支持向量回归机讲义.
支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例

支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法2)关于KKT条件2、范数1)向量的范数2)矩阵的范数3)L0、L1与L2范数、核范数二、SVM概述1、简介2、SVM算法原理1)线性支持向量机2)非线性支持向量机二、SVR:SVM的改进、解决回归拟合问题三、多分类的SVM1. one-against-all2. one-against-one四、QP(二次规划)求解五、SVM的MATLAB实现:Libsvm1、Libsvm工具箱使用说明2、重要函数:3、示例支持向量机(SVM):原理及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法首先来了解拉格朗日乘子法,为什么需要拉格朗日乘子法呢?记住,有需要拉格朗日乘子法的地方,必然是一个组合优化问题。
那么带约束的优化问题很好说,就比如说下面这个:这是一个带等式约束的优化问题,有目标值,有约束条件。
那么你可以想想,假设没有约束条件这个问题是怎么求解的呢?是不是直接 f 对各个 x 求导等于 0,解 x 就可以了,可以看到没有约束的话,求导为0,那么各个x均为0吧,这样f=0了,最小。
但是x都为0不满足约束条件呀,那么问题就来了。
有了约束不能直接求导,那么如果把约束去掉不就可以了吗?怎么去掉呢?这才需要拉格朗日方法。
既然是等式约束,那么我们把这个约束乘一个系数加到目标函数中去,这样就相当于既考虑了原目标函数,也考虑了约束条件。
现在这个优化目标函数就没有约束条件了吧,既然如此,求法就简单了,分别对x求导等于0,如下:把它在带到约束条件中去,可以看到,2个变量两个等式,可以求解,最终可以得到,这样再带回去求x就可以了。
那么一个带等式约束的优化问题就通过拉格朗日乘子法完美的解决了。
更高一层的,带有不等式的约束问题怎么办?那么就需要用更一般化的拉格朗日乘子法,即KKT条件,来解决这种问题了。
支持向量机原理SVMPPT课件

回归分析
除了分类问题,SVM也可以用于 回归分析,如预测股票价格、预 测天气等。通过训练模型,SVM
能够预测未知数据的输出值。
数据降维
SVM还可以用于数据降维,通过 找到数据的低维表示,降低数据
的复杂性,便于分析和理解。
02 支持向量机的基本原理
线性可分与不可分数据
线性可分数据
在二维空间中,如果存在一条直线, 使得该直线能够将两类样本完全分开 ,则称这些数据为线性可分数据。
支持向量机原理 svmppt课件
目录
CONTENTS
• 引言 • 支持向量机的基本原理 • 支持向量机的数学模型 • 支持向量机的优化问题 • 支持向量机的核函数 • 支持向量机的训练和预测 • 支持向量机的应用案例 • 总结与展望
01 引言
什么是支持向量机
定义
支持向量机(Support Vector Machine,简称SVM)是一种监督学习算法, 用于分类和回归分析。它通过找到一个超平面来分隔数据集,使得分隔后的两 类数据点到该平面的距离最远。
支持向量机的优势和局限性
01
对大规模数据集效 率较低
对于大规模数据集,支持向量机 可能需要较长时间进行训练和预 测。
02
核函数选择和参数 调整
核函数的选择和参数调整对支持 向量机的性能有很大影响,需要 仔细选择和调整。
03
对多分类问题处理 不够灵活
对于多分类问题,支持向量机通 常需要采用一对一或一对多的策 略进行处理,可能不够灵活。
图像识别
• 总结词:支持向量机用于图像识别,通过对图像特征的提取和分类,实现图像 的自动识别和分类。
• 详细描述:支持向量机在图像识别中发挥了重要作用,通过对图像特征的提取 和选择,将图像数据映射到高维空间,然后利用分类器将相似的图像归为同一 类别,不相似图像归为不同类别。
支持向量机 回归方法定义

支持向量机(SVM)回归方法定义==================1. 引言----支持向量机(Support Vector Machine, SVM)是一种强大的机器学习算法,可以用于分类和回归问题。
其中,支持向量回归(Support Vector Regression, SVR)是一种用于回归问题的变种。
本文档将详细介绍支持向量回归的定义、模型训练、模型优化、预测与评估及其应用案例。
2. 支持向量机基础----------支持向量机是一种基于统计学习理论的二分类器,其基本模型是定义在特征空间上的间隔最大的线性分类器。
间隔最大使得它有别于感知机,等价于求解一个带约束的凸二次规划问题。
也可以扩展到多分类问题,通过“铰链损失”函数引入一个松弛变量,将二分类问题转化为求解多个二分类器的带约束凸二次规划问题。
3. 支持向量回归----------支持向量回归(SVR)是一种用于回归问题的支持向量机。
与支持向量机不同,支持向量回归的目标是找到一个函数,使得对于给定的输入x,可以预测对应的输出y。
在支持向量回归中,我们通过使用核函数(kernel function)来定义输入空间中的点积,从而在更高维的空间中构建一个超平面,以实现回归目标。
4. 模型训练-------在支持向量回归中,模型训练的过程包括以下步骤:* 数据预处理:对输入数据进行标准化处理,以消除数据间的尺度差异。
* 构建核函数:选择一个核函数,用于定义输入空间中的点积。
常见的核函数包括线性核、多项式核和RBF核等。
* 构建超平面:根据核函数构建超平面,以实现回归目标。
超平面的构建是通过求解一个带约束的凸二次规划问题来实现的。
* 计算间隔:计算超平面与最近的数据点之间的间隔,这个间隔被称为软间隔(soft margin)。
5. 模型优化-------为了提高支持向量回归的性能,可以进行一些模型优化。
以下是一些常用的模型优化方法:* 调整核函数参数:通过调整核函数的参数,可以改变超平面的形状和大小,从而优化模型的性能。
支持向量机回归算法

支持向量机回归算法一、概述支持向量机(Support Vector Machine,SVM)是一种基于拉格朗日乘子法(Lagrange multiplier)的最优化算法,它的主要用途是便携式机器学习。
SVM是一种二类分类的形式,通过构建支持向量来实现分类,它最终的目的是找到一条最佳的分类边界,从而使分类准确率最高。
SVM具有优越的特点,它能够自动做出对高维数据的建模,将复杂的高维数据映射到低维特征空间中,并在该空间中形成最佳分类边界,从而较好地拟合数据。
SVM利用结构风险最小化(Structure Risk Minimization,SRM)算法,它对异常数据有较好的抗干扰能力,从而可以获得比传统算法更好的准确率和稳定性。
二、支持向量机回归算法支持向量机回归算法(Support Vector Machine Regression,SVR)是一种基于支持向量机(SVM)的回归算法,它利用SVM模型和核函数来拟合定量数据。
它和传统的线性回归不同,它基于SRM算法,而不是最小均方差的算法。
支持向量机回归算法的工作原理如下:1、首先,根据给定的定量数据,建立关于支持向量机的模型,使其最大化拟合该定量数据;2、然后,根据给定的核函数对支持向量机模型进行参数优化,以获得最佳拟合曲线;3、最后,对拟合曲线的残差进行分析,从而估计出模型中的参数值。
支持向量机回归算法与常规线性回归不同,它能够从高维度数据中抽取有用的信息,从而有效地拟合数据,使其趋于稳定,而且不会受到异常值影响较大。
三、优点1、支持向量机回归具有优越的特点:(1)利用结构风险最小化(SRM)算法,对异常数据有较强的抗干扰能力;(2)自动做出对高维数据的建模,将复杂的高维数据映射到低维特征空间中,并形成最佳分类边界,从而较好地拟合数据;(3)能够反映较多定量数据的相关性;(4)运算简便,速度快,具有较强的收敛性;(5)能够有效地提高预测的准确率。
机器学习技术中的回归问题与支持向量机算法

机器学习技术中的回归问题与支持向量机算法在机器学习领域,回归问题是一类重要而常见的问题。
回归问题的目标是建立一个函数模型,用于预测一个或多个连续的因变量。
在回归问题中,支持向量机(Support Vector Machine,SVM)算法是一种常用且有效的方法。
本文将介绍回归问题的基本概念和支持向量机算法的原理与应用。
首先,回归问题的特点是需要预测的因变量是连续的。
这与分类问题不同,分类问题需要将样本分为离散的类别。
回归问题可以分为线性回归和非线性回归两种类型。
线性回归是指因变量与自变量之间存在线性关系的情况,而非线性回归则涉及到更复杂的因变量与自变量之间的关系。
回归问题的目标是找到一条或多条曲线或者超平面,能够最好地拟合样本数据,从而实现对未知数据的预测。
支持向量机是一种非常强大的机器学习算法,被广泛用于分类和回归问题。
支持向量机的基本思想是通过在特征空间中找到一个最优的超平面,将不同类别的样本分开,实现分类或者回归的目标。
支持向量机的优势在于其对于高维空间和非线性问题的处理能力。
在支持向量机回归中,我们首先将样本数据转换到高维空间。
然后,我们希望通过选取最优的超平面,使得样本点到这个超平面的距离最小,并且预测的结果与真实值的误差最小。
超平面的选择依赖于支持向量,即与超平面最近的一些样本点。
这些支持向量决定了超平面的位置和方向,进而影响预测结果。
支持向量机通过最大化间隔来选择最佳的超平面,从而降低模型的复杂度和预测误差。
支持向量机回归的关键在于选择合适的核函数。
核函数的作用是将原始的样本数据映射到高维空间,从而使得样本在高维空间中容易分开。
常用的核函数包括线性核、多项式核、径向基函数(Radial Basis Function,RBF)等。
选择合适的核函数需要根据数据的特点和问题的需求进行调整。
支持向量机回归的一个重要应用是房价预测。
通过收集各种与房价相关的特征,如卧室数量、浴室数量、房屋面积等,可以建立一个回归模型,通过支持向量机算法预测房屋的价格。
如何使用支持向量机进行回归分析(七)

支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,主要用于分类问题,但它也可以用于回归分析。
在本文中,将介绍如何使用支持向量机进行回归分析。
**数据准备**在使用支持向量机进行回归分析之前,首先需要准备数据。
假设我们有一组数据集,包括自变量X和因变量y。
这些数据可以来自各种不同的领域,比如金融、医学、工程等。
在准备数据时,需要确保数据的质量,包括缺失值处理、异常值处理等。
**支持向量机回归模型**支持向量机回归模型与分类模型类似,但是它的目标是拟合一个函数,该函数能够最大化数据点与拟合函数之间的间隔。
在回归分析中,我们的目标是找到一个函数,能够最好地拟合数据点,从而预测因变量y的取值。
支持向量机回归模型的核心在于确定支持向量,这些支持向量是在拟合函数中起决定性作用的数据点。
**选择核函数**在支持向量机回归中,核函数的选择非常重要。
核函数可以将输入空间映射到高维空间,从而使得数据在高维空间中线性可分。
常用的核函数包括线性核、多项式核和高斯核。
在选择核函数时,需要考虑数据的特点和问题的复杂度。
如果数据是线性可分的,则可以选择线性核函数;如果数据的分布比较复杂,则可以选择多项式核或高斯核函数。
**模型训练**一旦选择了核函数,就可以开始训练支持向量机回归模型。
在训练模型时,需要调节模型的超参数,比如正则化参数C和核函数的参数。
这些超参数的选择会影响模型的性能和泛化能力。
通常可以使用交叉验证的方法来选择最优的超参数组合。
**模型评估**在训练完模型之后,需要对模型进行评估。
常用的评估指标包括均方误差(Mean Squared Error,MSE)、均方根误差(Root Mean Squared Error,RMSE)和决定系数(Coefficient of Determination,R-squared)。
这些指标可以帮助我们了解模型的预测能力和拟合程度。
**模型优化**如果模型的表现不理想,可以尝试进行模型优化。
支持向量机支持向量机回归原理简述及其MATLAB实例

支持向量机支持向量机回归原理简述及其MATLAB实例支持向量机 (Support Vector Machine, SVM) 是一种在监督学习中应用广泛的机器学习算法。
它既可以用于分类问题(SVM),又可以用于回归问题(SVR)。
本文将分别简要介绍 SVM 和 SVR 的原理,并提供MATLAB 实例来展示其应用。
SVM的核心思想是找到一个最优的超平面,使得正样本和负样本之间的间隔最大化,同时保证误分类的样本最少。
这个最优化问题可以转化为一个凸二次规划问题进行求解。
具体的求解方法是通过拉格朗日乘子法,将约束优化问题转化为一个拉格朗日函数的无约束极小化问题,并使用庞加莱对偶性将原问题转化为对偶问题,最终求解出法向量和偏差项。
SVR的目标是找到一个回归函数f(x),使得预测值f(x)和实际值y之间的损失函数最小化。
常用的损失函数包括平方损失函数、绝对损失函数等。
与SVM类似,SVR也可以使用核函数将问题转化为非线性回归问题。
MATLAB实例:下面以一个简单的数据集为例,展示如何使用MATLAB实现SVM和SVR。
1.SVM实例:假设我们有一个二分类问题,数据集包含两个特征和两类样本。
首先加载数据集,划分数据集为训练集和测试集。
```matlabload fisheririsX = meas(51:end, 1:2);Y=(1:100)';Y(1:50)=-1;Y(51:100)=1;randn('seed', 1);I = randperm(100);X=X(I,:);Y=Y(I);X_train = X(1:80, :);Y_train = Y(1:80, :);X_test = X(81:end, :);Y_test = Y(81:end, :);```然后,使用 fitcsvm 函数来训练 SVM 模型,并用 predict 函数来进行预测。
```matlabSVMModel = fitcsvm(X_train, Y_train);Y_predict = predict(SVMModel, X_test);```最后,可以计算分类准确度来评估模型的性能。
支持向量回归原理

支持向量回归原理
支持向量回归(Support Vector Regression,简称SVR)是一种基于支持向量机(Support Vector Machine,简称SVM)的回归算法。
SVR的目标是找到一个超平面,使得该超平面和训练数据之间的间隔最大。
SVR的核心思想是通过对训练样本进行非线性映射,将原始的输入空间映射到一个高维的特征空间。
在特征空间中,SVR 通过寻找一个最优的超平面来拟合训练数据。
最优的超平面应该满足两个条件:一是和训练数据之间的间隔最大,二是和训练数据的损失最小。
SVR通过引入一个松弛变量来允许训练样本与超平面之间存在一定的误差。
同时,SVR采用了惩罚项的概念,即通过设置一个较大的误差容忍度来限制超平面的泛化能力,防止过拟合。
SVR的求解过程可以转化为一个凸优化问题。
可以通过构建拉格朗日函数,将原始问题转化为等价的对偶问题,再通过优化算法求解对偶问题。
求解对偶问题得到的最优解即为SVR 的权重向量和偏置项。
SVR可以通过选择不同的核函数来实现非线性映射。
常用的核函数有线性核、多项式核、高斯核等。
通过调节核函数的参数,可以灵活地调整SVR的拟合能力。
SVR具有较好的泛化能力和鲁棒性,对于小样本、高维数据
以及存在噪声的数据具有较好的适应能力。
它在机器学习和统计学中得到了广泛的应用,特别是在回归问题中取得了良好的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
支持向量回归机模型
原问题
min R( w) 1/ 2( w w) s.t. (( w x ) b) y 0 i i yi (( w xi ) b) 0 i 1, 2, L , n
ai (ai* 0) 至上述优化问题中,可得到拉格朗日函数:
支持向量回归机模型
线性可分
y wT x b
支 持向量回归机实在研究二分类问题的基础上提出的。假定在线性可分训练集中, 存在一超平面:
y ( w x) b
实现拟合,那么它就将训练样本分为两类: yi (w xi ) b 0 的训练样本和yi (w xi ) b 0 的训练样本。若上述的超平面是实现这两类训练样本的最大间隔建立的平面,该超平 面就可用于解决回归问题,它也就是要寻找的支持向量回归机。可以将其简化为最小 化一个带线性不等式约束的二次函数凸规划问题: 设存在如下一个训练样本集,且线性可分: S ( y1 , x1 ),L ,(yn , xn ) 可以转化为求解下列优化问题:
支持向量回归机 ——SVR
汇 报 人: 陈 瑞 指导老师:张 宪 霞老师 日 期: 2016-1-11
目录
CONTENTS
01 支持向量机与支持向量回归机 02 03 支持向量回归机模型 支持向量回归机算法
04
总结
支持向量机与支持向量 回归机
支持向量机(SVM) 是建立在统计学习理论的VC维理论和结构风险最小原理 基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习
n
引入拉格朗日乘子
L(w, b, a) 1/ 2( w w) (ai ai* ) yi ((w xi ) b)
i 1
对偶问题
max (a) s.t.a 0
n n (a) inf 1/ 2(w w) ai yi ((w xi ) b) ai* ((w xi ) b) yi | w D i 1 i 1
1 l max (a ) ( ai a ) yi (ai ai* )(a j a* j )( xi x j ) 2 i , j 1 i 1
* i
l
Hale Waihona Puke (ai ai* )i 1 l
l
s.t . ( ai ai* ) 0
i 1
0 ai , ai* C, i 1L l
min R ( w) 1 / 2( w w) s.t.(( w x ) b) y i i yi (( w xi ) b) i 1, 2, L , l
对偶
l l 1 l * * * max (a) (ai ai ) yi 2 (ai ai )(a j a j )( xi x j ) ( i 1 i , j 1 i 1 l s.t . (ai ai* ) 0 i 1 * ai , ai 0, i 1L l
精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,
以期获得最好的推广能力(或称泛化能力)。
02
经验风险代表了分类器 在给定样本上的误差.
03
经验 风险 置信 风险
01
VC维 理论
代表了我们在多大程度 上可以信任分类器在未 知文本上分类的结果.
可以简单的理解为问题 的复杂程度,VC维越高, 问题就越复杂.
都要通过训练样本找到一个函数g(x)
支持向量机与支持向量 回归机
* 回归问题就是给定一个新的模式,根据训练集推断它所对应的输出y(实 数)是多少。也就是使用y=g(x)来推断任一输入x所对应的输出值。分类问 题是给定一个新的模式,根据训练集推断它所对应的类别(如:+1,-1)。 也就是使用y=sign(g(x))来推断任一输入x所对应的类别。
i 1 n
y (ai ai* ) K ( xi , x) b
i 1
k
k代表支持向 量的个数
常用核函数
C SVR 、 V SVR . 常用的支持向量回归机算法包括 硬 SVR 、
支持向量回归机算法
线性硬
SVR
在回归问题中,理想状态 : yi f ( xi ) 0 事实上几乎不可能存在一个描述黑 箱的函数 f ( x) 能够在理想情况下实现,通常,允许存在一个小的正数 , 使 yi f ( xi ) ,则认为回归是无损的。
ii 0, i*i* 0
L C ai* i* 0 * i
由上式可知 ai ai* 0 ,且不同时为 0 ,且可得到下列式子:
i (C -ai ) 0 * * i (C -ai ) 0
支持向量回归机算法
* i yi f ( xi ) 0 或 i* yi f ( xi ) 0 ,即 yi f ( xi ) I. 当 ai Corai C , 对应 xi 为边界支持向量(BSV),管道外的向量。
支持向量机与支持向量 回归机
小样本
并不是说样本的绝对数量少,而是说与问题的复杂 度比起来,SVM算法要求的样本数是相对比较少 的。 SVM擅长应付样本数据线性不可分的情况,主要 通过松弛变量(也有人叫惩罚变量)和核函数技术 来实现,这一部分是SVM的精髓。 指样本维数很高,SVM可以处理高维向量,因为 SVM 产生的分类器很简洁,用到的样本信息很少 (仅仅用到那些称之为“支持向量”的样本)。
根据带有不等式约束的极值问题的KKT条件:
R ( w)
n L( w, b, a) w (ai ai* ) xi 0 w i 1 L( w, b, a) n (ai ai* ) 0 b i 1
w可看做是样本向 量的线性组合
支持向量回归机模型
n 1 n * * (a ) (ai ai )(a j a j )( xi x j ) (ai ai* ) yi 2 i , j 1 i 1
支持向量回归机算法
非线性情形下,可引入核函数,进而对偶问题可化为:
max ( a ) ( ai ai* ) yi
i 1 l
1 l ( ai ai* )(a j a* j ) K ( xi , x j ) 2 i , j 1
(ai ai* )
i 1 l
支持向量回归机算法
L 1/ 2( w w) C (i ) ai (i yi f ( xi ))
i 1 * i i 1 l l
构造Lagrange函数
a (i yi f ( xi )) ( ii i*i* )
i 1
n
支持向量回归机模型
线性不可分
对于低维输入空间中非线性可分训练样本,是通过核函数将其映射 到高维空间中使其线性可分: 引入核函数 K ( xi , x j ) ( ( xi ) ( x j )) 接受低维度
1 n max (a) (ai a ) yi (ai ai* )(a j a* j ) K ( xi , x j ) 2 i 1 i , j 1
* i n
输入值,产 生高维度内 积值
s.t . (ai ai* ) 0 ai , a 0, i 1, 2, L n
i 1 * i
n
支持向量回归机模型
*
对该问题进行求解,解得 ai , ai 不同时为 0 时对应的向量为支持向 量,从而得到非线性可分训练样本的SVR模型:
b y j (ai ai* ) K ( xi , x j )
引入松弛变量 (1, 1* ,L , l , l* ) 和惩罚参数C,将硬 SVR 软化。
原问题
对偶问题
l
* min R( w) 1/ 2( w w) C (i i ) i 1 * s.t.(( w xi ) b) yi i y (( w x ) b) i i i * i , i , 0, i 1, 2, L , l
i 1 * i i 1
l
l
由带有不等式约束极值问题的KKT条件(必要条件),可知:
l L w ( ai ai* ) xi 0 w i 1 l L ( ai* ai ) 0 b i 1 L C ai i 0 i
ai ( i yi f ( xi )) 0 ai* ( i* yi f ( xi )) 0
l
s.t . ( ai ai* ) 0
i 1
0 ai , ai* C, i 1L l
求解得 ai , ai ,对于 ai 0 或 ai* 0 对应的向量为支持向量。
*
支持向量回归机算法
给定样本集
选择合适的精度
K (x , x ) 、C、
i j
求解对偶化最优问题 选择 ai 0,计算 b y j (w x j )
* * yi f ( xi ) 0 或 yi f ( xi ) 0 ,即 II. 当 ai orai (0,C) ,可知 ii 0, yi f ( xi ) , 对应 xi 为标准支持向量(NSV),管道上的向量。
III. 即
* * 当 ai 0andai* 0 ,可知 ii 0 , i yi f ( xi ) 0 或 i yi f ( xi ) 0 yi f ( xi ) ,对应 xi 为非支持向量,管道内的向量。
(ai ai* )(a j a* j )( xi x j )