金属热电阻式传感器的工作原理

合集下载

热电阻传感器及其应用

热电阻传感器及其应用

机械工程测试技术作业电阻式传感器的应用姓名:李永贤班级:机械设计制造及其自动化13-1班学号:20131129热电阻传感器及其应用摘要:热电阻传感器适用于温度检测要求较高的场合。

介绍了金属热电阻和热敏热电阻传感器的工作原理、分类、结构及应用。

新技术革命的到来,世界开始进入信息时代。

在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。

传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。

可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。

热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。

在温度检测精度要求比较高的场合,这种传感器比较适用。

热电阻传感器具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。

用于测量-200℃~+500℃范围内的温度。

1 工作原理在金属中,载流子为自由电子,当温度升高时,虽然自由电子数目基本不变(当温度变化范围不是很大时),但每个自由电子的动能将增加,因而在一定的电场作用下,要使这些杂乱无章的电子作定向运动就会遇到更大的阻力,导致金属电阻值随温度的升高而增加。

热电阻就要是利用电阻随温度升高而增大这一特性来测量温度的。

热敏电阻是一种新型的半导体测温元件。

半导体中参加导电的是载流子,由于半导体中载流子的数目远比金属中的自由电子数目少得多,所以它的电阻率大。

随温度的升高,半导体中更多的价电子受热激发跃迁到较高能级而产生新的电子—空穴对,因而参加到电的载流子数目增加了,半导体的电阻率也就降低了(电导率增加)。

因为载流子数目随温度上升按指数规律增加,所以半导体的电阻率也就随温度上升按指数规律下降。

热敏电阻正是利用半导体这种载流子数随温度变化而变化的特性制成的一种温度敏感元件。

热电阻温度传感器工作原理

热电阻温度传感器工作原理

热电阻温度传感器工作原理
热电阻温度传感器是一种利用材料电阻随温度变化的特性来测量温度的传感器。

它采用了热电效应的原理。

热电阻温度传感器通常由一段金属导线(例如铂、镍或铜)组成,该导线具有温度敏感性。

当导线被加热时,导线的电阻值会随之变化。

这是因为随着温度的上升,金属原子的振动增加,电阻的阻碍力也随之增加。

热电阻温度传感器将导线连接到一个测量电路中,电路中流过导线的电流可以测量电阻值的变化。

根据导线的电阻-温度特
性曲线,可以通过测量电阻值来确定当前的温度。

为了提高传感器的精度,热电阻温度传感器通常会使用一个精确的电流源来供电,并采用差分放大电路来减小温度变化对测量结果的影响。

此外,为了提高热响应速度,通常会将导线绕成螺旋形或灌注在芯片中,以增大导线的表面积。

需要注意的是,热电阻温度传感器的测量范围和精度受限于所使用的金属导线的特性和材料。

不同的导线材料有不同的温度测量范围和精度。

常见的热电阻材料包括铂(Pt100、Pt1000等)、镍(Ni100)和铜(Cu10)等。

总结起来,热电阻温度传感器工作原理是利用导线电阻随温度变化的特性,通过测量电阻值来确定温度。

根据导线材料不同,其测量范围和精度也有所不同。

热电阻温度传感器工作原理

热电阻温度传感器工作原理

热电阻温度传感器工作原理热电阻温度传感器,听起来就像是科学家的专属武器,其实它在我们的生活中可是大有用处哦。

说到温度,大家第一反应可能就是天气,今天热得像个火炉,明天又冷得让人瑟瑟发抖,真是让人捉摸不透。

不过,热电阻温度传感器可不怕这些温差,简直就是温度的侦探,能精准地告诉你现在的温度到底是多少。

想象一下,这个小家伙就像一位默默无闻的监控员,随时记录着环境的变化。

它的工作原理其实也蛮简单的。

热电阻的“热”字就已经说明了一切,它的核心是热电阻材料。

说白了,就是材料在受热时,电阻值会发生变化。

就好比你吃了辣椒,瞬间觉得火辣辣的,电阻也是一样,随着温度的升高或降低,电阻会悄悄地变化。

这种变化可以通过仪器精确地测量出来,最终转换成我们需要的温度读数。

真是神奇,是吧?这就是热电阻温度传感器的秘密武器。

为什么大家都喜欢用热电阻传感器呢?它的测量精度高,简直让人拍手称快。

尤其是在工业环境里,温度控制可谓是至关重要。

想象一下,如果某个机器因为温度过高而坏掉,那可就得不偿失了。

所以,热电阻传感器在这方面可谓是如鱼得水,能够实时监测并发出警报,防止事故的发生。

再说了,它的稳定性也很不错,长期使用下去,依然可以保持良好的性能,这就像是老朋友一样,越久越可靠。

热电阻也有个小缺点,那就是反应速度稍微慢了点。

就好比你约朋友吃饭,他总是迟到,心急火燎等得让人抓狂。

不过,这种慢也不算什么,毕竟在许多需要精确控制的地方,稳定性往往比速度更重要。

像是食品加工、药品制造等领域,温度的微小波动都可能影响最终的产品质量,这时热电阻就派上用场了。

说到应用,热电阻传感器的身影几乎无处不在。

家里的空调、冰箱、甚至一些智能设备,很多时候都离不开它的帮助。

记得我有一次在夏天把空调调得很低,结果早上醒来就像是进了冰箱,冷得我直打哆嗦,原来就是热电阻在默默地调节着温度。

这小家伙总是在你不注意的时候,给你带来舒适的环境,真是一个低调的英雄。

热电阻传感器的安装和维护也相对简单,不像有些高大上的设备需要专业人士来操作。

第六章 温度测量--热电阻传感器

第六章  温度测量--热电阻传感器

电阻式温度传感器电阻式传感器广泛应用于测量-200~960℃范围内的温度。

它是利用导体或半导体的电阻率随温度变化而变化原理而工作的,用仪表测量出电阻的变化,从而得到与电阻值相对应的温度值。

电阻式传感器按照其制造材料分可分为:金属(铂和铜)热电阻及半导体热电阻(热敏电阻)两大类。

一、 常用的金属热电阻金属热电阻传感器一般称作热电阻传感器,是利用金属导体的电阻值随温度的升高而增大的原理进行测温的。

温度是分子平均动能的标志,当温度升高,金属晶格的动能增加,从而导致振动加剧,使自由电子通过金属内部时阻碍增加,金属导电能力下降,即电阻增加。

通过测量导体的电阻变化情况就可以得到温度变化情况。

最基本的热电阻传感器由热电阻、连接导线及显示仪表组成,如图7-1所示。

主要制造材料是铂和铜。

测量温度范围-220~+850℃。

在特殊情况下,低温可测量至1K (-272℃),高温可测量至1000℃。

1、铂热电阻铂热电阻是目前公认的制造热电阻最好的材料,它性能稳定,重复性好,长时间稳定的复现性可达10-4 K ,是目前测温复现性最好的一种温度计。

同时其测量精度高。

在氧化性介质中、甚至在高温下,其物理、化学性能都很稳定,其阻值与温度之间几乎成线性变化。

但其在还原性介质中,特别是高温易从氧化物中还原出来的气体所污染,改变它的电阻与温度关系,此外其电阻温度系数小,价格较高。

因此,主要作为标准电阻温度计和高精度温度测量。

铂电阻的精度与铂的提纯程度有关,因此铂电阻的纯度是以W (100)表示:100)100(R R W =(6-1) W (100)越高,表示铂丝纯度越高。

国际实用温标规定,作为基准器的铂电阻,W (100)≥1.3925。

目前技术水平已达到W (100)=1.3930,工业用铂电阻的纯度W (100)为1.387~1.390。

中国常用的铂电阻有两种,分度号分别为Pt50和Pt100。

即在0℃时电阻分别为50Ω和100Ω。

热电阻传感器工作原理

热电阻传感器工作原理

热电阻传感器工作原理
热电阻传感器是一种用于测量温度的传感器,它利用材料的电
阻随温度变化的特性来实现温度测量。

热电阻传感器的工作原理基
于热敏材料的电阻随温度变化而变化。

常见的热敏材料包括铂、镍、铜等金属,其中铂是最常用的材料,因为它具有稳定的温度特性和
较大的温度系数。

当热电阻传感器暴露在环境中时,温度的变化会导致热敏材料
的电阻发生变化。

一般来说,当温度升高时,热敏材料的电阻值会
随之增加,反之亦然。

这种变化可以通过测量热电阻两端的电阻值
来间接测量温度。

热电阻传感器常常被组装在一个保护外壳中,以防止机械损坏
和环境腐蚀。

当温度发生变化时,热电阻传感器会产生相应的电阻
变化,这个变化可以通过连接的电路进行测量和分析。

一般情况下,测量电路会通过一定的算法将电阻值转换为温度值,从而实现对温
度的准确测量。

除了铂热电阻之外,还有一些其他类型的热电阻传感器,例如镍、铜热电阻传感器,它们的工作原理类似,但是具体的温度特性
和测量范围可能会有所不同。

总的来说,热电阻传感器的工作原理是基于热敏材料的电阻随温度变化而变化,通过测量这种电阻变化来实现对温度的测量。

这种传感器因其精度高、稳定性好等特点,在工业、医疗、航空航天等领域得到了广泛的应用。

安全检测与仪表课程热电阻式传感器

安全检测与仪表课程热电阻式传感器
主要由Mn、Co、Ni、Fe、Cu等过渡金属氧 化物 混合烧结而成,改变混合物的成分和配比 就可以获得测温范围、阻值及温度系数不同的 NTC热敏电阻。
应用:点温、表面温度、温差、温场等测量 自动控制及电子线路的热补偿线路
热敏电阻的结构形式
构成:热敏探头、引线、壳体
热敏电阻外形
MF12型 NTC热敏电
学习查“铂热电阻分度表”
铂热电阻传感器
铂热电阻缺点:响应速度慢、容易破损、 难于测定狭窄位置的温度。
现逐渐使用能大幅度改善上述缺主要应用:钢铁、石油化工的各种工艺过程;纤 维等工业的热处理工艺;食品工业的各种自动装 置;空调、冷冻冷藏工业;宇航和航空、物化设 备及恒温槽
图2-24 MQN型气敏电阻结构及测量电路
MQN型气敏半导体器 件是由塑料底座、电 极引线、不锈钢网罩、 气敏烧结体以及包裹 在烧结体中的两组铂 丝组成。一组铂丝为 工作电极,另一组 (下图中的左边铂丝) 为加热电极兼工作电 极。
气敏电阻工作时必须加热到200300℃,其目的 是加速被测气体的化学吸附和电离的过程并烧去气敏 电阻表面的污物(起清洁作用)。
1、金属热电阻传感器
-200~+500℃范围的温度测量 特点:精度高、适于测低温。
2、半导体热敏电阻传感器
应用范围很广,可在宇宙航船、医学、工业及家用电 器等方面用作测温、控温、温度补偿、流速测量、液 面指示等。
1、金属热电阻传感器
工业广泛使用,-200~+500℃范围温度测量。 在特殊情况下,测量的低温端可达3.4K,甚至更 低,1K左右。高温端可测到1000℃。 温度测量的特点:精度高、适于测低温。 传感器的测量电路:经常使用电桥, 精度较高的 是自动电桥。 为消除由于连接导线电阻随环境温度变化而造成 的测量误差,常采用三线制和四线制连接法。

热电偶温度传感器、热电阻温度传感器工作原理及特点

热电偶温度传感器、热电阻温度传感器工作原理及特点

-167~40℃ ±2.5℃
-200~-167℃ ±1.5%t
-67~40℃
±1℃

-200~
-67℃
±1.5%t
Φ0.3 700~ 800 Φ0.5 800~ 900 Φ0.8 1.0 900~ 1000 Φ1.2 1.6 1000~ 1100 Φ2.0 2.5 1100~ 1200 Φ3.2 1200~ 1300
□廉金属热电偶丝直径的标准形式(mm)
分度号 保护管
外径
单支式
K 1
20 6 2 . 3.2 5
N 1
20 6 2 . 3.2 5
E 1
20 6 2 . 3.2 0
J 1
20 6 2 . 3.2 5
T 20
3.2
1
1
1
1
双支式 . 2.5 . 2.5 . 2.0 . 2.5
2.5
2
2
2
2
热电偶热电阻保护管 □ 金属保护管材料及特性
□ 置入深度 ●热电偶最小置入深度 对陶瓷保护管而言,应不小于保护管直径的 10~15倍; 对金属及合金保护管,应大于保护管直径的 15~20倍。
□ 热电阻最小置入深度
lmin = ln+15D lmin—最小可用置入深度 ln — 感温元件长度 D — 保护管外径
□ 绝缘电阻
●装配式热电偶绝缘电阻
·适于远距离测量和控制。
·无需参考点。温度值可由测得的电阻值直接求
b、缺点
出。
·测量准确度难以超过0.2℃,
·输出线性好。只用简单的辅助回路就能得到线性
·必须有参考端,并且温度要保持恒定。
输出,显示仪表可均匀刻度。
·在高温或长期使用时,因受被测介质影响或 b、缺点

金属热电阻式传感器的工作原理

金属热电阻式传感器的工作原理

金属热电阻式传感器的工作原理
一、引言
在我们的日常生活中,温度的影响无处不在。

无论是季节的变换,还是烹饪美食,或是掌握工业过程的每一个环节,温度都是我们关注的重点。

为了更准确地测量和控制温度,我们引入了金属热电阻式传感器。

这是一种基于金属热电阻效应,能将温度变化转化为电信号的传感器。

那么,这种传感器是如何工作的呢?本文将深入探讨这一问题。

二、金属热电阻式传感器的原理
金属热电阻式传感器的工作原理基于金属热电阻效应。

简单来说,就是一些金属材料(如铂、镍)的电阻会随着温度的变化而变化。

这种特性使得金属热电阻式传感器能够精确地测量温度。

具体来说,当温度升高时,金属的原子振动加剧,阻碍电子的流动,从而增加电阻。

相反,当温度降低时,电阻减小。

这一特性为我们提供了一种测量温度的新方法。

三、金属热电阻式传感器的应用
金属热电阻式传感器因其精度高、稳定性好、响应时间快等优点,被广泛应用于各种领域。

比如在医疗领域,可以通过测量患者的体温,来监测其健康状况。

在工业生产中,可以用于控制各种化学反应的温度,保证产品质量。

四、结论
通过以上分析,我们可以看到金属热电阻式传感器的工作原理以及其在各个领域的应用。

这种传感器以其独特的优点,让我们对温度的测量和控制有了更精确的手段。

然而,随着科技的发展,我们还需要进一步探索和研究金属热电阻式传感器的性能优化和新应用领域。

例如,如何提高其响应速度、降低成本、增加稳定性以及适应更多环境下的测量等。

只有这样,我们才能更好地利用这种传感器为我们的生活和工作服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属热电阻式传感器的工作原理
金属热电阻式传感器是一种常见的温度传感器,它利用金属材料在温度变化时电阻值发生变化的特性来测量温度。

它通常用于工业控制系统、汽车工业、医疗设备、家用电器等领域。

本文将详细介绍金属热电阻式传感器的工作原理,包括其结构、工作原理、特点以及应用。

一、金属热电阻式传感器的结构
金属热电阻式传感器的结构通常由测温元件、导线和外壳组成。

1. 测温元件
测温元件是金属热电阻式传感器的核心部件,主要由金属丝(通常为铂、镍等)制成。

这些金属丝具有温度与电阻呈线性关系的特性,因此可以通过测量电阻的变化来确定温度的变化。

2. 导线
导线是将测温元件连接到测量仪表或控制系统的部分,通常由耐高温材料制成,以确保传感器能够正确传输温度信息。

3. 外壳
外壳是保护传感器内部结构的外部部分,通常由不锈钢或其他耐腐蚀材料制成,以确保传感器能够在恶劣的工作环境中正常工作。

二、金属热电阻式传感器的工作原理
金属热电阻式传感器利用金属材料在温度变化时电阻值发生变化的特性来测量温度。

其工作原理主要体现在热电阻效应和温度-电阻特性两个方面。

1. 热电阻效应
金属材料在温度变化时会引起自身电阻值的变化,这一现象称为热电阻效应。

具体来说,随着温度的升高,金属材料的电阻值会增加,反之则减小。

这种线性关系使得金属热电阻式传感器可以通过测量电阻的变化来确定温度的变化。

2. 温度-电阻特性
金属热电阻式传感器的工作原理还涉及到金属材料的温度-电阻特性。

不同金属的温度-电阻特性并不相同,因此在制造金属热电阻式传感器时,通常会选用具有良好温度-电
阻特性的金属材料,例如铂、镍等。

利用这些金属材料的特性,传感器可以实现对温度的准确测量。

综合上述两点,金属热电阻式传感器的工作原理可以总结为:利用金属材料在温度变化时电阻值发生变化的特性,通过测量电阻值来确定温度的变化。

这种工作原理使得金属热电阻式传感器能够实现对温度的准确测量,并在工业控制系统、汽车工业、医疗设备、家用电器等领域得到广泛应用。

三、金属热电阻式传感器的特点
金属热电阻式传感器具有以下几个特点:
1. 高精度:金属热电阻式传感器的温度-电阻特性较为稳定,能够实现对温度的高精度测量。

2. 耐高温:金属热电阻式传感器通常采用耐高温金属制成的测温元件和导线,能够在高温环境中正常工作。

3. 快速响应:金属热电阻式传感器对温度的变化能够实现较快的响应速度,适用于对温度变化敏感的应用领域。

4. 稳定性好:金属热电阻式传感器在长期使用过程中能够保持较好的稳定性,不易受外界因素影响。

综合以上特点,金属热电阻式传感器在温度测量领域具有较为突出的性能优势,因此得到了广泛的应用。

四、金属热电阻式传感器的应用
金属热电阻式传感器在工业控制系统、汽车工业、医疗设备、家用电器等领域得到了广泛的应用。

具体应用包括但不限于:
1. 工业控制系统:金属热电阻式传感器能够对工业设备中的温度进行准确监测,用于工业控制系统中的温度控制和报警。

2. 汽车工业:金属热电阻式传感器应用于汽车发动机、变速器等部位的温度监测,以确保汽车的正常工作状态。

3. 医疗设备:金属热电阻式传感器在医疗设备中用于体温、液体温度等的测量,保障医疗设备的安全和准确性。

4. 家用电器:金属热电阻式传感器被应用于家用电器中,例如热水器、空调等,用于实现对温度的准确控制。

金属热电阻式传感器在各个领域都发挥着重要的作用,其准确性、稳定性及耐高温的
特点使其成为温度测量领域中不可或缺的一部分。

五、结语
金属热电阻式传感器是一种基于金属材料在温度变化时电阻值发生变化的特性来测量
温度的传感器,具有高精度、耐高温、快速响应、稳定性好等特点,因此在工业控制系统、汽车工业、医疗设备、家用电器等领域得到广泛应用。

通过本文的介绍,相信读者能对金
属热电阻式传感器的工作原理有所了解,并对其在各个领域的应用有更深入的认识。

相关文档
最新文档