衡态下,分子的每一个转动自由度
12-5 能量均分定理 理想气体内能
一、自由度 确定一个物体的空间位置所需的独立 坐标数,常用i 表示。
(1)单原子分子: 可视为质点,确定其质心空 间位置需三个独立坐标。 故 自由度为3(i=3) 称为平动自由度 , 如He、Ne等。
z
O
( He ) ( x, y, z )
x
y
(2) 刚性哑铃型双原子分子
单原子分子 双原子分子 三原子分子
练习:说明下列各式的物理含义
§12-4 麦克斯韦气体分子速率分布率 一、速率分布函数
1.分布的含义
人口按地域分布、按年龄分布
石油按储量分布等
例如,某城市人口按年龄分布:
N N
1% 5% 30% 35% 20% 4% 2% … 0 10 20 30 40 50 6 0 70 80 ∞
(1)揭示宏观现象的本质; (2)有局限性,与实际有偏差,不 可任意推广.

大学物理 气体动理论

大学物理 气体动理论

n k
(

n m)
分子平均平动动能
k

1 mv2 2
气体压强公式
p

2 3
n k
宏观可测量量
微观量的统计平均
12-4 理想气体分子的平均平动
动能与温度的关系
P nkT

P

2 3
n k
k

1 2
mv2

3 2
kT
T k ( 运动激烈程度 )
方均根速率 vrms
v2
3kT m
*可以用温度计来比较各个系统的温度
48ºC
A
48ºC
绝热板
B
AB
(a)
(b)
12-2 物质的微观模型 统计规律性
一.分子的线度和分子力 分子间的平均距离 l 3 1/ n
1.分子线度
占有体积
自身体积
有效体积 (相互作用)
2.分子力 — 短程力、电磁相互作用力
r0 引力>斥力 r r0 分子力为零
理想气体满足:分子体积不计,相互作用不计,完全弹性碰撞
(1) 定量,平衡态
m M
pV N k T 或 pV RT

N NA
k R / NA 1.381023J K1 Boltzmann常数
摩尔气体常量 R 8.31 J mol1 K1
m系统总质量,M摩尔质量,m 单个分子质量
8.
[讨论] a. 抛硬币,抛骰子— 等概率事件 b. 伽尔顿板实验—不等概率事件

............
...........
当小球数 N 足够大时小
............ ...........

第二章气体动理论

第二章气体动理论1-2-1选择题:1、处于平衡状态的一瓶氮气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。

以下说法正确的是:(A )它们的温度、压强均不相同。

(B )它们的温度相同,但氮气压强大于氮气压强。

(C)它们的温度、压强都相同。

(D)它们的温度相同,但氮气压强小于氮气压强。

2、三个容器A、B、C中装有同种理想气体其分子数密度n相同方均根速率之比J而:J冏:J冏 = 1:2:4 ,则其压强之比p A:p B: p c为:(A)1: 2 : 4 (B) 1: 4 : 8 (C) 1: 4 :16 (D) 4 : 2 :13、一走星的理想气体贮于某一容器中,温度为T.气体分子的质呈为m.根据理想气体的分子模型和统计假设,分子速度在x方向的分呈平方的平均值为:m4、关于温度的意义,有下列几种说法:(1)气体的温度是分子热运动平均平动动能的星度.(2)气体的温度是大呈气体分子热运动的集体表现,具有统计意义.(3)温度的高低反映物质内部分子热运动剧烈程度的不同.(4)从微观上看,气体的温度表示每个气体分子的冷热程度.上述说法中正确的是(A ) (1). (2)、(4) (B) (1). (2)、(3)(C) (2)、(3)、(4) (D)⑴、(3)、(4)5、两容器内分别盔有氢气和氮气,若它们的温度和质呈分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的方均根速率相等.(D) 两种气体的内能相等.6、一容器内装有M 个单原子理想气体分子和M 个刚性双原子理想气体分子,当该系统处在温度为厂的平衡态7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气, 为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质臺为:(A ) 丄 kg (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg16&若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了 :(A) 0.5% (B) 4% (C) 9% (D) 21%9、有容积不同的A x B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。

第16章 气体分子动理论


(1).一个分子对dS 的一次碰撞
设该分子速度为 v, 碰i 撞后
子动 量vix的改变量为
v不iy变及,viz 变为
v
,则分
ix
( mv ix ) mv ix 2mv ix vixdt
ds
x
ds 所受冲量为 2mv ix
(2). dt 内所有分子对 ds 的
作用
① v组i 分子对ds 的作用
体积为 vixdtds 的斜柱体内所有分子都与ds 相碰撞.
------称为热力学。
优点:可靠、普遍。
缺点:未揭示热现象的微观本质。
2.微观法: 物质的微观结构 + 力学规律+统计方
法 ------称为统计物理学
其初级理论称为气体分子运动论(气体动理论)
优点:揭示了热现象的微观本质。
缺点:可靠性、普遍性差。
第十六章 气体分子动理论
16-1 气体的状态参量 平衡态
二 状态参量
对一定量的给定气体的状态,常用气体的体积V, 压强P,温度T三个物理量描述。把这三个标志气 体状态的物理量叫状态参量。
1 体积V:气体分子所能达到的空间,也就是容 纳气体的容器的容积
2 压强P:气体分子施予器壁单位面积上的垂直压力
1atm=76cmHg=1.013×105Pam
3 温1t度orTr:=1宏3观3.3上2表Pa征物体冷热程度,微观上反映大量 分子热运动激烈程度。 只有在平衡态时,状态参量才具有一定的量值, 否则不确定。
第十六章 气体分子动理论
dt 时间内,能与面元ds相碰的速度为 v的i 分子数
为 ni vixdtds
ds所受冲量为 nivixdtds 2mvix 2mnivix2dtds

热学ppt课件共215页文档

r1
刚体的自由度数: i t r 3 3 6
2. 分子的自由度 单原子分子 双原子分子 多原子分子
t3
质点 r 0
t3
哑铃 r 2
自由刚体
t3
r3
3. 能量均分定理:
♥ 在温度为T的平衡态下,气体分子每个自
由度的平均动能都相等,而且等于 1 k T
2
一个分子平均平动动能
1 热力学 —— 宏观描述 从实验经验中总结出宏观物体热现象
的规律,从能量观点出发,研究物态变化
过程中热功转换的关系和条件.
特点
(1)具有可靠性; (2)知其然而不知其所以然; (3)应用宏观参量.
2 气体动理论 —— 微观描述 研究大量数目热运动的粒子系统,应用
模型假设和统计方法.
特点 (1)揭示宏观现象的本质;
单原子 分子
双原子 分子
多原子 分子
平动 自由度
3
3 3
转动 自由度
0
2
3
平均平 动动能
3 kT 2
3 kT 2
3 kT 2
平均转 动动能
0
2 kT 2
3 kT 2
平均 总动能
3 kT
2
5 kT 2
6 kT 2
(课后练习)若室内升起炉子后温度从150C 升高到270C ,而室内气压不变,则此 时室内的分子数减少了百分之多少?
解:P1 n1kT1
N1 V1
kT1
P2 n2kT2
N2 V2
kT2
条件:P1 P2 V1 V2
N1 N2 T2 T1
N1
T2
12 4% 300
四、能量的统计规律
1.自由度 i : 决定一物体在空间的位置所

气体动理论基础课件


y
l1
A2
? iy
0
? iz
? A1 l2 ?i
? ix
x l3
z 10
第3章 气体动理论基础
1.一个i分子碰撞一?次给 A1的冲量
y
i分子速度为 ? i? ix
A2
器壁受的冲量为: 2m? ix
0
2. dt时间内i的分子对A1的冲量
么,这两个系统彼此也处于热平衡。 (热平衡定律 )。
热平衡定律说明,处在相互热平衡状态的系统必 定拥有某一个共同的宏观物理性质。 定义: 处在相互热平衡状态的系统所具有的共同的 宏观性质叫 温度。
? 一切处于同一热平衡态的系统有相同的温度 2.温标
温度的数值表示法。
摄氏温标、热力学温标
T ? t ? 273.715
第3章 气体动理论基础
三.理想气体状态方程
pV
?
M RT M mol
?
nRT
克拉珀龙方程
Mmol为气体的摩尔质量; M为气体的质量;
R为普适气体常量, R=8.31(J/mol -1﹒K-1);
?平衡态还常用状态图中的一个点来表示 (p -V图、p-T图、V-T图)
p A(p1,V1,T1)
B(p2,V2,T2)
4
3.热力学系统的描述
第3章 气体动理论基础
宏观量: 平衡态下用来描述系统宏观属性的物理量。 描述系统热平衡态的相互独立的一组宏观量 ,叫系
统的 状态参量 。
如:气体的 p、V、T
一组态参量
描述 对应
一个平衡态
态参量之间的函数关系 称为状态方程 (物态方程 )。
f ( p,V ,T ) ? 0
微观量: 描述系统内个别微观粒子特征的物理量。 如: 分子的质量、 直径、速度、动量、能量 等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档