光子晶体光纤材料

合集下载

光子晶体光纤直径

光子晶体光纤直径

光子晶体光纤直径
光子晶体光纤是一种具有光子晶体结构的光纤。

与普通光纤相比,光子晶体光纤的直径较大,通常为几百微米至数毫米之间。

这是因为光子晶体光纤的核心部分是一个由周期性微结构组成的光子晶体。

这些微结构的周期通常在几百纳米至几微米之间,因此需要较大的直径才能容纳充分的光子晶体结构。

光子晶体光纤的大直径带来了许多优点。

首先,它可以在光纤中容纳更多的样品,从而提高了分析灵敏度。

其次,光子晶体光纤的大直径可以减少光的弯曲损失,从而提高了光的传输效率。

此外,光子晶体光纤的大直径还使其具有更好的机械强度和更高的耐用性。

然而,光子晶体光纤的大直径也带来了一些挑战。

首先,制备大直径的光子晶体光纤需要更高的技术要求和更长的生产周期。

其次,大直径的光子晶体光纤在光的传输过程中会受到更多的散射和吸收,从而影响其光学性能。

因此,研究人员需要在制备光子晶体光纤时寻找平衡点,以获得最佳的光学性能和最小的制备成本。

总而言之,光子晶体光纤的直径是一个关键参数,它决定了光子晶体光纤的光学性能、机械强度和制备成本等方面。

在未来的研究中,我们需要进一步探索制备大直径光子晶体光纤的方法,以提高其性能并实现其在实际应用中的广泛应用。

- 1 -。

光子晶体光纤的特性及应用

光子晶体光纤的特性及应用

光子晶体光纤的特性及应用作者:牛静霞李静来源:《中小企业管理与科技·下旬刊》2011年第08期摘要:光子晶体光纤由于独特的导光原理和灵活的结构设计,性能明显能优于传统光纤,在光通信和激光技术等领域具有非常广阔的应用空间。

文章介绍了光子晶体光纤的导光原理,研究了其主要特性,并分析了其在波分复用器、光纤激光器、光纤放大器及光耦合器件等方面的应用。

关键词:光子晶体光纤特性光器件0 引言光子晶体光纤(Photonic Crystal Fiber,PCF)是光纤技术发展的主要方向,对于大容量光纤通信和高功率光纤激光器的研究开发具有重要意义。

光子晶体光纤又称为多孔光纤(Holey Fiber,HF)或微结构光纤(Micro-Structured Fiber,MSF),它是在石英光纤的包层中沿轴向均匀地排列空气孔,并在纤芯端面存在一个破坏了周期性结构的缺陷所构成,从而使入射光能被控制在光纤纤芯中传输。

光子晶体光纤由于包层中的二维光子晶体结构,可以作为更加优异的光传输介质,在新一代光纤通信系统和激光技术等重要领域具有极其广阔的应用范围。

1 光子晶体光纤的导光原理光子晶体光纤的概念基于光子晶体,按其传导机制可分为带隙型光子晶体光纤(PBG-PCF)和折射率引导型光子晶体光纤(TIR-PCF)两类。

带隙型光子晶体光纤是一种具有石英-空气光子晶体包层的空芯石英光纤,其包层横截面的折射率具有规则的周期分布,通过包层光子晶体的布拉格衍射来限制光在纤芯中传播的。

在满足布拉格条件时出现光子带隙,对应波长的光不能在包层中传播,而只能限制在纤芯中传播,见图1(a)。

折射率引导型光子晶体光纤的导光机制与传统光纤类似,包层由石英-空气周期介质构成,中心为SiO2构成的实芯缺陷。

由于纤芯折射率高于包层平均折射率,光波在纤芯中依靠全内反射传播。

由于包层含有气孔,与传统光纤的实芯熔融硅包层不同,因而这种导光机制叫做改进的全内反射,见图1(b)。

空心光子晶体光纤在气体检测中的应用研究

空心光子晶体光纤在气体检测中的应用研究

空心光子晶体光纤在气体检测中的应用研究
空心光子晶体光纤(HC-PCF)是一种新型的光传输介质,具有其独特的光学性质和广
泛的应用前景。

它的结构由典型的光子晶体和空心亚孔道组成,不同于传统的光纤,它的
传输媒介是空气,这使得它在气体检测领域有着独特的优势。

空心光子晶体光纤的应用研究十分广泛,其中在气体检测领域的应用已经成为研究热点。

空心光子晶体光纤在气体检测中的主要应用可以归纳为以下几个方面:
1. 气体传感
空心光子晶体光纤的结构具有很高的传感灵敏度,可以作为气体传感器使用。

当特定
气体进入其空腔道时,会发生气体分子与中心芯线的相互作用,导致光的传输特性发生改变。

这种变化可以通过识别和量化光信号的准确变化来实现高灵敏度传感。

2. 气体检测
空心光子晶体光纤由于具有大气密度的空腔,可以直接检测周围的气体分子。

因此,
在实际工业应用中可以利用空心光子晶体光纤进行气体检测,比如空气中的甲醛、雾霾等
有害气体的检测。

3. 气体成分分析
利用气体与中心芯线的相互作用,可以实现空心光子晶体光纤对气体成分的定量分析。

通过分析不同成分的光学响应,可以获得气体成分、浓度和分布等相关信息。

4. 温度和湿度测量
空心光子晶体光纤的传感特性不仅可用于气体检测,还可以用于测量环境中的温度和
湿度等一系列参数,并且具有极高的灵敏度和准确度。

总之,空心光子晶体光纤在气体检测领域的应用前景非常广泛,并且在相关领域得到
了越来越多的关注。

未来,空心光子晶体光纤技术有望成为一个实用、高效的气体检测工具,为工业生产和环境保护等领域带来更多优势。

光子晶体中的光子禁带与传输特性

光子晶体中的光子禁带与传输特性

光子晶体中的光子禁带与传输特性光子晶体是一种具有周期性结构的材料,通过调控其结构可以有效地控制光的传输和操控。

其中一个重要的特性就是光子禁带,它在光子晶体中起到了关键的作用。

一、光子禁带的概念和原理光子禁带是指在光子晶体中存在一个频率范围,在这个范围内光的传播是被禁止的。

这意味着光子晶体能够对特定的波长光进行选择性的反射或吸收,同时允许其他波长的光通过。

这种禁带效应是由于光子晶体的周期性结构导致的。

光子晶体的周期性结构可以被理解为一系列的光子波导,它们之间的相位差会产生干涉效应。

当干涉效应导致波的幅值彼此相消时,禁带就形成了。

通俗地说,可以将光子禁带类比为一个光的“高速公路”,只有特定的车辆(特定波长的光)能够通过,其他车辆则被拦截。

二、光子禁带的应用1. 光子晶体光纤光子禁带的应用之一就是光子晶体光纤。

光纤是一种用于光信号传输的高效率导光介质,而光子晶体光纤在此基础上进一步实现了对光波在特定频率范围内的引导和控制。

通过光子晶体光纤,可以实现光信号的高速传输和低损耗,同时具备了较宽的传输带宽。

这使得光子晶体光纤在通信领域有着广阔的应用前景。

2. 光子晶体光子器件光子禁带还可以被用于设计和实现各种光子器件。

光子晶体中的禁带产生的光子态密度变化可以导致光的散射、反射和单向传输等效应。

通过调控光子晶体的结构,可以实现各种功能性器件,比如光子晶体滤波器、光子晶体光调制器等。

这些器件在光通信、激光器设计、光子计算等领域发挥着重要作用。

三、光子晶体中的光子传输特性光子禁带不仅影响着光子在光子晶体中的传输,还对其传输特性产生了重要的影响。

1. 禁带宽度和传输带宽光子晶体的禁带宽度决定了能通过的波长范围,而在禁带宽度之外的波长则被禁止传输。

禁带宽度的大小取决于光子晶体的周期性结构和材料参数,可通过调节这些参数来实现对禁带宽度的控制。

传输带宽则是指光子晶体中能够通过的波长范围,它取决于禁带宽度和其他非完美性质(如材料吸收和散射)的影响。

光子晶体简介

光子晶体简介
光子晶体的发展 与应用
第六组
一、光子晶体简介 二、光子晶体中的量子理论 三、光子晶体的发展历程 四、光子晶体的应用 五、光子晶体的发展前景
信息技术革命
标志:半导体技术 趋势:微型化和高度集成化 限制:纳米尺度的量子效应
摩尔定律 :自从1970年以来;可以被放置 到微电子芯片的电子元件数量以18月翻一 番的速度增长;这保证了计算机运算速度 在同时期随之翻番;价格减半&
二 光子晶体中自发辐射简介
当原子处于激发态时;如果不受外界影响;它们会自发 地回到基态; 从而放出光子;我们把这样一过程称为自发 辐射过程. 自发辐射过程并不是物质的固有性质;而是物 质与场相互作用的结果;也就是说它本质上是电磁振荡为 零时的受激辐射;即所谓的电磁真空. John 等人研究发现 在光子晶体中;由于能隙能使某些频率的光的传播被禁止 而形成光的局域态;原子自发辐射所发出的光子就会被限 制在原子周围;而不是以光速传播;原子与辐射场之间仍 存在能量交换;这样;辐射场对原子进行修饰而形成光 子—原子束缚态.现从实验上已观察到了光子晶体中自发 辐射具有不同于真空中指数衰减的性质;因此;对光子晶 体原子自发辐射性质的研究;为研制新型的低噪音;高相 性的激发;寻找奇异的光学材料等都具有十分重要的意义.
光子晶体的特性
1 光子带隙
在一定频率范围内的光子在 光子晶体内的某些方向上是 严格禁止传播的
晶格类型; 光子材料的介电常数配比; 高介电常数材料的填充比&
2 光子局域
在光子晶体中引入杂质和缺陷时 ,与缺陷态频率符合的光子会被 局限在缺陷位置,而不能向空间 传播。
点缺陷 线缺陷 面缺陷
光子晶体可控制光子的运动;是光电集成、光子集成、 光通信的一种关键性基础材料&

光子晶体

光子晶体

4 1.2% Compressively Strained InGaAsP QWs Slab thichness: 10nm QWs separated by 23nm barriers Lattice constant: = 550nm, Radius of the holes: d=215nm Central defect cavity: 19 holes
Core diameter: 10.5m
PCF 制备工艺
带隙宽度可调PCF
Holes filled with air: TIR n589nm=1.80 2000-1 band gap
Holes filled with high n liquid : PBG 3dB band width for gaps=1400nm
PCF 制备工艺
单模有机聚合物光子晶体光纤
PCF 特性
1. 宽带低损单模传输
Near-field pattern
Interstitial holes
Nearfield pattern
528 nm
458 nm
Far-field pattern
633 nm 528 nm 458 nm
The relative intensities of the six lobes was varied and nearly equal. No other mode field patterns are observed confined to defect region. No confined mode could be observed at 633nn.
(c )(d) Patterned photonic crystals with high aspect ratios

光子晶体光纤传感器综述

光子晶体光纤传感器综述

光子晶体光纤传感器综述 某某某 (某大学 某学院) 摘要:本文简要介绍了和光子晶体光纤有关的一些概念以及光子晶体光纤的发展状况、基本结构、导光原理和主要特性,详细阐述了四种不同种类的光子晶体光纤传感器的工作原理、结构及特点,并对光子晶体光纤传感器的发展进行了小结和展望 关键词:光子晶体光纤,传感器 Study On Photonic crystal fiber sensor Xx xxxxx (College of Science, Northwestern Polytechnical University )

Abstract:This paper briefly introduces some concepts related to photonic crystal fiber and the development, basic structure, light guide principle and main characteristics of photonic crystal fiber. And then particularly describes the working principle, structure and characteristics of four different kinds of photonic crystal fiber sensor. Finally we summarize the development trend and the prospect of the photonic crystal fiber sensor. Key words:Photonic crystal fibers, sensors

1 引言 光纤传感器具有灵敏度高、抗干扰、结构简单、体积小、质量轻、光路可弯曲、对被测介质影响小、便于形成网络等优点,有着广泛的应用前景。然而,采用普通光纤作为敏感元件的光纤传感器存在一些难以克服的缺点,如:耦合损耗较大、保偏特性差和存在交叉敏感问题等,限制了光纤传感器性能的进一步提高。 20世纪90年代中期[1],研制出一种光子晶体光纤(Photonic crystal fiber, PCF)。这种光纤具有许多优点[2],如:无截止的单模特性、低损耗特性、灵活的色散特性、可控的非线性、极强的双折射效应以及可进行微结构设计改造等,采用光子晶体光纤构成的光纤传感器有望解决这些问题。近年来,光子晶体光纤传感器受到各国研究人员的重视[3-5],已经有相关的研究报道。

14. 光子晶体光纤的基本理论

14. 光子晶体光纤的基本理论

光纤光学华中科技大学8.1 光子晶体光纤的基本概念什么是光子晶体?•光子晶体是通过人工制造方法,使其制作的晶体材料具有类似于半导体硅和其它半导体中相邻原子所具备的周期性结构;•光子晶体的周期性结构的尺度(即晶格尺度)具有和波长相同的数量级。

例如,对于光通信波段,要求光子晶体的晶格在0.5um 左右。

⚫1987年,S.John 和E.Yablonovitch 同时提出光子晶体光纤结构⚫1991年,E.Yablonovitch 制作出第一个光子晶体。

典型的光子晶体的结构是有许多柱形孔的特殊玻璃。

圆柱形空气孔紧密排列,孔距为数百纳米,类似于半导体的原子。

光子晶体的特性⚫光子晶体由不同折射率的介质,周期性排列而成的人工微结构。

⚫光子带隙(禁带)——光子晶体最根本的特征电磁场在折射率周期变化的介质中传播时,由于相干散射作用,形成光子禁带。

频率光子态密度光子禁带1396nm~2019nm 处⚫波长选择性频率在光子带隙(禁带)内的光被禁止传输,而在光子局域,由于存在光子局域,由于存在缺陷,对应波长的光能传输。

自然界中的光子晶体⚫自然界的光子晶体澳洲的宝石——蛋白石(opal)⚫生物界中也有光子晶体的踪影:➢胡蝶翅膀➢孔雀的羽毛➢金龟子的壳➢澳洲海老鼠的毛发由于本身几何结构上的周期性使它具有光子能带结构,随着能隙位置不同,反射光的颜色也跟着变化,因此其色彩缤纷的外观是与色素无关。

光子晶体的分类突出显示光子晶体光纤是二维光子晶体➢按照光子晶体的光子禁带在空间中所存在的维数,可以将其分为:◼一维光子晶体:光纤光栅◼二维光子晶体:光子晶体光纤◼三维光子晶体:蛋白石举例◼一维光子晶体:在一个方向上折射率周期性分布◼二维光子晶体:在两个方向上折射率周期性分布◼三维光子晶体:在三个方向上折射率周期性分布光纤的发展历史John Tyndall玻璃棒光波导E. Curtiss普通光纤实芯光子晶体光纤空芯光子晶体光纤1870年1870+年1956年P . Russell et al.silica air1996年silica air1996年什么是光子晶体光纤?传统阶跃折射率光纤(SIOF)光子晶体光纤(PCF)•由两种均匀材料构成,依靠纤芯掺杂实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光子晶体光纤材料 光子晶体的能带结构 电子能带与光子能带 在半导体晶体中, 电子受原子周期排列所构成的周期势场的作用, 它的能谱呈带状结构由于原子的布拉格散射, 在布里渊区边界上能量变得不连续, 出现带隙, 电子被全反射在光子晶体中, 也存在类似的周期性势场, 它是由介电函数在空间的周期性变化所提供的当介电函数的变化幅度较大且变化周期与光的波长相比拟时, 介质的布拉格散射也会产生带隙, 相应于此带隙区域的那些频率的光将不能通过介质, 而是被全部反射出去由于周期结构的相似性, 普通晶体的许多概念被引入光子晶体, 如能带、能隙、能态密度、缺陷态等实际制备的光子晶体多由两种介电常数不同的物质构成, 其中低介电物质常采用空气, 因此相应于半导体的价带和导带, 在光子晶体中存在介电带和空气带。 完全光子能隙的产生 光子能隙有完全能隙与不完全能隙的区分所谓完全能隙, 是指光在整个空间的所有传播方向上都有能隙, 且每个方向上的能隙能相互重叠不完全能隙, 相应于空间各个方向上的能隙并不完全重叠, 或只在特定的方向上有能隙由于能隙产生于布里渊区的边界处,原则上完全能隙更容易出现在布里渊区是近球形的结构中。FCC是具有最接近球形布里渊区的空间周期结构。 人们对光子能带的理论计算最初是照搬电子能带的计算方法, 如平面波法和缀加平面波法等, 将光子当作标量波, 利用薛定愕方程求解一计算结果显示, 包括在内的许多结构的光子晶体都将出现光子带隙然而, 随后的研究表明, 这种标量波近似法不仅在定量上, 甚至在定性上都与实验结果不符。由于电子是自旋为1/2的费米子, 为标量波而光子是自旋为的玻色子, 是矢量的电磁波, 两者存在着本质的区别因此, 计算光子晶体的能带结构必须在矢量波理论的框架下, 从麦克斯韦方程出发在各种理论中, 平面波展开法是应用得最普遍, 也是最成功的由于光子之间没有复杂的相互作用, 理论计算可以非常精确地预言光子晶体的性质, 对实验工作起着重要的指导作用。 能带计算表明由球形颗粒构成的结构具有很高的对称性, 对称性引起的能级简并使它只存在不完全能隙, 例为了得到具有完全能隙的光子晶体结构, 需要从两方面考虑:(1)提高提高周期性介电函数的变化幅度, 即要有高的折射率反差(2)从结构上消除对称性引起的能带简并为此, 在结构的晶胞内引入两个球形粒子构成的金刚石结构, 能产生很宽的完全带隙,通过引入非球形的晶胞颗粒也能消除能带简并从而产生完全的光子带隙。利用材料介电常数的各向异性,在FCC、BCC、SC等各种简单晶格中也将产生部分能隙, 此外, 在介电质材料中引入彼此分离的金属颗粒构成的复合光子晶体, 将具有很宽的完全能隙, 然而由于在可见光和红外波段金属材料的强烈耗散, 这种光子晶体的效率很低。 光子晶体中的缺陷能级 半导体材料的广泛应用与其掺杂特性密切相关向高纯度半导体晶体中掺杂, 禁带中会产生相应的杂质能级, 从而显著改变半导体材料的电学、光学特性类似地, 可以向光子晶体中引入杂质和缺陷, 当缺陷是由引入额外的高介电材料所至图右, 其特性类似于半导体掺杂中的施主原子, 相应的缺陷能级起始于空气带底, 并随缺陷尺寸的变化而移向介电带当缺陷是由移去部分高介电材料所至, 其特性类似于半导体掺杂中的受主原子, 相应的缺陷能级起始于介电带顶, 并随缺陷尺寸的变化而移向空气带因此, 可以通过调节缺陷的结构、大小来控制缺 陷能级在光子带隙中的位置由介电带顶到空气带底, 相应于此能级频率的光将只能够存在于缺陷处, 而不能向空间传播。 光子晶体的研究方法 早期研究光子晶体的能带时, 采用的是标量波动方程,发现具有面心立方结构的光子晶体具有光子禁带. 但是光波是矢量波,满足的是麦克斯韦方程组. 解麦克斯韦方程组得到的结论是:面心立方结构的光子晶体没有光子禁带.这些年来,光子晶体的理论研究也取得了令人瞩目的进展. 下面列举几种用得比较广泛的基 本计算方法. 1、平面波方法 这是在光子晶体能带研究中用得比较早和用得最多的一种方法. 主要是将电磁场以平面波的形式展开,何启明等人在预言光子禁带的存在的文章中便是用的这种方法. 电磁场在倒格矢空间以平面波叠加的形式展开,可以将麦克斯韦方程组化成一个本征方程,求解本征值便得到传播的光子的本征频率. 但是,这种方法有明显的缺点:计算量与平面波的波数有很大关系,几乎正比于所用波数的立方,因此会受到较严格的约束,对某些情况显得无能为力. 如当光子晶体结构复杂或处理有缺陷的体系时,需要大量平面波,可能因为计算能力的限制而不能计算或者难以准确计算. 如果介电常数不是恒值而是随频率变化,就没有一个确定的本征方程形式,而且有可能在展开中出现发散,导致根本无法求解. 2、 转移矩阵方法 由磁场在实空间格点位置展开, 将麦克斯韦方程组化成转移矩阵形式,同样变成本征值求解问题. 转移矩阵表示一层(面) 格点的场强与紧邻的另一层(面) 格点场强的关系, 它假设在构成的空间中在同一个格点层(面) 上有相同的态和相同的频率,这样可以利用麦克斯韦方程组将场从一个位置外推到整个晶体空间. 这种方法对介电常数随频率变化的金属系统特别有效,由于转移矩阵小,矩阵元少,计算量较前者大大降低,只与实空间格点数的平方成正比,精确度也非常好. 而且还可以计算反射系数及透射系数. 3、 差分或有限差分法 将一个单位原胞划分成许多网状小格, 列出网上每个结点的有限差分方程,利用布里渊区边界的周期条件,同样将麦克斯韦方程组化成矩阵形式的特征方程,这个矩阵是准对角化的,其中只有为数不多的一些非零矩阵元,明显地减少了计算量,节省了计算机内存. 但是, 有限差分法没有考虑晶格格点的形状,遇到具有 特殊形状格点的光子晶体时,要求得精确解就比较困难. 4、 N 阶(Order2N) 法这是引自电子能带理论的紧束缚近似中的 一种方法,是由Yee 在1966 年提出的时域有限差分法(FDTD) 发展来的. 基本思想是:我们从定义的初始时间的一组场强出发,根据布里 渊区的边界条件,利用麦克斯韦方程组可以求得场强随时间的变化,从而最终解得系统的能带结构. 具体作法:通过傅里叶变换先将麦克斯韦方程组变换到倒空间,用差分形式约简方程组,然后再作傅里叶变换,又将其变换回到实空间,得到一组被简化了的时间域的有限差分方程,这样,原方程可以通过一系列在空间和时间上都离散的格点之间的关系来描述,计算量大大降低,只与组成系统的独立分量的数目N 成正比. 但是在处理Anderson局域和光子禁带中的缺陷态等问题时,计算量剧增,这种情况下用转移矩阵方法比较方便.引入缺陷的光子晶体在激光或光学回路中有广泛的应用,计算有单点缺陷、多点缺陷、线缺陷以至表面态的光子晶体能带可以用超元胞法进行平面波展开; 当混有多种缺陷时, 可采用格林函数法. 光子晶体制备

光子晶体是一种人造微结构,它的晶格尺寸与光波的波长相当,是晶体晶格尺寸的1000倍。光子晶体的制作具有相当大的难度,根据适用的波长范围,制作技术也不同。此外,还需要引入缺陷态,因此,制作过程往往需要采用多种技术才能成。

1.精密加工法 Ames实验室证实了金刚石结构的光子晶体具有很大的带隙后, Yablonovitch等人便采用活性离子束以打孔法制造了第一块具有完全光子带隙(photonic band gap, PBG)的三维光子晶体。他们采用反应离子束刻蚀技术在一块高介电常数的底板表面以偏离法线35.26°的角度从3个方向钻孔,各方向的夹角为120°。但是,当孔钻得较深,并彼此交叉时,孔会产生位置偏离,从而影响其周期性结构。Ho等提出了木堆结构(Woodpile Structure) ,即用介电柱的多层堆积形成完全带隙的介电结构。Ozbay等用铝棒堆积成Woodpile结构,其缺点是工艺比较繁琐,且结构的周期准确性难以保证。Ozbay等又发展了逐层叠加结构(Layer-by-layer Structure) ,即先制造出各向异性的二维Si/SiO2 层状结构,然后以Woodpile结构的周期结构形式进行逐层叠加,即四层形成一个周期。通过层叠法和半导体工艺的结合,使得设计出的光子晶体具有禁带宽、带隙可达到红外及近红外区的优点。由于是以半导体工业成熟的技术为基础,精密加工法是制备光子晶体最为稳定可靠的方法。然而其工艺复杂、造价昂贵,并且受现有半导体技术水平的限制,若要制备更小波长尺度的三维光子晶体、晶体掺杂以及缺陷引入等方面却存在着很大的挑战。 2.胶体晶体法 早在1968年, Kriger等人就发现了由乳液聚合得到的聚苯乙烯胶乳(50~500nm)在体积分数超过35%时出现蛋白石特有的颜色。蛋白石是一种具有不完全带隙的光子晶体,其独有的颜色是由可见光的布拉格衍射产生的。由于胶体晶体的晶格尺寸在亚微米级量级,它可望成为制造近红外及可见光波段三维光子晶体的一条有效途径 。 在溶液中,胶体颗粒小球表面带有电荷,在适当的电荷密度和颗粒浓度下,通过静电力相互作用,小球自组织生长成周期性结构,形成胶体晶体。在毛细容器中,利用胶粒与带电玻璃器壁的静电力相互作用。当胶粒体积分数较高时,胶体悬浮颗粒以面心立方( FCC)点阵堆积; 当体积分数较低时,倾向于体心立方(BCC)点阵堆积,晶体的密排面平行于器壁表面。 目前,已经制备的胶体晶体多为聚苯乙烯乳胶体系和二氧化硅胶体颗粒体系。遗憾的是它们不具备高的介电比和合适的网络拓扑结构,因而并不能产生完全光子带隙。为了提高介电比,可以将胶体晶体小心脱水,得到紧密堆积的蛋白石结构。 3.反蛋白石结构法 反蛋白石结构是指低介电系数的小球(通常为空气小球)以面心立方密堆积结构分布于高介电系数的连续介质中,这种结构将有望产生完全能隙。1997年Velev等人首先用经阳离子表面活性剂CTAB浸泡过的聚苯乙烯颗粒形成的胶体晶体为模板,合成了含三维有序排列的空气球的二氧化硅反蛋白石材料。主要采用模板法,具体操作为:以颗粒小球所构成的紧密堆积结构为模板,向小球间隙填充高介电常数的Si, Ge, TiO2 等材料,然后通过煅烧、化学腐蚀等方法将模板小球除去,得到三维空间的周期结构。Vlasov等人以SiO2 胶体晶体为模板,制得了

相关文档
最新文档