机械手设计剖析

合集下载

械手结构的设计和分析

械手结构的设计和分析

机械手腕部的结构分析
机器手手腕的自由度数,应根据作业需要来设计。机器手手腕自由度数目愈多,各关节的运动角度愈大,则机器手腕部的灵活性愈高,机器手对对作业的适应能力也愈强。
机器手手腕要与末端执行器相联,因此,要有标准的联接法兰,结构上要便于装卸末端执行器。
机器手的手腕机构要有足够的强度和刚度,以保证力与运动的传递。
为了减轻机器手运动部分的惯量,提高机器手的控制精度,一般腰部回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基座是用铸铁或铸钢材料制成。
腰部结构要便于安装、调整。
机械手腰座结构的设计要求分析
机械手腰座结构的具体采用方案
腰座回转的驱动形式要么是电机通过减速机构来实现,要么是通过摆动液压缸或液压马达来实现,目前的趋势是用前者。因为电动方式控制的精度能够很高,而且结构紧凑,不用设计另外的液压系统及其辅助元件。考虑到腰座是机器手的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。一般电机都不能直接驱动,考虑到转速以及扭矩的具体要求,采用大传动比的齿轮传动系统进行减速和扭矩的放大。
直角坐标机器手结构
圆柱坐标机器手的空间运动是用一个回转运动及两个直线运动来实现的,这种机器手构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。
圆柱坐标机器手结构
球坐标机器手的空间运动是由两个回转运动和一个直线运动来实现的,这种机器手结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。
03
机械手腰座结构的分析
腰部的回转运动要有相应的驱动装置,它包括驱动器。驱动装置一般都带有速度与位置传感器,以及制动器。
腰座要有足够大的安装基面,以保证机器手在工作时整体安装的稳定性。

桁架机械手结构和设计分析

桁架机械手结构和设计分析

桁架机械手结构和设计分析桁架机械手是一种利用桁架结构设计的机械手,它具有较强的稳定性和承载能力。

桁架机械手结构设计是机械手研发领域中的重要课题,其中涉及到结构设计、力学分析、材料选择等多个方面。

本文将对桁架机械手结构和设计进行详细分析,以便更好地了解和应用这一重要技术。

一、桁架机械手的结构特点桁架机械手是一种由多个杆件组成的桁架结构,其杆件通常为直线或曲线形状,通过连接节点连接在一起,形成一个稳定的结构。

桁架机械手的结构特点主要包括以下几个方面:1.稳定性高:桁架结构具有较好的稳定性,能够承受较大的外部载荷而不易发生变形或破坏。

2.自重轻:桁架结构由多个轻质杆件组成,整体构造轻盈,适合应用于需要移动的机械手等场合。

3.可靠性强:桁架结构由多个连接节点组成,连接方式简单可靠,使用寿命长。

4.变形小:桁架结构在受力情况下变形较小,能够保持相对稳定的形状,有利于精确操作。

二、桁架机械手的设计原则桁架机械手的设计需要遵循一定的原则,以确保其结构稳定、使用可靠、功能完善。

桁架机械手的设计原则主要包括以下几点:1.合理的结构布局:桁架机械手的结构布局应该合理,能够满足机械手的使用要求,包括工作空间尺寸、负载能力、运动范围等。

2.优化的节点设计:桁架机械手的节点连接是整个结构的重要组成部分,节点设计应该合理、优化,能够承受较大的受力并保持稳定。

3.材料选择和工艺技术:桁架机械手的杆件材料应该选择优质、适用的材料,结构制造需要采用先进的工艺技术,确保整体性能达到要求。

4.考虑动力传递和控制系统:桁架机械手的设计需要考虑动力传递和控制系统,以确保机械手能够按照要求进行动作和操作。

三、桁架机械手的力学分析桁架机械手的力学分析是设计过程中的重要环节,主要包括静力学和动力学两个方面。

静力学分析主要是对机械手在不同工况下受力情况进行分析,包括受力分布、应力、变形等;动力学分析主要是对机械手在运动过程中的加速度、速度、力学特性等进行分析。

桁架机械手结构和设计分析

桁架机械手结构和设计分析

桁架机械手结构和设计分析1. 引言1.1 桁架机械手结构和设计分析介绍桁架机械手是一种具有高度灵活性和精准性的工业机器人,其设计和结构分析对于提高生产效率和质量具有重要意义。

本文将对桁架机械手的结构和设计进行深入分析,并探讨其工作原理、结构组成、设计要点、性能优势和应用领域。

桁架机械手通过桁架结构实现多自由度运动,可以完成复杂的工业任务。

其结构由横梁、立柱、关节和执行器等组成,通过精密的控制系统实现精准定位和操作。

设计要点包括结构刚度、负载能力、运动速度和精度等方面,关乎机器人的稳定性和性能表现。

桁架机械手具有快速响应、高精度、重复性好、节能环保等优势,适用于各种制造业领域,如汽车制造、电子设备组装、航空航天等。

通过优化设计和控制算法,桁架机械手在现代工业生产中发挥着不可替代的作用。

在深入分析和研究桁架机械手的结构和设计特点的基础上,可以更好地理解其工作原理和性能优势,为其在工业生产中的应用提供更有效的支持和指导。

2. 正文2.1 桁架机械手的工作原理分析桁架机械手是一种常用于工业生产线上的自动化装配机器人,其工作原理可以分为三个主要部分:控制系统、传动系统和执行系统。

控制系统是桁架机械手的大脑,负责接收并处理来自外部的指令,以实现机械手的各项动作。

控制系统通常由PLC(可编程逻辑控制器)或者工控机组成,通过编程来实现机械手的自动化操作。

控制系统可以根据预先设定的程序来指导机械手进行各种动作,包括抓取、放置、旋转等。

传动系统是桁架机械手的动力来源,主要由伺服电机、减速器、传动链条等组成。

伺服电机可以提供足够的力和速度,减速器可以将电机提供的高速度降低到合适的速度,传动链条将力传递给机械手各部件,使其进行相应动作。

执行系统是桁架机械手的动作执行部分,包括各种执行器、传感器等。

执行系统根据控制系统发出的指令,利用传动系统提供的动力,实现机械手的各项动作。

传感器可以监测机械手的位置、速度、力度等参数,确保机械手的准确运行。

机械手的整体设计

机械手的整体设计

机械手的整体设计机械手是一种能够模拟人手动作的机器装置,主要由结构、传动、控制和感知系统组成。

其整体设计需要考虑几个关键方面。

首先,机械手的结构设计要符合其应用场景和功能需求。

结构设计包括关节布置、臂长、工作空间以及末端执行器等。

关节布置决定了机械手的灵活性和工作能力,可以根据不同的任务需求选择串联或并联的关节布置。

臂长和工作空间决定了机械手的工作范围和工件的大小。

末端执行器根据实际需要可以设计成夹爪、吸盘、工具等各种形式,以满足不同的抓取和操作需求。

其次,机械手的传动系统设计要考虑到工作精度和负载能力。

传动系统一般采用电机和减速器、齿轮系统、链条或带传动等来实现。

电机和减速器的选型要根据所需的转速和扭矩来确定。

齿轮系统要考虑到传动效率和减震能力。

链条或带传动可以实现远距离传输力矩,适合大范围操作。

第三,机械手的控制系统设计必须保证其精确度和稳定性。

控制系统要能够实时获得机械手的位置、速度和力矩等信息,并能够根据需求进行实时调节和反馈。

控制系统一般包括传感器、运动控制器和执行器等。

传感器用于检测机械手各关节的位置和力量信息。

运动控制器负责解析传感器数据,计算运动轨迹和控制机械手的运动。

执行器对机械手进行动力输出,实现各关节的运动。

最后,机械手的感知系统设计要能够实时感知并识别环境中的物体和障碍物,以实现精确的操作。

感知系统一般包括视觉、力觉和力矩传感器等。

视觉传感器可以采集环境中物体的形状、颜色等信息,并通过图像处理算法进行识别和测量。

力觉传感器可以测量机械手与工件或环境之间的力量信息,实现更加精确的操作。

力矩传感器可以测量机械手各关节的力矩和负载情况,对控制系统提供实时反馈。

总而言之,机械手的整体设计需要考虑结构、传动、控制和感知等方面,以实现各种复杂的抓取和操作任务。

从结构设计到传动系统,再到控制和感知系统的设计,都要保证各个部分之间的协调和稳定性,以满足机械手在工业自动化、物流仓储、医疗卫生等领域的应用需求。

采摘机器人机械手结构设计与分析

采摘机器人机械手结构设计与分析

采摘机器人机械手结构设计与分析一、本文概述1、采摘机器人的研究背景和意义随着农业技术的快速发展和人口老龄化的加剧,传统的人工采摘方式已经难以满足现代农业生产的需求。

采摘机器人作为一种新型的农业机械设备,具有高效、精准、省时省力等优点,正逐渐成为农业领域的研究热点。

采摘机器人的研究和应用,不仅可以提高农作物的采摘效率和质量,降低人工成本,还可以改善农民的工作环境和条件,推动农业现代化的进程。

机械手作为采摘机器人的核心部件,其结构设计直接影响到采摘机器人的性能和稳定性。

因此,对采摘机器人机械手结构的设计与分析显得尤为重要。

通过对采摘机器人机械手结构的研究,可以深入了解其运动特性、受力情况和优化方案,从而提高采摘机器人的采摘效率和准确性,推动采摘机器人在农业生产中的广泛应用。

这也为农业机械化、智能化和自动化的发展提供了重要的技术支撑和理论基础。

研究采摘机器人机械手结构设计与分析具有重要的理论意义和实践价值,对于推动农业现代化和提高农业生产效益具有重要意义。

2、机械手在采摘机器人中的重要作用在采摘机器人中,机械手的作用至关重要。

作为采摘机器人的核心部件之一,机械手负责直接与目标农作物进行交互,完成识别、抓取、剪切和放置等一系列复杂动作。

这些动作的成功执行,直接决定了采摘机器人的工作效率、采摘质量和适应性。

机械手的设计直接决定了采摘机器人的工作能力。

通过合理的结构设计,机械手可以适应不同形状、大小和成熟度的农作物,实现精准、高效的采摘。

机械手的运动轨迹和速度控制也是影响采摘效率的关键因素。

因此,对机械手的精确控制是实现高效采摘的关键。

机械手的性能直接影响到采摘机器人的采摘质量。

在采摘过程中,机械手需要保持稳定的抓取力度,避免对农作物造成损伤。

同时,机械手还需要具备足够的灵活性和精度,以确保能够准确地将农作物采摘下来。

这些要求都对机械手的设计和制造提出了极高的挑战。

机械手的适应性也是采摘机器人性能的重要评价指标。

机械手毕业设计 (2)

机械手毕业设计 (2)

机械手毕业设计1. 引言机械手,也称为机器手臂,是一种用于辅助、自动执行一系列工业任务的机械装置。

随着科技的不断发展,机械手在生产制造领域得到了广泛应用。

本文旨在介绍一个关于机械手的毕业设计项目,包括设计背景、目标、可行性分析,以及具体的设计方案和实施计划。

2. 设计背景目前,各个行业的生产制造过程中都需要使用机械手来完成繁重、危险或精密的工作。

为了提高工作效率和质量,设计与开发一个高效、精确的机械手成为迫切需求。

3. 设计目标本毕业设计旨在设计一个具有以下特点的机械手:•稳定性:机械手必须能够在不同工作环境下保持稳定,并且能够承受合适的负荷。

•灵活性:机械手需要具备足够的灵活性和适应性,能够完成不同种类的任务。

•精度:机械手在执行任务时需要具备较高的定位精度,以确保工作的准确性。

•自动化:机械手需要具备一定的自主决策和自动化能力,能够根据任务需要进行自主操作。

4. 可行性分析在设计过程中,我们进行了可行性分析来评估设计方案的可行性。

可行性分析包括以下几个方面:•技术可行性:通过相关的技术研究和实验,我们确定设计方案具备可行性。

•经济可行性:我们评估了设计和制造机械手所需要的成本,并进行了成本效益分析,确认项目的经济可行性。

•时间可行性:我们制定了详细的项目计划,并评估了完成设计和制造所需要的时间,确认项目的时间可行性。

基于可行性分析的结果,我们确定了毕业设计的可行性,并继续进行了后续工作。

5. 设计方案基于设计目标和可行性分析的结果,我们提出了下面的设计方案:•选择适当的机械结构:根据任务的特点和要求,我们选择了合适的机械结构,包括关节式和平行式机械手臂。

•配置合适的传感器:为了提高机械手的反馈控制能力,我们配置了合适的传感器,例如位置传感器、力传感器和视觉传感器等。

•开发控制系统:我们设计和开发了机械手的控制系统,包括硬件和软件部分。

控制系统能够实现机械手的运动控制、力控制和视觉控制等功能。

机械手的设计

机械手的设计

机械手的设计机械手是一种具有高度灵活性和准确性的自动化设备,广泛应用于工业生产线、医疗手术、装配和包装等领域。

机械手的设计需要考虑多方面因素,包括机械结构、电气控制和运动学算法等,下面我将从这几个方面详细介绍机械手的设计。

一、机械结构机械结构是机械手设计的核心,主要包括机械臂、关节和执行器三部分。

机械臂是机械手的主体,负责完成各种运动和动作。

关节是连接机械臂的组件,能够使机械臂在多个方向进行运动。

执行器负责将机械臂传输的运动信号转化为物理动作,例如抓取、旋转等。

机械结构的设计需要考虑以下因素:1. 功能需求:根据机械手的应用需求,确定机械手需要具备哪些功能和动作,例如抓取、旋转、移动等。

2. 机械臂的结构:机械臂的结构决定了机械手的可达性、波动和抗外力等性能。

通常有三种设计方式:串联式、并联式和混合式。

3. 关节和执行器选型:需要考虑负载、精度、速度、控制方式等因素,选择合适的关节和执行器。

4. 材料选择和加工:需要根据机械手的负载、速度和精度要求,选择合适的铝合金、碳纤维等材料,并采用先进的加工技术进行制造。

二、电气控制电气控制是机械手的另一个重要组成部分。

它负责将机械手进行的任何运动和动作转换为电信号,从而实现自动化控制和精确调节。

电气控制主要包括传感器、执行器和控制系统三个方面。

电气控制的设计需要考虑以下因素:1. 传感器:传感器能够感知机械手周围的环境信息,例如位置、速度、力矩等。

需要选择合适的传感器,避免传感器数据的误差,提高机械手的运动精度和稳定性。

2. 执行器:执行器是将电信号转换为物理动作的组件。

采用先进的执行器能够提高机械手的运动速度和精度。

3. 控制系统:控制系统是机械手的大脑,负责控制机械手的运动和动作。

需要采用先进的控制系统来保证机械手的运动稳定性和精度。

三、运动学算法运动学算法是机械手设计的重要组成部分。

它的作用是根据机械手的运动学模型,计算机械手各关节的运动轨迹和角度,从而实现机械手的各种动作和运动。

液压传动自动上料机械手结构设计

液压传动自动上料机械手结构设计

液压传动自动上料机械手结构设计液压传动自动上料机械手是一种用于工业生产线的自动化机器人,用于将原材料或零件从一个位置移动到另一个位置。

液压传动自动上料机械手具有强大的承载能力、高速运动和高精度定位的优点,适用于重型工件的搬运和装配。

下面将分析液压传动自动上料机械手的结构设计。

1.机械手的框架结构:2.液压系统:液压传动是液压传动自动上料机械手的核心部分。

液压系统由液压泵、液压缸、液压阀门等组成。

通过液压泵提供的压力,液压缸可以实现各种动作,例如伸缩、旋转、举升等。

液压阀门控制液压传动系统的流量和压力,实现机械手的各种动作和操作。

3.机械手臂的设计:机械手臂是液压传动自动上料机械手的关键组成部分。

机械手臂通常由多个关节连接而成,可以实现多自由度的运动。

机械手臂的关节通过液压缸驱动,使机械手能够完成各种复杂的动作和任务。

机械手臂材质需要具有足够的强度和刚度,同时要求尽量轻量化,以减少能量消耗和摩擦损失。

4.末端执行器的设计:末端执行器是液压传动自动上料机械手的末端装置,用于抓取、搬运或装配工件。

末端执行器通常由夹具、卡盘或吸盘等组成,具有可调节的抓取力和灵活的动作。

末端执行器需要与机械手臂的关节连接,同时能够快速、稳定地完成工件的抓取和释放。

5.控制系统:液压传动自动上料机械手的控制系统由电气控制和液压控制两部分组成。

电气控制系统包含传感器、电机、编码器和控制器等,用于实时监测和控制机械手的运动和状态。

液压控制系统包含液压泵、液压缸、液压阀门等,用于控制机械手的动作和操作。

综上所述,液压传动自动上料机械手的结构设计涉及框架结构、液压系统、机械手臂、末端执行器和控制系统等多个方面。

合理的结构设计可以提高机械手的稳定性、精度和可靠性,从而提高生产效率和产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、总体方案设计1.1设计任务基本要求:设计一个多自由度机械手(至少要有三个自由度)将最大重量为40Kg的工件,由车间的一条流水线搬到别一条线上;二条流水线的距离为:1000mm;工作节拍为:70s;工件:最大直径为160mm 的棒料;1.2总体方案确定1.2.1自由度自由度是指机器人所具有的独立坐标轴运动的数目,但是一般不包括手部(末端操作器)的开合自由度。

自由度表示了机器人灵活的尺度,在三维空间中描述一个物体的位置和姿态需要六个自由度。

机械手的自由度越多,越接近人手的动作机能,其通用性就越好,但是结构也越复杂,自由度的增加也意味着机械手整体重量的增加。

轻型化与灵活性和抓取能力是一对矛盾,,此外还要考虑到由此带来的整体结构刚性的降低,在灵活性和轻量化之间必须做出选择。

工业机器人基于对定位精度和重复定位精度以及结构刚性的考虑,往往体积庞大,负荷能力与其自重相比往往非常小。

一般通用机械手有5~6个自由度即可满足使用要求(其中臂部有3个自由度,腕部和行走装置有2~3个自由度),专用机械手有1~2个自由度即可满足使用要求。

在控制器的作用下,它执行将工件从一条流水线拿到另一条流水线这一动作。

在满足前提条件上尽量使结构简单,所以我们这次选择5自由度机械手。

1.2.2机械手基本形式的选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种: (1)直角坐标型机械手:特点:操作机的手臂具有三个移动关节,其关节轴线按直角坐标配置。

优缺点:结构刚度较好,控制系统的设计最为简单,但其占空间较大,且运动轨迹单一,使用过程中效率较低。

结构图:(2)圆柱坐标型机械手:特点:操作机的手臂至少有一个移动关节和一个回转关节,其关节轴线按圆柱坐标系配置。

优缺点:结构刚度较好,运动所需功率较小,控制难度较小,但运动轨迹简单,使用过程中效率不高。

结构图:( 3)球坐标(极坐标)型机械手:特点:操作机的手臂具有两个回转关节和一个移动关节,其轴线按极坐标系配置。

优缺点:结构紧凑,但其控制系统的设计有一定难度,且机械手臂的刚度不足,机械结构较为复杂。

结构图:(4)多关节型机机械手。

特点:操作机的手臂类似人的上肢关节动作,具有三个回转关节。

优缺点:运动轨迹复杂,结构最为紧凑,但控制系统的设计难度大,机械手臂的刚度差。

结构图:因为本次设计的三自由度机械手主要用来运输2流水线的零件,2者距离1000mm,这就要求机械手结构简单紧凑,定位精度较高,占地面积小。

根据上面4种坐标形式,我选择了圆柱坐标形式,这种形式比较符合这次设计的需要。

图1-2-3是机械手搬运物品示意图。

图中机械手的任务是将传送带A上的物品搬运到传送带B。

图1-2-3机械手搬运物品示意图1.2.3机械手的主要部件及运动在圆柱坐在圆柱坐标式机械手的基本方案选定后,根据设计任务,为了满足设计要求,本设计关于机械手具有3个自由度既:手抓张合;手臂回转;手臂升降3个主要运动。

本设计机械手主要由3个大部件:(1)手部,采用一个直线液压缸,通过机构运动实现手抓的张合。

(2)腕部,腕部是联结手部和臂部的部件,腕部运动主要用来改变被夹物体的方位,它动作灵活,转动惯性小。

本课题腕部具有回转这一个自由度,采用一个回转液压缸实现手部回转。

(3)臂部,臂是机械手机构的主要执行部件。

它的作用是支撑腕部和手部,并带动它们在空间运动。

(4)机身,机身是直接支承和传动手臂的部件。

1.2.4机械手的驱动元件在机器人驱动系统中,使用的电机类型主要有步进电机、直流伺服电机、交流伺服电机以及最近几年出现的超声波电机和HD电动机等几种。

步进电机可直接将电脉冲信号转换成转角,每输入一个脉冲,步进电机就回转一定的角度,其角度大小与脉冲数成正比,旋转方向取决于输入脉冲的顺序。

步进电机可在很宽的范围内,通过改变脉冲的频率来调速,能够快速起动、反转和制动,有较强的阻碍偏离稳定的能力。

在机器人中无位置反馈的位置控制系统中得到了广泛的应用。

直流伺服电机在机器人中应用也很广泛。

常用它直接带动滚珠丝杠驱动关节手臂关节运动。

直流伺服电机的工作原理和基本结构均与一般动力用直流电机相同。

按激磁方式直流伺服电机可分为永磁式、他激式、并激式和串激式等。

在机器人驱动系统中多采用永磁式直流伺服电机。

.交流伺服电机在机器人中的应用情况与置流伺服电机相同,但交流伺服电机与直流伺服电机相.比,,功率大、过载能力强、无电刷、环境适应性好,因而交流伺服电机是今后机器人用电机的发展方向。

低速电机主要用于系统精度要求高的机器人。

为了提高功率体积比,伺服电机制成高转速,经齿轮减速后带动机械负载。

由于齿轮传动存在间隙,系统精度不易提高,若对功率体积比要求不十分严格,而对于精度有严格的要求,则最好取消减速齿轮,采用大力矩的低速电机,配以高分辨率的光电编码器及高灵敏度的测速发电机,实现直接驱动。

环形超声波电动机具有低速大转矩的特点,使用在机器人的关节处,不需齿轮减速,可直接驱动负载,因而可大大改善功率重量比,并可利用其中空结构传递信息。

HD电动机是一种小型大转矩(大推力)的电动机,电动机可直接与负载连接,可应用在系统定位精度要求高的机器人产品中。

通过上述对几种机器人常用电机的分析和比较,综合考虑本文机械手臂并不要求有很高的扭矩,但是要求有较高精度并要求能够快速启动和制动,所以选择应用较为广泛的直流伺服电机作为驱动电机。

1.2.5机械手的技术参数列表一、用途:搬运:用于传送带间搬运二、设计技术参数:1、抓重:40Kg (夹持式手部)2、自由度数:5个自由度3、座标型式:圆柱座标4、最大工作半径:1000mm6、手臂运动参数回转范围:0~180°二、各主要组成部分设计2.1爪部机构设计2.1.1对手部设计的要求(1)对手部设计的要求(a)有适当的夹紧力手部在工作时,应具有适当的夹紧力,以保证夹持稳定可靠,变形小,且不损坏工件的已加工表面。

对于刚性很差的工件夹紧力大小应该设计得可以调节,对于笨重的工件应考虑采用自锁安全装置。

(b)有足够的开闭范围根据工件外圆大小,夹持的大小直径必须大于100mm 。

夹持类手部的手指都有张开和闭合装置。

工作时,一个手指开闭位置以最大变化量称为开闭范围。

对于回转型手部手指开闭范围,可用开闭角和手指夹紧端长度表示。

手指开闭范围的要求与许多因素有关,如工件的形状和尺寸,手指的形状和尺寸,一般来说,如工作环境许可,开闭范围大一些较好。

(c) 力求结构简单,重量轻,体积小手部处于腕部的最前端,工作时运动状态多变,其结构,重量和体积直接影响整个机械手机构的结构,抓重,定位精度,运动速度等性能。

因此,在设计手部时,必须力求结构简单,重量轻,体积小。

(d) 手指应有一定的强度和刚度(e)其它要求:因此送料,夹紧机械手机构,根据工件的形状,采用最常用的外卡式两指钳爪,夹紧方式用常闭史弹簧夹紧,松开时,用单作用式液压缸。

此种结构较为简单,制造方便。

2.1.2手部设计基本要求(1)应具有适当的夹紧力和驱动力。

应当考虑到在一定的夹紧力下,不同的传动机构所需的驱动力大小是不同的。

(2)手指应具有一定的张开范围,手指应该具有足够的开闭角度(手指从张开到闭合绕支点所转过的角度)∆γ,以便于抓取工件。

(3)要求结构紧凑、重量轻、效率高,在保证本身刚度、强度的前提下,尽可能使结构紧凑、重量轻,以利于减轻手臂的负载。

2.1.3机械手手抓的设计计算1.选择手抓的类型及夹紧装置本设计是设计平动搬运机械手的设计,考虑到所要达到的原始参数:手抓张60,夹取重量为30Kg。

常用的工业机械手手部,按握持工件的原理,分合角γ∆=0为夹持和吸附两大类。

吸附式常用于抓取工件表面平整、面积较大的板状物体,不适合用于本方案。

本设计机械手采用夹持式手指,夹持式机械手按运动形式可分为回转型和平移型。

平移型手指的张开闭合靠手指的平行移动,这种手指结构简单, 适于夹持平板方料, 且工件径向尺寸的变化不影响其轴心的位置, 其理论夹持误差零。

若采用典型的平移型手指, 驱动力需加在手指移动方向上,这样会使结构变得复杂且体积庞大。

显然是不合适的,因此不选择这种类型。

通过综合考虑,本设计选择二指回转型手抓,采用滑槽杠杆这种结构方式。

夹紧装置选择常开式夹紧装置,它在弹簧的作用下机械手手抓闭和,在压力油作用下,弹簧被压缩,从而机械手手指张开。

2 、手抓的力学分析下面对其基本结构进行力学分析:滑槽杠杆图2-1-3.1为常见的滑槽杠杆式手部结构。

32 O1O21FN图2-1-3.1滑槽杠杆式手部结构图2-1-3.2滑槽杠杆式受力分析在杠杆3的作用下,销轴2向上的拉力为F ,并通过销轴中心O 点,两手指1的滑槽对销轴的反作用力为F 1和F 2,其力的方向垂直于滑槽的中心线1oo 和2oo 并指向o 点,交1F 和2F 的延长线于A 及B 。

由x F ∑=0 得 12F F = y F ∑=0 得 12cos FF α='11F F =- 由01M ∑()F =0 '1NF F=hcos ah α=F=2cos N bF aα式中 a ——手指的回转支点到对称中心的距离(mm ).α——工件被夹紧时手指的滑槽方向与两回转支点的夹角。

由分析可知,当驱动力F 一定时,α角增大,则握力N F 也随之增大,但α角过大会导致拉杆行程过大,以及手部结构增大,因此最好α=030~040。

3、夹紧力及驱动力的计算手指加在工件上的夹紧力,是设计手部的主要依据。

必须对大小、方向和作用点进行分析计算。

一般来说,需要克服工件重力所产生的静载荷以及工件运动状态变化的惯性力产生的载荷,以便工件保持可靠的夹紧状态。

手指对工件的夹紧力可按公式计算: 123N F K K K G ≥ 式中 1K ——安全系数,通常1.2~2.0;2k ——工作情况系数,主要考虑惯性力的影响。

可近似按下式估21b K a =+其中a ,重力方向的最大上升加速度;max va t =响max v ——运载时工件最大上升速度t 响——系统达到最高速度的时间,一般选取0.03~0.5s3K ——方位系数,根据手指与工件位置不同进行选择。

G ——被抓取工件所受重力(N )。

表2-1-3.1 液压缸的工作压力计算:设a=50mm,b=100mm,010<α<040;机械手达到最高响应时间为0.5s ,求夹紧力N F 和驱动力F 和 驱动液压缸的尺寸。

(1)设1 1.5K =, 5.0v a max=,g a 12+=K =1.02(a 运载工件时重力方向的最大上升加速度),30.5K = 根据公式,将已知条件带入:∴ N F =1.5⨯1.02⨯0.5⨯400=306N (2)根据驱动力公式得: 30630cos 5010022⨯⨯=)(计算F =918N (3)取0.85η= 108085.0918===η计算实际F F N (4)确定液压缸的直径D ()224F D d p π=-实际选取活塞杆直径d=0.5D,选择液压缸压力油工作压力P=0.8~1MPa,∴∴ D=75.0101108045.01p 462⨯⨯⨯⨯=-π)(π实际F =0.042 根据表2-1-3.2(JB826-66),选取液压缸内径为:D=50mm表2-1-3.2 液压缸的内径系列(JB826-66)则活塞杆内径为:d=50⨯0.5=25mm ,选取d=25mm4、活塞杆长度与手指长度的计算计算为了保证手抓张开角为060,活塞杆运动长度为34mm 。

相关文档
最新文档