初中数学中折叠问题
(完整版)初中数学折叠问题

第1题图第2题图G 第3题图第4题图第5题图第6题图折叠问题文稿(不含压轴题)1.如图,长方形ABCD 沿AE 折叠,使D 落在边BC 上的F 点处,如果∠BAF=60°,则∠DAE=___.2.如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG 的长.3.如图,在Rt △ABC 中,∠ACB=90°∠A<∠B ,CM 是斜边AB 的中线,将△ACM 沿直线CM 折叠,点A 落在D 处,如果CD 恰好与AB 垂直,那么∠A 等于_ ____.4.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,折痕交CD 于点E ,已知AB=8cm, BC=10cm , 求EC 的长.5.如图,直角梯形ABCD 中,∠A=90°,将BC 边折叠,使点B 与点D 重合,折痕经过点C ,若AD=2,AB=4,求∠BCE 的正切值.6.如图,点D 、E 分别是AB 、AC 的中点,将点A 沿过DE 的直线拆叠. (1)说明点A 的对应点A '一定落在BC 上; (2)当A '在BC 中点处时,求证:AB=AC .第7题图C'FEDABC7. 如图,矩形纸片ABCD 的长AD=9cm ,宽AB=3cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别是多少?8. 如图是面积为1的正方形ABCD ,M 、N 分别为AD 、BC 边上的中点,将点C 折至MN 上,落在点P 位置,折痕为BQ ,连结PQ .(1)求MP 的长;(2)求证:以PQ 为边长的正方形面积等于13.9. 把矩形ABCD 对折,设折痕为MN ,再把B 点叠在折痕上,得到Rt △ABE ,延长EB 交AD 于点F ,若矩形的宽CD=4. (1)求证:△AEF 是等边三角形; (2)求△AEF 的面积.第8题图 第9题图xy第11题图E COAB PD10. 把矩形纸片OABC 放入直角坐标系xOy 中,使OA 、OC 分别落在x 轴、y轴的正半轴上。
数学初中折叠问题解题技巧

数学初中折叠问题解题技巧
初中数学中的折叠问题是一种常见的问题类型,涉及到几何和代数等多个方面,具有一定的挑战性和趣味性。
下面是一些折叠问题的解题技巧:
1. 观察折叠过程,提取关键信息。
在折叠问题中,通常会涉及到两个或多个图形的折叠,需要观察折叠过程,并提取关键信息。
例如,在将一个矩形折叠成正方形的过程中,关键信息可能是矩形的长和宽,或者是正方形的边长。
2. 利用几何图形的性质,进行推理和计算。
折叠问题通常涉及到几何图形的性质,例如面积、周长、角等。
在解决问题时,需要利用这些性质进行推理和计算。
例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,进而计算出折叠后的形状。
3. 利用代数知识,进行化简和求解。
折叠问题还可以利用代数知识进行化简和求解。
例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,并将它们用代数式表示出来。
然后,通过解方程组或代数式的方法求解答案。
4. 寻找规律,构建模型。
有些折叠问题可以通过寻找规律,构建模型来解决。
例如,在将一个正多边形折叠成平面图形的过程中,可以尝试利用正多边形的边数来构建模型。
通过模型,可以更好地理解和解决问题。
折叠问题是初中数学中的一种重要问题类型,需要学生掌握一定
的几何和代数知识,并学会利用这些知识进行推理和计算。
同时,学生还需要具备较强的逻辑思维能力和分析问题的能力,才能有效地解决折叠问题。
初中数学中有关图形的折叠问题

专题复习图形的折叠问题折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.类型1 三角形中的折叠问题1.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=75°,则∠1+∠2=【 】A .150°B .210°C .105°D .75°2.已知,如图,Rt △ABC 中,∠C=90º,沿过点B 的一条直线BE 折叠△ABC,使C 恰好落在AB 边的中点D 处,则∠A=________.3.(2014·德阳)如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC=70°,那么∠A′DE 的度数为________.4.如图,在Rt△ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=________.5.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,若点D 的坐标为(10,8),则点E 的坐标为________. A D B EC6.如图,在等腰△ABC 中,AB =AC ,∠BAC =50°.∠BAC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是 .7.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠B .8.如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(3/2,√3/2),则该一次函数的解析式为________.9.如图,D 是等边△ABC 边AB 上的一点,且AD∶DB=1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE∶CF=( )A.3/4B.4/5C.5/6D.6/7 10.如图,将△ABC 纸片的一角沿DE 向下翻折,使点A 落在BC 边上的A ′点处,且DE ∥BC ,下列结论:①∠AED =∠C ;②A 1D/DB=A 1E/EC ;③BC=2DE ;④ BD A E A C AD A E S S S ∆'∆''=+四形边。
初中数学折叠问题模型

初中数学折叠问题模型摘要:初中数学折叠问题模型I.引言A.折叠问题背景B.折叠问题在初中数学中的重要性C.本文的目的和结构II.折叠问题模型A.折叠问题的定义和分类B.折叠问题模型的建立C.折叠问题模型的应用III.折叠问题解决方法A.传统解法B.折叠问题模型的解法C.折叠问题模型的优势IV.折叠问题模型的教学应用A.折叠问题模型在教学中的作用B.折叠问题模型的教学策略C.教学案例分析V.总结与展望A.折叠问题模型的重要性B.折叠问题模型的未来发展方向C.总结正文:初中数学折叠问题模型I.引言折叠问题在初中数学中是一个常见的问题,它涉及到几何图形的折叠和展开,需要学生掌握一定的几何知识和空间想象能力。
折叠问题也常常出现在数学竞赛中,因此解决折叠问题对于提高学生的数学能力和竞赛成绩具有重要的意义。
本文旨在介绍初中数学折叠问题模型,帮助学生更好地理解和解决折叠问题。
II.折叠问题模型A.折叠问题的定义和分类折叠问题是指将一个平面图形沿着某一条轴线折叠,使得折叠后的图形与原来的图形重合,或者形成一个新的几何形状。
折叠问题可以分为两类:完全重合型和部分重合型。
完全重合型是指折叠后的图形与原来的图形完全重合,而部分重合型是指折叠后的图形与原来的图形只有部分重合。
B.折叠问题模型的建立折叠问题模型是指通过建立几何图形的折叠和展开关系,来解决折叠问题的方法。
在折叠问题模型中,我们需要确定折叠轴线、折叠前后图形的对应关系以及折叠后的图形形状。
C.折叠问题模型的应用折叠问题模型可以用于解决各种折叠问题,包括完全重合型和部分重合型折叠问题。
通过建立折叠问题模型,学生可以更好地理解折叠问题的本质,从而更有效地解决折叠问题。
III.折叠问题解决方法A.传统解法传统的折叠问题解决方法通常是通过手工绘制图形,然后利用几何知识和空间想象能力来解决。
这种方法费时费力,而且容易出错。
B.折叠问题模型的解法折叠问题模型提供了一种更加简便和准确的解决折叠问题的方法。
数学折叠问题初一

数学折叠问题初一数学折叠问题是一种典型的几何问题,它涉及到图形在空间中的变换和计算。
在初中阶段,数学折叠问题不仅能帮助学生巩固几何知识,还能提高他们的空间想象力和逻辑思维能力。
本文将从数学折叠问题的概念、应用场景、解决方法以及在初中的教学意义等方面进行详细阐述。
一、数学折叠问题的概念与基本原理数学折叠问题是指在平面或空间几何中,通过对一个图形进行折叠,使其变为另一个图形的问题。
在这个过程中,图形的形状、大小和位置可能会发生变化。
解决数学折叠问题需要掌握图形的折叠原理,了解图形的各个部分之间的关系。
二、数学折叠问题的应用场景数学折叠问题在日常生活和学术研究中具有广泛的应用。
例如,在建筑、设计和制造领域,数学折叠问题可以帮助我们更好地理解和分析空间结构;在数学和物理研究中,数学折叠问题有助于探究图形的变换和性质。
三、解决数学折叠问题的方法与技巧解决数学折叠问题有以下几种方法:1.观察法:通过观察图形的特征,找到图形之间的联系和规律。
2.折叠法:将图形按照折叠线进行折叠,分析折叠前后的图形关系。
3.方程法:建立数学模型,利用方程求解图形折叠问题。
4.几何变换法:利用平移、旋转等几何变换,将问题转化为已知图形的性质。
四、数学折叠问题在初中的教学意义数学折叠问题在初中阶段的教学具有重要意义。
通过解决数学折叠问题,学生可以:1.加深对几何图形的理解和掌握;2.提高空间想象力和逻辑思维能力;3.培养观察、分析和解决问题的能力;4.巩固和拓展数学知识,为高中阶段的学习打下基础。
五、提高初中生数学折叠问题能力的建议1.多做练习:通过大量练习,熟练掌握数学折叠问题的解题技巧;2.培养空间想象力:通过观察和折叠实物,提高空间想象力;3.学会分类和归纳:将数学折叠问题进行分类,总结规律;4.及时请教老师:在遇到难题时,及时向老师请教,确保掌握数学折叠问题的解题方法。
初中几何折叠问题的三种解法

初中几何折叠问题的三种解法初中几何折叠问题的三种解法初中几何是数学中的一个重要分支,而折叠问题则是初中几何中常见的一种问题。
在这里,我们将介绍三种不同的方法来解决初中几何折叠问题。
方法一:手工模拟法手工模拟法是一种简单直观的方法。
它通过将纸张折叠成所需形状来解决问题。
步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。
2. 将纸张按照比例剪成相应大小。
3. 按照题目要求,将纸张进行折叠,直到得到所需形状。
4. 计算所需参数并得出答案。
优点:手工模拟法操作简单易懂,适合初学者使用。
同时也能够帮助学生更好地理解折叠问题的本质。
缺点:手工模拟法需要较长时间完成,并且需要精确测量和折叠。
同时也容易出现误差和偏差。
方法二:平面几何法平面几何法是一种基于平面几何知识来解决问题的方法。
它通过利用图形相似性和对称性来计算所需参数。
步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。
2. 根据平面几何知识,计算所需参数,如角度、长度等。
3. 得出答案。
优点:平面几何法具有计算速度快、精度高等特点。
同时也能够帮助学生更好地理解平面几何知识的应用。
缺点:平面几何法需要学生具备一定的数学基础,并且需要对图形相似性和对称性有深入理解。
同时也容易出现计算错误和漏算情况。
方法三:三维几何法三维几何法是一种基于立体几何知识来解决问题的方法。
它通过利用立体图形的投影和相似性来计算所需参数。
步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。
2. 利用三维几何知识,将立体图形投影到二维平面上,并计算所需参数,如角度、长度等。
3. 得出答案。
优点:三维几何法具有计算速度快、精度高等特点。
同时也能够帮助学生更好地理解立体几何知识的应用。
缺点:三维几何法需要学生具备一定的数学基础,并且需要对立体图形的投影和相似性有深入理解。
同时也容易出现计算错误和漏算情况。
结论:初中几何折叠问题可以通过多种方法来解决,其中手工模拟法、平面几何法和三维几何法是常见的三种方法。
浅谈初中数学中的折叠问题

浅谈初中数学中的折叠问题王华榆林实验中学陕西榆林719000在初中数学中,折叠问题将图形的变换与学生的实际操作能力紧密联系起来。
在折叠过程中,通过观察图形中的变与不变,灵活应用平面图形的基本性质及定理解决问题。
在变化过程中使学生初步体会了数学的动态美,同时提高了学生的观察能力、空间想象能力及动手能力。
归纳起来,折叠问题有如下几类题型:一、折叠问题中涉及的探索规律问题。
例:(如图1)将一张长方形纸对折可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,连续对折六次能得到几条折痕,n次有几条折痕?图1分析:在这个折叠问题中对折方式不变,变化的是随着对折次数的增加折痕有规律的增加,情况如下表所以对折6次能得到63条折痕,对折n次可得到( 2n-1 )条折痕。
二、折叠中发现图形的基本性质。
1、(如图2)等腰三角形△ABC中,AB=BC,折叠使AB与AC重合,折痕为AD。
则折痕AD集“三线合一”于一身,即:底边BC上的中线、高线和顶角∠BAC的平分线。
(图2)2、(如图3)正方形ABCD经过两次沿对角线折叠,可确定正方形的中心,同时将正方形分成四个全等的等腰直角三角形。
D C(图3)3、(如图4)圆形纸片通过两次对折,可确定圆形纸片的圆心,折痕就是圆的直径。
DC B(图4)三.利用图形全等的性质解决折叠问题.例1、(如图5)三角形纸片△ABC中,∠A=65o , ∠B=75o,把纸片的一角折叠, 使点C落在△ABC内, 若∠C′DB=20o ,求∠C′EA的度数?BA E C(图5)分析:由三角形内角和为180o ,∠A+∠B+∠C=180o∠C=180o -(∠A+∠B)=40o因为折叠前后△C′ED≌△C ED,所以∠C′=40o由四边形AEDB内角和得:∠A+∠B+∠C′EA+∠C′ED+∠C′DE+∠C′DB=360o得:∠C′EA=60o例2. 一张长方形的纸片按(如图6)方式折叠,EM,FM为折痕,折痕后的点C落在M B′或M B′的延长线上,那么∠EMF的度数是多少?B M C(图6)分析:∠EMF=∠EM B′+∠FMC′因为在折叠过程中△EBM≌△E B′M ,四边形CDFM与C′D′FM全等。
初中数学几何图形中的折叠问题解题思路

初中数学几何图形中的折叠问题解题思路折叠问题中的背景图形通常有,三角形、正方形、矩形、梯形等,解决这类问题的关键是一定要灵活运用轴对称和背景图形的性质。
轴对称性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
典型例题:例题1、如图,在Rt△ABC 中,∠ACB=90°,AB=10,AC=8,E、F 分别为 AB、BC 上的点,沿线段 EF 将∠B 折叠,使点 B 恰好落在 AC 上的点 D 处,试问当△ADE 恰好为直角三角形时,此时 BE 的长度为多少?解题思路:△ADE 为直角三角形分两种情况:①∠ADE =90°,②∠AED = 90°,此题需要分类讨论,结合三角形的相似、折叠的性质,来求折叠中线段的长度,关键是能画出折叠后的图形。
解答过程:当 ∠ADE = 90°时,如下图所示:证明:先来证明四边形 DEBF 为棱形:∵ 在Rt△ABC 中,∠ACB=90°,∠ADE = 90° ,∴ DE∥BC ,∴ ∠DEF = ∠EFB ,又∵ 沿线段 EF 将 ∠B 折叠,∴ DE = BE ,DF = BF ,∠DFE = ∠BFE ,∴ ∠DEF = ∠DFE ,DE = DF = BF ,∴ 四边形 DEBF 为棱形。
(一组对边平行且相等的四边形是平行四边形,邻边相等的平行四边形是棱形)。
再来证明Rt△ADE ∽ Rt△ACB (相似三角形判断图形中的“A”字型)∵ 在三角形 ACB 中,DE∥BC ,∴ Rt△ADE ∽ Rt△ACB ,设棱形 DEBF 的边长为 x , 则有 DE = x , AE = 10 - x ,在Rt△ACB 中,AB = 10 , AC = 8 ,由勾股定理得:BC = 6 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学中的折叠问题一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后 BG和 BH在同一条直线上,∠ CBD=度.2.如下图,一张矩形纸片沿BC折叠,极点 A 落在点 A′处,再过点 A′折叠使折痕DE∥BC,若 AB=4,AC=3,则△ ADE的面积是.3.如图,矩形纸片 ABCD 中, AB=4 ,AD=3 ,折叠纸片使 AD 边与对角线 BD 重合,得折痕DG,求 AG 的长.D CA'根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可 A G B 4.把矩形纸片 ABCD 沿 BE 折叠,使得 BA 边与 BC 重合,然后再沿着 BF 折叠,使得折痕BE 也与 BC 边重合,展开后如下图,则∠ DFB 等于()注意折叠前后角的对应关系5.如图,沿矩形 ABCD的对角线 BD折叠,点 C落在点 E 的位置,已知 BC=8cm,AB=6cm,求折叠后重合部分的面积.EF DA3重合部分是以折痕为底边的等腰三角形21BC6.将一张矩形纸条ABCD按如下图折叠,若折叠角∠的形状三角形.对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△ GEF FEC=64°,则∠ 1=度;△ EFGD‘C‘A1G F D5432B E C7.如图,将矩形纸片ABCD 按如下的次序进行折叠:对折,展平,得折痕EF(如图①);延 CG 折叠,使点 B 落在 EF 上的点 B ′处,(如图②);展平,得折痕 GC(如图③);沿 GH 折叠,使点 C 落在 DH 上的点 C′处,(如图④);沿 GC′折叠(如图⑤);展平,得折痕 GC′,GH(如图⑥).(1)求图②中∠ BCB ′的大小;(2)图⑥中的△ GCC′是正三角形吗?请说明原因.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为 8,将其沿 EF折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为 4 的正方形 ABCD沿着折痕 EF 折叠,使点 B落在边 AD的中点 G处,求四边形 BCFE的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为 1 的正方形纸片ABCD 折叠,使点 B 落在边 AD 上不与A、D重合.MN 为折痕,折叠后 B ’C’与 DN 交于 P.(1)连结 BB ’,那么 BB ’与 MN 的长度相等吗?为什么?(2)设 BM=y, AB ’=x,求 y 与 x 的函数关系式;(3)猜想当 B 点落在什么位置上时,折叠起来的梯形MNC ’B’面积最小?并考证你的猜想.二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()CD30° BF E a21A题考察的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为 180度的性质,注意△ EAB 是以折痕 AB 为底的等腰三角形12.如图,将一宽为2cm 的纸条,沿 BC,使∠ CAB=45 °,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线 +角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽 2cm的长方形纸条成如下图的形状,那么折痕PQ的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线 +角平分线”的基本结构图形,即有以折痕为底边的等腰三角形 APQ14.如图 a 是长方形纸带,∠ DEF=20°,将纸带沿EF 折叠成图 b,再沿 BF 折叠成图 c,则图 c 中的∠ CFE 的度数是()AE D A E E DACFB FC B G B G FC 图c图 a 图 bD本题考察图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠ DEF= ∠EFB=20°图 b∠GFC=140°,图 c 中的∠ CFE=∠GFC-∠ EFG 15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴 EF 折叠成如图的形状,若折叠后,AB 与 CD 间的距离为 60cm,则原纸片的宽AB 是()DCFG60cmEA FDBE C B A16.一根 30cm、宽 3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了雅观,希望折叠达成后纸条两头高出点P 的长度相等,则最初折叠时,求MA 的长三、三角形中的折叠17.如图,把 Rt△ABC(∠ C=90°),使 A, B两点重合,得到折痕 ED,再沿 BE折叠, C点恰巧与 D点重合,则 CE:AE=18.在△ ABC中,已知 AB=2a,∠ A=30°, CD是 AB边的中线,若将△ ABC沿 CD对折起来,1折叠后两个小△ ACD与△ BCD重叠部分的面积恰巧等于折叠前△ABC的面积的4.(1)中间线 CD等于 a 时,重叠部分的面积等于;(2)有如下结论(不在“ CD等于 a”的限制条件下):① AC边的长能够等于a;②折叠前的3 2△ABC的面积能够等于 2 a ;③折叠后,以A、B为端点的线段AB与中线CD平行且相等.其中,结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”).C CB'12A E 3 D BAD BB'注意“角平分线 +等腰三角形”的基本构图,折叠前后图形之间的对照,找出相等的对应角和对应边19.在△ ABC 中,已知∠ A=80°,∠ C=30°,现把△ CDE 沿 DE 进行不同的折叠得△DE,对折叠后产生的夹角进行探究:(1)如图( 1)把△ CDE 沿 DE 折叠在四边形 ADEB 内,则求∠ 1+∠2 的和;(2)如图( 2)把△ CDE 沿 DE 折叠覆盖∠ A ,则求∠ 1+∠2 的和;(3)如图( 3)把△ CDE 沿 DE 斜向上折叠,探究∠ 1、∠ 2、∠ C 的关系.(1)根据折叠前后的图象全等可知,∠ 1=180° -2∠CDE,∠2=180°-2∠CED,再根据三角形内角和定理比 A 可求出答案;(2)连结 DG,将∠ ADG+ ∠AGD 作为一个整体,根据D 1C'三角形内角和定理来求;(3)将∠ 2 看作 180° -2∠CED,∠ 1 看作 2∠C2CDE-180°,再根据三角形内角和定理来求. E 图 (1)C'C' AA12D1G D2 C′B由于等腰三角形是轴对称图形,所以在折叠三角形时经常会出现等腰三角形20.察看与发现:将三角形纸片ABC(AB >AC )沿过点 A 的直线折叠,使得 AC 落在 AB 边上,折痕为 AD ,展开纸片(如图①);在第一次折叠的基础上第二次折叠该三角形纸片,使点 A 和点 D 重合,折痕为EF,展平纸片后得到△ AEF (如图②).小明认为△ AEF 是等腰三角形,你同意吗?请说明原因.实践与运用:(1)将矩形纸片 ABCD 沿过点 B 的直线折叠,使点 A 落在 BC 边上的点 F 处,折痕为 BE(如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠往常都与角平分线相关。
要抓住折叠前后图形之间的对应关系(2)将矩形纸片 ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与 AD 边交于点 E,与BC 边交于点 F;将矩形 ABFE 与矩形 EFCD 分别沿折痕 MN 和 PQ 折叠,使点 A 、点 D 都与点 F 重合,展开纸片,此时恰巧有 MP=MN=PQ (如图④),求∠ MNF 的大小.在矩形中的折叠问题,往常会出现“角平分线+平行线”的基本结构,即以折痕为底边的等腰三角形21.直角三角形纸片ABC 中,∠ ACB=90 °, AC ≤BC,如图,将纸片沿某条直线折叠,使点 A 落在直角边 BC 上,记落点为 D,设折痕与 AB 、AC 边分别交于点 E、点 F.探究:如果折叠后的△ CDF 与△ BDE 均为等腰三角形,那么纸片中∠ B 的度数是多少?写出你的计算过程,并画出切合条件的后的图形.先确定△ CDF 是等腰三角形,得出∠ CFD=∠ CDF=45 °,因为不确定△ BDE 是以那两条边为腰的等腰三角形,故需议论,①DE=DB ,②BD=BE ,③DE=BE ,然后分别利用角的关系得出答案即可22.下列图案给出了折叠一个直角边长为2 的等腰直角三角形纸片(图1)的全过程:首先对折,如图2,折痕 CD 交 AB 于点 D;翻开后,过点 D 随意折叠,使折痕 DE 交 BC 于点 E,如图 3;翻开后,如图 4;再沿 AE 折叠,如图 5;翻开后,折痕如图 6.则折痕 DE 和 AE 长度的和的最小值是()本题经过了三次折叠,注意理清折叠过程中的对称关系,求两条线段的和的最小值问题能够参见文章23.小华将一条 1(如图 1),沿它对称轴折叠 1 次后得到(如图),再将图沿它对称轴折叠后得到(如图 3),则图 3 中一条腰长;同上操作,若小华连续将图 1 折叠 n 次后所得到(如图n+1)一条腰长为多少?本题是一道找规律的题目,这类题型在中考取经常出现.对于找规律的题目首先应找出哪些部散发生了变化,是按照什么规律变化的.24.如图,矩形纸片 ABCD中, AB= 6 ,BC= 10 .第一次将纸片折叠,使点 B 与点 D重合,折痕与 BD交于点O1 1 1 1 2 ;O D 的中点为 D ,第二次将纸片折叠使点 B与点 D 重合,折痕与 BD交于点 O;D 的中点为 D ,第三次将纸片折叠使点 B 与点 D 重合,折痕与 BD交于点 O ,.按上述方设O2 1 2 2 3法,第 n 次折叠后的折痕与 BD交于点 O n,则 BO1= ,BO n =问题中波及到的折叠从有限到无限, 要理解每一次折叠中的变与不变, 充分展示运算的详尽过程。
在找规律时要把最终的结果写成同样的形式,察看其中的变与不变,特别是变化的数据与折叠次数之间的关系25.如图,直角三角形纸片 ABC 中, AB=3 ,AC=4, D 为斜边 BC 中点,第 1 次将纸片折叠,使点 A 与点 D 重合,折痕与AD 交于点 P 1;设 P 1D 的中点为 D 1,第 2 次将纸片折叠,使点 A 与点12;设 P 2D 1 的中点为 D 2,第 3 次将纸片折叠, 使点 A 与点 D 2 重合,D重合,折痕与 AD 交于点 P折痕与 AD 交于点 P 3n-1D n-2的中点为 D n-1,第 n 次纸片折叠,使 A 与点D n-1重合,折; ;设 P痕与 AD 交于点 P n (n > 2),则 AP 6 长( )本题考察了翻折变换的知识,解答本题重点是写出前面几个相关线段长度的表达式,进而得出一般规律,注意培养自己的概括总结能力26.阅读理解如图 1,△ ABC 中,沿∠ BAC 的平分线 ABB 1A 1C 的平分线1 折叠,剪掉重复部分;将余下部分沿∠A 1B 2 折叠,剪掉重复部分; ;将余下部分沿∠B n A nC 的平分线 A n B n+1 折叠,点 B n 与点 C 重合,不论折叠多少次,只需最后一次恰巧重合,∠ BAC 是△ ABC 的好角.小丽展示了确定∠ BAC 是△ ABC 的好角的两种情形. 情形一:如图 2,沿等腰三角形 ABC 顶角∠ BAC的平分线 AB 1 折叠,点 B 1折叠,剪掉重复部与点 C 重合;情形二:如图 3,沿∠ BAC 的平分线 AB 分;将余下部分沿∠ B 1 11 2 1A C 的平分线 AB 折叠,此时点 B 与点C 重合.探究发现(1)△ ABC 中,∠ B=2∠ C ,经过两次,∠ BAC 是不是△ ABC 的好角? (填“是”或“不是”).( 2)小丽经过三次折叠发现了∠ BAC 是△ ABC 的好角,请探究∠ B 与∠ C (不妨设∠ B >∠ C )之间的等量关系.根据以上内容猜想:若经过 n 次折叠∠ BAC 是△ ABC 的好角,则∠ B 与∠ C (不妨设 ∠B >∠ C )之间的等量关系为 . ∠B = n ∠C应用提升( 3)小丽找到一个三角形,三个角分别为 15°、 60°、105°,发现 60°和 105°的两个角都是此三角形的好角.请你达成,如果一个三角形的最小角是 4°,试求出三角形此外两个角的度数,使该三角形的三个角均是此三角形的好角.AAAA 1A 2A 1A nCBB 1B 2B3BnBn+1BB 1B 2C注意折叠过程中的对应角和三角形的一个外角等于和它不相邻的两个外角的和的运用,理解三角形中如果有一个角是好角之后,另两个角之间的关系,通过这样的问题培养概括总结能力27.我们知道:随意的三角形纸片可通过如图①所示的方法折叠得到一个矩形.(1)实践:将图②中的正方形纸片通过适合的方法折叠成一个矩形(在图②中绘图说明).(2)探究:随意的四边形纸片是否都能通过适合的方法折叠成一个矩形?若能,直接在图③中绘图说明;若不能,则四边形起码应具备什么条件才行?并绘图说明.(要求:绘图应体现折叠过程,用虚线表示折痕,用箭头表示方向,后图形中既无空隙又无重叠部分)折叠即对称628.如图,双曲线y =x (x>0)经过四边形OABC的极点A、C,∠ABC=90°, OC平分 OA与 x 轴正半轴的夹角, AB∥x 轴,将△ ABC沿AC翻折后得到△ AB'C,B' 点落在 OA上,则四边形 OABC的面积是多少?yAB B'理解折叠中的对应边就行29.已知一个直角三角形纸片OAB ,其中∠ AOB=90 °, OA=2 ,OCxDOB=4 .如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边 OB 交于点 C,与边 AB 交于点 D.(1)若折叠后使点 B 与点 A 重合,求点 C 的坐标;(2)若折叠后点 B 落在边 OA 上的点为 B′,设 OB ′=x,OC=y ,试写出 y 对于 x 的函数解析式,并确定y 的取值范围;(3)若折叠后点 B 落在边 OA 上的点为 B″,且使 B ″D∥OB,求此时点C 的坐标.y yB B1CD DC3 2O B' Ax O B''AxyBDCxO A四、圆中的折叠30.如图,正方形 ABCD的边长为 2,⊙ O的直径为 AD,将正方形的 BC边沿 EC折叠,点 B 落在圆上的 F 点,求 BE的长用对称关系结构勾股定理,再用勾股定理列方程求解是在折叠问题中求线段长度的常用方法31.如图,将半径为8 的⊙ O 沿 AB 折叠,弧 AB 恰巧经过与 AB 垂直的半径 OC 的中点 D,则折痕 AB 长为()CCDDOO A BA B E注意折叠过程中形成的对应边,利用勾股定理求解32.如图,将弧BC沿弦 BC折叠交直径 AB于点 D,若 AD=5, DB=7,则 BC的长是多少?本题考查的是对称的性质、圆周角定理、以及相像三角形的判定和性质;能够根据圆周角定理来判断出△ CAD 是等腰三角形,是解答本题的重点33.已知如图:⊙ O 的半径为 8cm,把弧 AmB 沿 AB 折叠使弧 AmB 经过圆心 O,再把弧 AOB 沿CD 折叠,使弧 COD 经过 AB 的中点 E,则折线 CD 的长为( 4 7 )作 CD 对于 C’D’的对称线段 C’D’,连结 OE 并延伸交 CD 于点 F,交 C′ D′于点 F′,交弧AmB 于点 G,根据对称的性质得出 OF′=6,再由勾股定理得出 C’F’= 2 7 .初中数学中折叠问题。