最新-新课标人教版A高二数学选修(2-3)21测试题 精品
高中数学:空间向量与立体几何单元测试新课标人教A版选修21

AA 1DCBB 1C 1五河二中高二数学测试卷(理科)一、选择题:1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( )A .0B .1C .2D .32.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( )A .627B .637C .647D .6573.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =( )A .a +b -cB .a -b +cC .-a +b +cD .-a +b -c4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为A .30°B .45°C .60°D .以上都不对5. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .4D .56.已知的数量积等于与则b a k j i b k j i a 35,2,23+-=-+=( )A .-15B .-5C .-3D .-17.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°8.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21C .178D .239.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030B .21C .1530D .101510.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离( ) A .515 B .55 C .552 D .10511.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42B .a 82C .a 423 D .a 2212.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33C .332 D .23 选择题答题框题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题:13.在空间直角坐标系O xyz -中,点P(2,3,4)在平面xOy 内的射影的坐标为 ;14.设|m |=1,|n |=2,2m +n 与m -3n 垂直,a =4m -n ,b =7m +2n , 则<a ,b >= . 15.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面D B EF 的距离 .16.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线A E 与平面AB C 1D 1所成角的正弦值 .三、解答题:17.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)求:⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a|=3,求向量a 的坐标。
高中新课标数学选修(2-2)综合测试题(4)

高中新课标数学选修(2-2)综合测试题一、选择题1、函数2x y =在区间]2,1[上的平均变化率为( ) (A )2 (B )3 (B )4 (D )52曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )(A )38 (B )37 (C )35(D )343、已知直线kx y =是x y ln =的切线,则k 的值为( ) (A )e1 (B )e1-(C )e2 (D )e2-4、设ai b bi a ++,,1是一等比数列的连续三项,则b a ,的值分别为( )(A )21,23±=±=b a (B )23,21=-=b a(C )21,23=±=b a (D )23,21-=-=b a5、方程)(04)4(2R a ai x i x ∈=++++有实根b ,且bi a z +=,则=z ( )(A )i 22- (B )i 22+(C )i 22+- (D )i 22--6、已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=rc b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R 。
类比三角形的面积可得四面体的体积为( )(A )R s s s s V )(214321+++= (B )Rs s s s V )(314321+++=(C )Rs s s s V )(414321+++= (D )R s s s s V )(4321+++=7、数列 ,4,4,4,4,3,3,3,2,2,1的第50项是( )(A )8 (B )9 (C )10 (D )118、在证明12)(+=x x f 为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数12)(+=x x f 满足增函数的定义是小前提;④函数12)(+=x x f 满足增函数的定义是大前提;其中正确的命题是( )(A )①② (B )②④ (C )①③ (D )②③9、若R b a ∈,,则复数i b b a a )62()54(22-+-++-表示的点在( ) (A )在第一象限 (B )在第二象限(C )在第三象限 (D )在第四象限 10、用数学归纳法证明不等式“)2(2413212111>>+++++n nn n ”时的过程中,由k n =到1+=k n 时,不等式的左边( )(A )增加了一项)1(21+k(B )增加了两项)1(21121+++k k(C )增加了两项)1(21121+++k k ,又减少了11+k ;(D )增加了一项)1(21+k ,又减少了一项11+k ;11、如图是函数d cx bx x x f +++=23)(的大致 图象,则2221x x +等于( ) (A )32 (B )34 (C )38 (D )31212、对于函数233)(x x x f -=,给出下列四个命题:①)(x f 是增函数,无极值;②)(x f 是减函数,有极值;③)(x f 在区间]0,(-∞及),2[+∞上是增函数;④)(x f 有极大值为0,极小值4-;其中正确命题的个数为( )(A )1 (B )2(C )3 (D )4班级: 姓名:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为:14、若i z 311-=,i z 862-=,且21111z z z =+,则z 的值为 ;15、用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .16、物体A 的运动速度v 与时间t 之间的关系为12-=t v (v 的单位是s m /,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为t v 81+=,两个物体在相距为405m 的同一直线上同时相向运动。
郑 2-2、2-3测试题(含答案)

高二数学选修2-2、2-3测试题参考数据: P (χ2≥x 0)0.500.400.250.150.100.050.025 0.010 0.0050.001x 00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828一、选择题:(本大题共8小题,每小题5分,共40分) 1.已知f(x)=22x x +,则'(0)f =( )A . 0B . -4C . -2D . 2 2.如果复数(2m +i)(1+mi)是实数,则实数m=( ) A . 1 B . -1 C .2 D . -23. 某科研机构为了研究中年人秃发与心脏病的是否有关,随机调查了一些中年人情况,具体数据如下表:根据表中数据得到45532075025)300545020(7752⨯⨯⨯⨯-⨯⨯=k ≈15.968 因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为 .A 、0.1B 、0.05C 、0.01D 、0.001 4.曲线y=2x 与直线y-x-2=0围成图形的面积是( ) A .133 B . 136 C . 73 D . 925.在一个盒子中有大小一样的20个球,其中10个红球,10个白球,则在第一个人摸出1个红球的条件下,第二个人摸出1个白球的概率为( )A. 1019B. 519 C . 12 D. 19206.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是( ) A . 甲科总体的标准差最小 B . 乙科总体的标准差及平均数都居中 C . 丙科总体的平均数最小 D . 甲、乙、丙的总体的平均数不相同7. 从图中的9个顶点中任取3个点作为一组,其中可构成三角形的组数是( ) A .88 B .84 C .80 D .76第7题图 第6题图 8. 若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( )A .32个B .27个C .81个D .64个9.在一次试验中,测得()x y ,的四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间的回归直线方程为( A ) A. 1y x =+B. 2y x =+ C.21y x =+D. 1y x =-10、某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.83D.4311、若函数3()3f x x x =-在区间2(12,)a a -上有最小值,则实数a 的取值范围是( ) A .(1,11)-B .(1,4)-C .(1,2]-D .(1,2)-12.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是701.根据这位负责人的话可以推断出参加面试的人数为( ) A .21B .35C .42D .70二、填空题:(本大题共6小题,每小题5分,共30分)13.定义运算a c b d =ad-bc ,若复数x 满足 22xi 32i-=2x ,则x= . 14.已知函数f(x)=32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是15.若(2x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 5+a 3+a 1=_____1094 ________.16. 为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem ),其加密、解密原理如下图: 现在加密密钥为)2(log +=x y a ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为 .心脏病 无心脏病 秃发 20 300 不秃发5450甲乙丙 解密密钥密码 加密密钥密码 明文 密文 密文 发送明文试题答题卡一、选择题:二、填空题:13.,14. ,15. , 16. ,三、解答题。
(必考题)高中数学高中数学选修2-3第三章《统计案例》检测(含答案解析)

一、选择题1.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e2.已知两个统计案例如下:①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是( ) A .①回归分析,②取平均值 B .①独立性检验,②回归分析 C .①回归分析,②独立性检验D .①独立性检验,②取平均值3.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:2()P K k≥0.0500.0250.0100.0050.001k 3.841 5.024 6.6357.87910.828由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是() A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关5.某中学共有5000人,其中男生3500人,女生1500人,为了了解该校学生每周平均体育锻炼时间的情况以及该校学生每周平均体育锻炼时间是否与性别有关,现在用分层抽样的方法从中收集300位学生每周平均体育锻炼时间的样本数据(单位:小时),其频率分布直方图如下:附:22()=()()()()n ad bcKa cb d a d b c-++++,其中n a b c d=+++.2()P K k≥0.100.050.010.005k 2.706 3.841 6.6357.879已知在样本数据中,有60位女生的每周平均体育锻炼时间超过4小时,根据独立性检验原理,我们()A.没有理由认为“该校学生每周平均体育锻炼时间与性别有关”B.有95%的把握认为“该校学生每周平均体育锻炼时间与性别有关”C.有95%的把握认为“该校学生每周平均体育锻炼时间与性别无关”D .有99.5%的把握认为“该校学生每周平均体育锻炼时间与性别有关”6.通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:做不到“光盘” 能做到“光盘” 男 45 10 女3015则有( )以上的把握认为“该市民能否做到‘光盘’与性别有关”,附表及公式()20P K k ≥0.100 0.050 0.010 0.001 0k 2.7063.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++A .90%B .95%C .99%D .99.9%7.为了普及环保知识,增强环保意识,随机抽取某大学30名学生参加环保知识测试,得分如图所示,若得分的中位数为m e ,众数为m 0,平均数为x -,则( )A .m e =m 0=x -B .m 0<x -<m e C .m e <m 0<x -D .m 0<m e <x -8.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:心脏病 无心脏病 秃发 20 300 不秃发5450根据表中数据得到()277520450530015.96820750320455k ⨯⨯-⨯=≈⨯⨯⨯,因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为( ) A .0.1B .0.05C .0.01D .0.0019.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ>4)=12;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是()A.①④B.②③C.①③D.②④10.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差 B.回归分析C.独立性检验 D.概率11.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由()()()()()22n ad bcka b c d a c b d-=++++并参照附表,得到的正确结论是A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”12.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K=,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是()2()P K k≥…0.250.150.100.0250.0100.005…k… 1.323 2.072 2.706 5.024 6.6357.879…A.90%B.95%C.97.5%D.99.5%二、填空题13.给出下列结论:①在回归分析中,可用相关指数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;②某工厂加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量;③随机变量的方差和标准差都反映了随机变量的取值偏离均值的平均程度,它们越小,则随机变量偏离均值的平均程度越小;④甲、乙两人向同一目标同时射击一次,事件A:“甲、乙中至少一人击中目标”与事件B:“甲、乙都没有击中目标”是相互独立事件.其中结论正确的是______.14.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关,随机调查了观看该节目的观众110名,得到如下的2×2列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”.参考附表:(参考公式:K2=()()()()()2n ad bca b c d a c b d-++++,其中n=a+b+c+d)15.某市电信宽带私人用户月收费标准如下表:假定每月初可以和电信部门约定上网方案.若某用户每月上网时间为66小时,应选择__________方案最合算.16.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量y与月份x 之间有较好的线性相关关系,其线性回归方程是=﹣0.7x+,则= . 月 份x 1 2 3 4 用水量y4.5432.517.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到22⨯列联表:喜欢 不喜欢 总计 男 15 10 25 女520 25 总计 203050(参考公式22()()()()()n ad bc k a b c d a c b d -=++++,()n a b c d =+++)20()P K k ≥ 0.010 0.005 0.0010k 6.635 7.879 10.828则有___________以上的把握认为“喜欢足球与性别有关”.18.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:理科 文科 总计 男 13 10 23 女 7 20 27 总计203050已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到≈4.844,则认为选修文理科与性别有关系出错的可能性约为________. 19.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,1,1,3b x y ===则1a =.正确的序号是________________.20.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.三、解答题21.为研究男、女生的身高差异,现随机从高三某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米): 男:173 178 174 185 170 169 167 164 161 170 女:165 166 156 170 163 162 158 153 169 172(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值;(2)请根据测量结果得到20名学生身高的中位数h (单位:厘米),将男、女生身高不低于h 和低于h 的人数填入下表中,并判断是否有90%的把握认为男、女生身高有差异? 人数 男生 女生身高h ≥ 身高h <参照公式:()()()()()22n ad bc k a b c d a c b d -=++++()20P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828175厘米为偏高.采用分层抽样的方法从以上男生中抽取5人作为样本.若从样本中任取2人,试求恰有1人身高属于正常的概率.22.某实验学校为提高学习效率,开展学习方式创新活动,提出了完成某项学习任务的两种新的学习方式.为比较两种学习方式的效率,选取40名学生,将他们随机分成两组,每组20人,第一组学生用第一种学习方式,第二组学生用第二种学习方式.40名学生完成学习任务所需时间的中位数40min m =,并将完成学习任务所需时间超过min m 和不超过min m 的学生人数得到下面的列联表:(Ⅰ)估计第一种学习方式且不超过m 的概率、第二种学习方式且不超过m 的概率; (Ⅱ)能否有99%的把握认为两种学习方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,23.某科研小组为了验证一种治疗新冠肺炎的新药的效果,选60名患者服药一段时间后,记录了这些患者的生理指标x 和y 的数据,并统计得到如下的22⨯列联表(不完整):在生理指标 1.8x >的人中,设A 组为生理指标65y ≤的人,B 组为生理指标65y >的人,将他们服用这种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16,17,19. B 组:12,13,14,15,16,17,20,21,25.(1)填写上表,并判断是否有95%95%的把握认为患者的两项生理指标x 和y 有关系; (2)从A ,B 两组人中随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙,求乙的康复时间比甲的康复时间长的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k0.2524.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.25.某足球运动员进行射门训练,若打进球门算成功,否则算失败.已知某天该球员射门成功次数与射门距离的统计数据如下:(1)请问是否有90%的把握认为该球员射门成功与射门距离是否超过30米有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++.(2)当该球员距离球门30米射门时,设射门角(射门点与球场底线中点的连线和底线所成的锐角或直角)为([0,])2πθθ∈,其射门成功率为2+3()cos sin 4f θθθθθ=+⋅-,求该球员射门成功率最高时射门角θ的值.26.已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:(1)根据上表中的数据,建立y 关于x 的线性回归方程y bx a =+(用分数表示); (2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?参考公式:()()()1122211nniii i i i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e=.故选:B.【点睛】本题考查非线性回归问题的转化,是基础题.2.B解析:B【分析】根据独立性检验和回归分析的概念,即可作出判定,得到答案.【详解】由题意,独立性检验通常是研究两个分类变量之间是否有关系,所以①采用独立性检验,回归分析通常是研究两个具有相关关系的变量的相关程度,②采用回归分析,综上可知①是独立性检验,②是回归分析,故选B.【点睛】本题主要考查了独立性检验和回归分析的概念及其判定,其中解答中熟记独立性检验和回归分析的概念是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.D解析:D【解析】【分析】根据公式()()()()()22n ad bcKa b c d a c b d-=++++,分别利用4个选项中所给数据求出2K的值,比较所求值的大小即可得结果.【详解】选项A:22160(535155)3204010502K⨯⨯-⨯==⨯⨯⨯,选项B:22260(5251515)152040204016K⨯⨯-⨯==⨯⨯⨯,选项C:22360(5201520)24204025357K⨯⨯-⨯==⨯⨯⨯,选项D:22 460(5101530)96 204035257K⨯⨯-⨯==⨯⨯⨯,可得222431K K K>>22K>,所以由选项D中的数据得到的2K值最大,说明X与Y有关系的可能性最大,故选D.【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2K越大两个变量有关的可能性越大这一性质.4.D解析:D【解析】【分析】由题意结合独立性检验的结论和临界值表给出结论即可.【详解】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.本题选择D选项.【点睛】本题主要考查独立性检验的思想及其应用等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B【解析】分析:根据题设收集的数据,得到男生学生的人数,进而得出22⨯的列联表,利用计算公式,求解2K的值,即可作出判断.详解:由题意得,从5000人中,其中男生3500人,女生1500人,抽取一个容量为300人的样本,其中男女各抽取的人数为35003002105000⨯=人,1500300905000⨯=人,又由频率分布直方图可知,每周体育锻炼时间超过4小时的人数的频率为0.75,所以在300人中每周体育锻炼时间超过4小时的人数为3000.75225⨯=人,又在每周体育锻炼时间超过4小时的人数中,女生有60人,所以男生有22560165-=人,可得如下的22⨯的列联表:结合列联表可算得22300(456016530)4.762 3.8412109075225K⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”,故选B.点睛:本题主要考查了独立性检验的基础知识的应用,其中根据题设条件得到男女生的人数,得出22⨯的列联表,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力.6.A解析:A【解析】分析:根据列联表中数据代入公式计算k 的值,和临界值表比对后即可得到答案. 详解:将列联表中数据代入公式可得()210045153010 3.030 2.70675255545k ⨯⨯-⨯=≈>⨯⨯⨯,所以有0090的把握认为“该市居民能否做到‘光盘’”与性别有关.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)7.D解析:D 【解析】由条形图知,30名学生的得分情况依次为2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分,中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现的次数最多,故众数为m 0=5,平均数为x =130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97,故m 0<m e <x . 故答案为D.点睛:这个题目考查的是条型分布直方表的应用,以及基本量:均值,平均数的考查;一般在这类图中平均数就是将数据加到一起除以数据的个数即可,在频率分布直方表中是取每个长方条的中点乘以相应的频率并相加即可.8.D解析:D 【解析】010.828,10.0010.99999.90k ≥∴-==,则有0099.9以上的把握认为秃发与患心脏病有关,故这种判断出错的可能性为10.9990.001-=,故选D.【方法点睛】本题主要考查独立性检验的实际应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)9.B解析:B 【解析】①中各小长方形的面积等于相应各组的频率;②正确,相关指数R 2越大,拟合效果越好,R 2越小,拟合效果越差;③随机变量ξ服从正态分布N (4,22),正态曲线对称轴为x =4,所以P (ξ>4)=;④对分类变量X 与Y ,若它们的随机变量K 2的观测值k 越小,则说明“X 与Y 有关系”的犯错误的概率越大.故选B.10.C解析:C【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C. 考点:独立性检验的意义.11.A解析:A 【解析】()22110403020207.8 6.63560506050k ⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“爱好游泳运动与性别有关”,所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”12.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。
数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

2.1.2 离散型随机变量的分布列(一)学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念.2.了解分布列对于刻画随机现象的重要性.3.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为X ,则X 可取哪些数字?X 取不同的值时,其概率分别是多少?你能用表格表示X 与P 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)X 与P 的对应关系为梳理 (1)离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量X 的概率分布列,简称为X 的分布列. (2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,3,…,n ;② i =1np i =1.1.在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( × ) 2.在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( × )3.在离散型随机变量分布列中,所有概率之和为1.( √ )类型一 离散型随机变量分布列的性质例1 设随机变量X 的分布列为P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解 (1)由a +2a +3a +4a +5a =1,得a =115.(2)∵P ⎝⎛⎭⎫X =k 5=115k (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫X ≥35=P ⎝⎛⎭⎫X =35+P ⎝⎛⎭⎫X =45+P (X =1)=315+415+515=45. (3)当110<X <710时,只有X =15,25,35时满足,故P ⎝⎛⎭⎫110<X <710 =P ⎝⎛⎭⎫X =15+P ⎝⎛⎭⎫X =25+P ⎝⎛⎭⎫X =35 =115+215+315=25. 反思与感悟 利用分布列及其性质解题时要注意以下两个问题 (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1 (1)设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P (ξ<x )=112,则x 的取值范围是________.(2)设随机变量X 的分布列为P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 (1)(5,6] (2)37解析 (1)由条件知P (ξ=k )=112,k =5,6,…,16, P (ξ<x )=112,故5<x ≤6.(2)由已知得随机变量X 的分布列为∴k 2+k 4+k 8=1,∴k =87. ∴P (X ≥2)=P (X =2)+P (X =3)=k 4+k 8=27+17=37.类型二 求离散型随机变量的分布列命题角度1 求离散型随机变量y =f (ξ)的分布列 例2 已知随机变量ξ的分布列为分别求出随机变量η1=12ξ,η2=ξ2的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法解 由η1=12ξ知,对于ξ取不同的值-2,-1,0,1,2,3时,η1的值分别为-1,-12,0,12,1,32, 所以η1的分布列为由η2=ξ2知,对于ξ的不同取值-2,2及-1,1,η2分别取相同的值4与1,即η2取4这个值的概率应是ξ取-2与2的概率112与16的和,η2取1这个值的概率应是ξ取-1与1的概率14与112的和,所以η2的分布列为反思与感悟 (1)若ξ是一个随机变量,a ,b 是常数,则η=aξ+b 也是一个随机变量,推广到一般情况有:若ξ是随机变量,f (x )是连续函数或单调函数,则η=f (ξ)也是随机变量,也就是说,随机变量的某些函数值也是随机变量,并且若ξ为离散型随机变量,则η=f (ξ)也为离散型随机变量.(2)已知离散型随机变量ξ的分布列,求离散型随机变量η=f (ξ)的分布列的关键是弄清楚ξ取每一个值时对应的η的值,再把η取相同的值时所对应的事件的概率相加,列出概率分布列即可.跟踪训练2 已知随机变量ξ的分布列为分别求出随机变量η1=-ξ+12,η2=ξ2-2ξ的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关随机变量分布列的求法解 由η1=-ξ+12,对于ξ=-2,-1,0,1,2,3,得η1=52,32,12,-12,-32,-52,相应的概率值为112,14,13,112,16,112.故η1的分布列为由η2=ξ2-2ξ,对于ξ=-2,-1,0,1,2,3,得η2=8,3,0,-1,0,3. 所以P (η2=8)=112,P (η2=3)=14+112=13,P (η2=0)=13+16=12,P (η2=-1)=112.故η2的分布列为命题角度2 利用排列、组合求分布列例3 某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 将O ,A ,B ,AB 四种血型分别编号为1,2,3,4, 则X 的可能取值为1,2,3,4.P (X =1)=C 110C 145=29,P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845,P (X =4)=C 115C 145=13.故X 的分布列为反思与感悟 求离散型随机变量分布列的步骤 (1)首先确定随机变量X 的取值; (2)求出每个取值对应的概率; (3)列表对应,即为分布列.跟踪训练3 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X 表示取出的3个球中的最小号码,写出随机变量X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 随机变量X 的可能取值为1,2,3.当X =1时,即取出的3个球中最小号码为1,则其他2个球只能在编号为2,3,4,5的4个球中取,故有P (X =1)=C 24C 35=610=35;当X =2时,即取出的3个球中最小号码为2,则其他2个球只能在编号为3,4,5的3个球中取,故有P (X =2)=C 23C 35=310;当X =3时,即取出的3个球中最小号码为3,则其他2个球只能是编号为4,5的2个球,故有P (X =3)=C 22C 35=110.因此,X 的分布列为类型三 离散型随机变量的分布列的综合应用例4 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数; (2)求随机变量ξ的分布列; (3)求甲取到白球的概率.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)设袋中原有n 个白球,由题意知 17=C 2nC 27=n (n -1)27×62=n (n -1)7×6, 可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练4 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整的“奥运会吉祥物”的概率;(2)若完整的选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用解 (1)选取的5只恰好组成完整的“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.所以X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139D.1310 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 P (X =10)=1-23-…-239=139.2.已知随机变量X 的分布列如下表所示,其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.13 B.14 C.12D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 由分布列的性质得a +b +c =3b =1,∴b =13.∴P (|X |=1)=P (X =1)+P (X =-1) =1-P (X =0)=1-13=23.3.已知随机变量X 的分布列如下表(其中a 为常数):则下列计算结果错误的是( ) A .a =0.1 B .P (X ≥2)=0.7 C .P (X ≥3)=0.4 D .P (X ≤1)=0.3考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 易得a =0.1,P (X ≥3)=0.3,故C 错误. 4.设ξ是一个离散型随机变量,其分布列为则P (ξ≤0)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2-12解析 由分布列的性质,得1-2q ≥0,q 2≥0, 12+(1-2q )+q 2=1, 所以q =1-22,q =1+22(舍去). P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2×⎝⎛⎭⎫1-22=2-12. 5.将一枚骰子掷两次,求两次掷出的最大点数ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P(ξ=2)=3C16C16=336=112;P(ξ=3)=5C16C16=5 36;P(ξ=4)=7C16C16=7 36;P(ξ=5)=9C16C16=936=14;P(ξ=6)=11C16C16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么()A.n=3 B.n=4C.n=10 D.n=9考点离散型随机变量分布列的性质及应用题点由分布列的性质求参数答案 C解析由题意知P(X<4)=3P(X=1)=0.3,∴P(X=1)=0.1,又nP(X=1)=1,∴n=10.2.若随机变量η的分布列如下:则当P(η<x)=0.8时,实数x的取值范围是()A.x≤1 B.1≤x≤2C .1<x ≤2D .1≤x <2考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2.3.若随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1,∴a =54. ∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得ξ=1, ∴P (ξ=1)=13.5.设离散型随机变量X 的分布列为若随机变量Y =X -2,则P (Y =2)等于( ) A .0.3 B .0.4 C .0.6 D .0.7考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由0.2+0.1+0.1+0.3+m =1,得m =0.3. 又P (Y =2)=P (X =4)=0.3.6.抛掷2枚骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两枚骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2). 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.7.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C .[-3,3]D .[0,1] 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质,得(a -d )+a +(a +d )=1,故a =13.由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.二、填空题8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 47解析 设二级品有k 个,则一级品有2k 个,三级品有k 2个,总数为72k 个.∴ξ的分布列为∴P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 9.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 0.6解析 由离散型随机变量的分布列的性质,可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.10.把3枚骰子全部掷出,设出现6点的骰子个数是X ,则有P (X <2)=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2527解析 P (X <2)=P (X =0)+P (X =1)=5363+C 13×5263=2527.11.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 (1)由x 2-x -6≤0, 得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0, 所以事件A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为13.将一枚骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差为X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 第一次掷出的点数与第二次掷出的点数的差X 的可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5, 则P (X =-5)=136,P (X =-4)=236=118,…, P (X =5)=136.故X 的分布列为四、探究与拓展14.袋中有4个红球,3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,记得分为随机变量ξ,则P (ξ≤6)=________. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 答案1335 解析 取出的4个球中红球的个数可能为4,3,2,1,相应的黑球个数为0,1,2,3,其得分ξ=4,6,8,10,则P (ξ≤6)=P (ξ=4)+P (ξ=6)=C 44×C 03C 47+C 34×C 13C 47=1335. 15.在一次购物抽奖活动中,假设某10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 的分布列,并求出P (5≤X ≤25)的值.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)该顾客中奖的概率P =1-C 26C 210=1-13=23.(2)X 的可能取值为0,10,20,50,60. P (X =0)=C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故随机变量X 的分布列为所以P (5≤X ≤25)=P (X =10)+P (X =20)=25+115=715.。
高二数学 1.2.5排列组合习题课学案 新人教A版选修2-3

高中数学 1.2.5排列组合习题课学案基础梳理1.排列应用题的最基本的解法有:(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素(又称元素分析法);或以位置为考察对象,先满足特殊位置的要求,再考虑其他位置(又称位置分析法).(2)间接法:先不考虑附加条件,计算出全部元素的排列顺序,再减去不符合要求的元素的排列顺序.2.解排列组合综合问题,应遵循三大原则:先特殊后一般,先分组后排列,先分类后分步的原则.充分考虑元素的性质,进行合理的分类和分步.寻找并理解“关键词”的含义及其等价问题,善于将实际问题转化为排列组合的基本模型.在解题过程中要特别注意培养思维的条理性、深刻性和灵活性.自测自评1.(C2100+C97100)÷A3101的值为(C)A.6 B.101 C.16D.1101解析:(C2100+C97100)÷A3101=(C2100+C3100)÷A3101=C3101÷A3101=A3101A33÷A3101=1A33=16.故选C.2.4名同学到某景点旅游,该景点有4条路线可供游览,其中恰有1条路线没有被这4个同学中的任何1人游览的情况有(D)A.36种 B.72种 C.81种 D.144种解析:由题意可知4人选择了4条线路中的3条,不同的游览情况共有C24C34A33=144(种).故选D.3.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(B)A.243个 B.252个 C.261个 D.279个解析:三位数个数为9×10×10=900(个).没有重复数字的三位数有C19A29=648(个),所以有重复数字的三位数的个数为900-648=252(个).故选B.审题不仔细致错【典例】 从1~9的9个数字中取出5个数字作排列,并把五个位置自右向左编号,则奇数数字必在奇数位置上的排列有多少个?解析:1,2,…,9中只有四个偶数数字,故排列中至少有一个奇数数字.一奇四偶的排列可按下列程序得到:从五个奇数数字中选取1个放在三个奇数位置中的一个上,再把4个偶数数字排在剩下的四个位置上,因此一奇四偶的排列有C 15·C 13·A 44个.类似地,二奇三偶的排列有C 25·C 23·A 22·A 34个,三奇二偶的排列有A 35·A 24个.因此符合题意的排列个数是C 15·C 13·A 44+C 25·C 23·A 22·A 34+A 35·A 24=2 520(个).【易错剖析】题设“奇数数字必在奇数位置上”是指:①如果有奇数数字,则它们必须在奇数位置上;②如果奇数数字不是3个,甚至没有时,则奇数位置上也可以不是奇数;③偶数位置上一定是偶数.若误以为“奇数位置上必是奇数”则可能导致解题出错.基础巩固1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是(C )A .9个B .10个C .18个D .20个解析:由于lg a -lg b =lg ab (a >0,b >0),从1,3,5,7,9中任取两个作为a b有A 25种,又13与39相同,31与93相同,所以lg a -lg b 的不同值的个数有A 25-2=20-2=18(个),故选C. 2.5人排成一排,其中甲不排在两端,也不和乙相邻的排法种数为(D ) A .84种 B .78种 C .54种 D .36种 解析:按先排甲再排乙的顺序列式为 C 13C 12A 33=36.3.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有(A )A .2人或3人B .3人或4人C .3人D .4人解析:设男生有n 人,则女生有(8-n )人,由题意可得C 2n C 18-n =30,解得n =5或n =6,代入验证,可知女生为2人或3人.4.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞,现从中选出2名会唱歌的、1名会跳舞的去参加文艺演出,则共有选法______种.解析:以2名会跳舞的分类,分为有1人参加,都不参加两类,共有C 12C 24+C 11C 23=15(种). 答案:15 能力提升5.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有(C ) A .36种 B .48种 C .72种 D .96种解析:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.6.如图,用4种不同的颜色涂入图中的矩形A 、B 、C 、D 中(四种颜色可以不全用也可以全用),要求相邻的矩形涂色不同,则不同的涂法有(A )A.72种 B.48种 C.24种 D.12种解析:(1)4种颜色全用时,有A44=24种不同涂色方法.(2)4种颜色不全用时,因为相邻矩形不同色,故必须用三种颜色,先从4种颜色中选3种,涂入A、B、C中,有A34种涂法,然后涂D,D可以与A(或B)同色,有2种涂法,∴共有2A34=48种,∴共有不同涂色方法,24+48=72种.7.某球队有2名队长和10名队员,现选派6人上场参加比赛,如果场上最少有1名队长,那么共有______种不同的选法(用数字作答).解析:若只有1名队长入选,则选法种数为C12·C510;若两名队长均入选,则选法种数为C410,故不同选法有C12·C510+C410=714(种).答案:7148.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法有____种(用数字作答).解析:第一类,字母C排在左边第一个位置,有A55种;第二类,字母C排在左边第二个位置,有A24A33种;第三类,字母C排在左边第三个位置,有A22A33+A23A33种.由对称性可知,共有2(A55+A24 A33+A22A33+A23A33)=480种.答案:4809.有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数.解析:因为相邻的两个二极管不能同时点亮,所以需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯办法.然后分步确定每个二极管发光颜色有2×2×2=8(种)方法,所以这排二极管能表示的信息种数共有8C36=160(种).10.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.分析:“先选后排”,注意“选”和“不选”应优先考虑.解析:(1)先取后排,先取可以是2女3男,也可以是1女4男,先取有C35·C23+C45·C13种,后排有A55种,共有(C35·C23+C45·C13)·A55=5 400(种).(2)除去该女生后,先取后排有C47·A44=840(种).(3)先取后排,但先安排该男生,有C14·C47·A44=3 360(种).(4)先从除去该男生该女生的6人中选3人有C36种,再安排该男生有C13种,其余3人全排有A33种,共有C36·C13·A33=360(种).。
(压轴题)高中数学高中数学选修2-3第三章《统计案例》测试题(含答案解析)(1)
一、选择题1.假设有两个分类变量X 和Y 的22⨯列联表为:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .5,35b d ==B .15,25b d ==C .20,20b d ==D .30,10b d ==2.已知x 与y 之间的几组数据如下表: x 1 2 4 5 y 0 2 3 5假设根据上表数据所得线性回归直线方程y=bx+a,若某同学根据上表中的前两组数据(1,0)和(2,2),求得的直线方程为y=b'x+a',则以下结论正确的是( ) A .b>b',a>a' B .b<b',a<a' C .b>b',a<a' D .b<b',a>a'3.经过对K 2的统计量的研究,得到了若干个观测值,当K 2≈6.706时,我们认为两分类变量A 、B ( )A .有67.06%的把握认为A 与B 有关系 B .有99%的把握认为A 与B 有关系C .有0.010的把握认为A 与B 有关系D .没有充分理由说明A 与B 有关系 4.有如下几个结论: ①相关指数R 2越大,说明残差平方和越小,模型的拟合效果越好; ②回归直线方程:y bx a =+,一定过样本点的中心:(,)x y ③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适; ④在独立性检验中,若公式()()()()()22n ad bc K a b c d a c b d -=++++,中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有( )个. A .1B .2C .3D .45.下列判断错误的是A .若随机变量ξ服从正态分布()()21,,30.72N P σξ≤=,则()10.28P ξ≤-=;B .若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上,则相关系数1r =-;C .若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭, 则()1E ξ=; D .am bm >是a b >的充分不必要条件;6.已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:x 2 4 5 6 8 y3040506070根据上表可得回归方程y bx a =+,计算得7b =,则当投入10万元广告费时,销售额的预报值为 A .75万元 B .85万元 C .99万元D .105万元7.下列说法中,不正确的是A .两个变量的任何一组观测值都能得到线性回归方程B .在平面直角坐标系中,用描点的方法得到表示两个变量的关系的图象叫做散点图C .线性回归方程反映了两个变量所具备的线性相关关系D .线性相关关系可分为正相关和负相关8.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生,得到下面的列联表:数学85~100分 数学85分以下 总计 物理85~100分 37 85 122 物理85分以下 35 143 178 总计72228300现判断数学成绩与物理成绩有关系,则犯错误的概率不超过 ( ) A .0.005 B .0.01C .0.02D .0.059.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是( )A .男、女人患色盲的频率分别为0.038,0.006B .男、女人患色盲的概率分别为,C .男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D .调查人数太少,不能说明色盲与性别有关10.已知,x y 的取值如下表:( )x0 1, 2 3 4 y11.33.25.68.9若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-11.已知变量x ,y 的一组观测数据如表所示: x 3 4 5 6 7 y4.02.5-0.50.5-2.0据此得到的回归方程为y bx a =+,若a =7.9,则x 每增加1个单位,y 的预测值就( ) A .增加1.4个单位 B .减少1.2个单位C .增加1.2个单位D .减少1.4个单位12.下列说法:①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大.②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则,c k 的值分别是4e 和0.3.③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y a bx =+中,2,1,3b x y ===,则1a =.④如果两个变量x 与y 之间不存在着线性关系,那么根据它们的一组数据()(,1,2,,)i i x y i n =不能写出一个线性方程正确的个数是( )A .1B .2C .3D .4二、填空题13.x ,y 的取值如下表: x-2-1.5-1-0.50.51y 0.26 0.35 0.51 0.71 1.1 1.41 2.05则x ,y 之间的关系可选用函数___进行拟合.14.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程=x +必过(,);④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得K 2=13.079,则其两个变量之间有关系的可能性是90%.其中错误的个数是________. 15.教材上一例问题如下:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据如下表,试建立y 与x 之间的回归方程. 温度 x /℃ 21 23 25 27 29 32 35 产卵数y /个711212466115325某同学利用图形计算器研究它时,先作出散点图(如图所示),发现两个变量不呈线性相关关系. 根据已有的函数知识,发现样本点分布在某一条指数型曲线21c xy c e =的附近(1c 和2c 是待定的参数),于是进行了如下的计算:根据以上计算结果,可以得到红铃虫的产卵数y 对温度x 的回归方程为__________.(精确到0.0001) (提示:21c xy c e =利用代换可转化为线性关系) 16.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;②由变量x 和y 的数据得到其回归直线方程:l ˆybx a =+,则l 一定经过点(),x y P ; ③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤在回归直线方程0.110ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 增加0.1个单位,其中真命题的序号是___________.17.以下四个命题中:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1; ③某项测量结果服从正太态布,则; ④对于两个分类变量和的随机变量的观测值来说,越小,判断“与有关系”的把握程度越大.以上命题中其中真命题的个数为___________.18.在吸烟与患肺病这两个分类变量的计算中,“若2x 的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系”这句话的意思: ①是指“在100个吸烟的人中,必有99个人患肺病 ②是指“有1%的可能性认为推理出现错误”; ③是指“某人吸烟,那么他有99%的可能性患有肺病”; ④是指“某人吸烟,如果他患有肺病,那么99%是因为吸烟”. 其中正确的解释是______.19.一个三位自然数百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若{},,1234a b c ∈,,,,且a ,b ,c 互不相同,则这个三位数为”有缘数”的概率是__________. 20.下列说法:①线性回归方程y bx a =+必过(),x y ;②命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃<+<” ③相关系数r 越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上) 本题可参考独立性检验临界值表:三、解答题21.今年疫情期间,许多老师进行抖音直播上课某校团委为了解学生喜欢抖音上课是否与性别有关,从高三年级中随机抽取30名学生进行了问卷调查,得到如下列联表:男生 女生 合计 喜欢抖音上课 10不喜欢抖音上课8合计 30已知在这30人中随机抽取1人抽到喜欢抖音上课的学生的概率是815. (1)请将上面的列联表补充完整,并据此资料分析能否有95%的把握认为喜欢抖音上课与性别有关?(2)若从这30人中的女生中随机抽取2人,记喜欢抖音上课的人数为X ,求X 的分布列、数学期望. 附临界值表:()20P K k ≥0.10 0.05 0.010 0.005 0k2.7063.8416.637.879参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.22.某校从高三年级的男女生中各随机抽取了100人的体育测试成绩(以下称体测成绩,单位:分),数据都落在[)60100,内,其统计数据如表所示(其中不低于80分的学生为优秀).(1)请根据如表数据完成22⨯列联表,并通过计算判断,是否有95%的把握认为体测成绩与性别有关?(2)视频率为概率,在全校的高三学生中任取3人,记取出的3人中优秀的人数为X ,求X 的分布列和数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++23.支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比,从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如下,(1)记A表示事件“微信支付人数低于50千人”,估计A的概率;(2)填写下面2╳2列联表,并根据2╳2列联表判断是否有99%的把握认为支付人数与支付方式有关;支付人数<50千支付人数≥50千人总计人微信支付 支付宝支付 总计附:2()P K k ≥0.050 0.010 0.001 k3.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++.24.2020突如其来的疫情让我们经历了最漫长、最特殊的一个假期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后某校进行了摸底考试,某数学教师为了调查高二学生这次摸底考试的数学成绩与每天在线学习数学的时长之间的相关关系,对在校高二学生随机抽取45名进行调查,了解到其中有25人每天在线学习数学的时长不超过1小时,并得到如下的等高条形图:(1)根据等高条形图填写下面22⨯列联表,并根据列联表判断能否在犯错误的概率不超过0.05的前提下认为“高二学生的这次摸底考试数学成绩与其每天在线学习数学的时长有关”;数学成绩不超过120分 数学成绩超过120分 总计 每天在线学习数学不超过1小时 25每天在线学习数学超过1小时总计45(2)从被抽查的,且这次数学成绩超过120分的学生中,再随机抽取3人,求抽取的3人中每天在线学习数学的时长超过1小时的人数ξ的分布列与数学期望. 附临界值表()20P K k ≥0.050 0.010 0.001 0k3.8416.63510.828参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.25.某单位组织开展“学习强国”的学习活动,活动第一周甲、乙两个部门员工的学习情况统计如下:学习活跃的员工人数 学习不活跃的员工人数甲 18 12 乙328(1)根据表中数据判断能否有95%的把握认为员工学习是否活跃与部门有关; (2)活动第二周,单位为检查学习情况,从乙部门随机抽取2人,发现这两人学习都不活跃,能否认为乙部门第二周学习的活跃率比第一周降低了?说明理由.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:2(0.1) 2.706P K ≥=,2(0.05) 3.841P K ≥=,2(0.01) 6.635P K ≥=. 26.根据国家统计局数据,1999年至2019年我国进出口贸易总额从3万亿元跃升至31.6万亿元,中国在国际市场上的贸易份额越来越大对外贸易在国民经济中的作用日益突出.将年份1999,2004,2009,2014,2019分别用1,2,3,4,5代替,并表示为t ,y 表示全国进出口贸易总额.(1)根据以上统计数据及图表,给出了下列两个方案,请解决方案1中的问题. 方案1:用y bt a =+作为全国进出口贸易总额y 关于t 的回归方程,根据以下参考数据,求出y 关于t 的回归方程,并求相关指数21R .方案2:用dt y ce =作为全国进出口贸易总额y 关于t 的回归方程,求得回归方程0.57212.3259x y e =,相关指数22R .(2)通过对比(1)中两个方案的相关指数,你认为哪个方案中的回归方程更合适,并利用此回归方程预测2020年全国进出口贸易总额. 参考数据:①0.140.340.66 1.86 2.048.192++++=②222220.140.34 1.86 2.04 2.1412.336++++=③8.1920.0147555.792≈④12.3360.0222555.792≈参考公式:线性回归方程中的斜率和截距的最小二乘法估计公式分别为:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-,相关指数()()221211ni ii n ii y y R yy==-=--∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 根据公式()()()()()22n ad bc K a b c d a c b d -=++++,分别利用4个选项中所给数据求出2K 的值,比较所求值的大小即可得结果. 【详解】选项A :22160(535155)3204010502K ⨯⨯-⨯==⨯⨯⨯,选项B :22260(5251515)152040204016K ⨯⨯-⨯==⨯⨯⨯,选项C :22360(5201520)24204025357K ⨯⨯-⨯==⨯⨯⨯,选项D :22460(5101530)96204035257K ⨯⨯-⨯==⨯⨯⨯,可得222431K K K >>22K >,所以由选项D 中的数据得到的2K 值最大,说明X 与Y 有关系的可能性最大,故选D . 【点睛】本题主考查独立性检验的基本性质,意在考查对基本概念的理解与应用,属于基础题.解答独立性检验问题时,要注意应用2 K 越大两个变量有关的可能性越大这一性质.2.D解析:D 【解析】 【分析】先根据()()1,0,2,2求得直线y b x a ='+'的方程.然后计算出回归直线方程y bx a =+,由此比较大小,得出正确的结论. 【详解】由于直线y b x a ='+'过()()1,0,2,2,将两点坐标代入直线方程得022b a b a +=⎧⎨+=''''⎩,解得2,2b a ''==-.124534x +++==,02352.54y +++==,1122334414122542x y x y x y x y +++=+++=.2222123414162546x x x x +++=+++=,故24243 2.54230121.24643463610b -⨯⨯-====-⨯-, 2.5 1.23 2.5 3.6 1.1a =-⨯=-=-.所以,a a b b >'<',故选D.【点睛】本小题主要考查利用直线上的两点坐标求直线方程的方法,考查回归直线方程的计算,属于中档题.3.B解析:B 【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P (K 2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A 与B 有关系. 【详解】 依据下表:2 6.635K > , 2 6.6350.01P K =(>)∴我们在错误的概率不超过0.01的前提下有99%的把握认为A 与B 有关系, 故选B . 【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.4.D解析:D 【分析】根据相关指数定义、残差平方和含义可得①为真,根据回归直线方程特征可得②为真,根据残差点含义可得③为真,根据卡方含义可得④为真. 【详解】相关指数R 2越大,则残差平方和越小,模型的拟合效果越好;回归直线方程:ˆy bx a =+,一定过点() ,x y ;若残差点比较均匀地落在水平的带状区域中,则选用的模型比较合适; 在独立性检验中,若公式()()()()()22n ad bc K a b c d a c b d -=++++,中的|ad-bc|的值越大,则2K 越大, “两个分类变量有关系”的可能性越强.选D. 【点睛】相关指数R 2越大,残差平方和越小,残差点比较均匀地落在水平的带状区域,则模型的拟合效果越好;在独立性检验中,若2 K 越大,则两个变量有关系越强;回归直线方程:ˆy bx a =+,一定过点() ,x y .5.D解析:D 【解析】分析:根据正态分布的对称性求出()1P ξ≤-的值,判断A 正确; 根据线性相关关系与相关系数的定义,判断B 正确; 根据二项分布的均值计算公式求出()E ξ的值,判断C 正确; 判断充分性和必要性是否成立,得出D 错误.详解:对于A ,随机变量ξ服从正态分布()21,N σ,∴曲线关于1ξ=对称,131310.720.28PP P ξξξ∴≤-=≥=-≤=-=()()(),A 正确;对于B ,若n 组数据()()()1122,,,,...,,n n x y x y x y 的散点都在1y x =-+上, 则x y ,成负相关,且相关关系最强,此时相关系数1r =-,B 正确;对于C ,若随机变量ξ服从二项分布: 15,5B ξ⎛⎫~ ⎪⎝⎭,则1515E(),ξ=⨯= C 正确;对于D ,am >bm 时,a >b 不一定成立,即充分性不成立,a b am bm >时,> 不一定成立,即必要性不成立,是既不充分也不必要条件,D 错误. 故选:D .点睛:本题考查了命题真假的判断问题,是综合题.6.B解析:B 【解析】分析:根据表中数据求得样本中心(,)x y ,代入回归方程ˆ7ˆyx a =+后求得ˆa ,然后再求当10x =的函数值即可. 详解:由题意得11(24568)5,(3040506070)5055x y =++++==++++=, ∴样本中心为(5,50).∵回归直线ˆ7ˆyx a =+过样本中心(5,50), ∴ˆ5075a=⨯+,解得ˆ15a =, ∴回归直线方程为ˆ715yx =+. 当10x =时,710158ˆ5y=⨯+=, 故当投入10万元广告费时,销售额的预报值为85万元. 故选B .点睛:本题考查回归直线过样本中心这一结论和平均数的计算,考查学生的运算能力,属容易题.7.A解析:A 【解析】要得到线性回归方程应至少有两个变量的两组观测值,因此A 不正确.根据散点图、线性回归方程、线性相关关系的概念可得B ,C ,D 都正确.故选A .8.D解析:D 【解析】因为K 2的观测值k=2300(371433585)12217872228⨯-⨯⨯⨯⨯≈4.514>3.841, 所以在犯错误的概率不超过0.05的前提下认为数学成绩与物理成绩有关系. 选D.9.C解析:C 【解析】男人中患色盲的比例为,要比女人中患色盲的比例大,其差值为,差值较大,所以认为患色盲与性别是有关的.考点:独立性检验.10.A解析:A 【解析】 设2t x = ,则11(014916)6,(1 1.3 3.2 5.68.9)455t y =++++==++++=,所以点(6,4)在直线12y t a =+上,求出1a =,选A. 点睛:本题主要考查了散点图,属于基础题.样本点的中心(),x y 一定在直线回归直线上,本题关键是将原曲线变形为12y t a =+,将点(6,4)代入,求出值. 11.D解析:D 【解析】由表格得 5x =, 0.9y =,∵回归直线方程为7ˆ9ˆ.y bx=+,过样本中心, ∴57.90.9b +=,即75b =-,则方程为77.95ˆyx =-+,则x 每增加1个单位,y 的预测值就减少1.4个单位,故选D.12.C解析:C 【解析】①分类变量A 与B 的随机变量2K 越大,说明“A 与B 有关系”的可信度越大,正确; ②∵kx y ce =,∴两边取对数,可得lny ln =(kx ce )kx lnc lnce lnc kx =+=+, 令z lny =,可得z lnc kx =+, ∵0.34z x =+, ∴40.3lnc k ==, ∴4c e =.即②正确;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y =a +bx 中,2,1,3b x y ===,则a =1,正确。
人教A版高中数学选修2-3 模块综合评价(一)(含答案解析)
模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.某一随机变量ξ的概率分布如下表,且m +2n =1.2,则m -n2的值为( )A .-0.2B .0.2C .0.1D .-0.1解析:由离散型随机变量分布列的性质,可得m +n +0.2=1, 又m +2n =1.2,所以m =0.4,n =0.4, 所以m -n2=0.2.答案:B2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:由于销售量y 与销售价格x 负相关,故排除B ,D.又当x =10时,A 中的y =100,而C 中y =-300,故C 不符合题意.3.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为()A.24 B.48 C.72 D.120解析:A参加时参赛方案有C34A12A33=48(种),A不参加时参赛方案有A44=24(种),所以不同的参赛方案共72种,故选C.答案:C4.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若X与Y有关系的可信程度为90%,则c=()A.4 B.5 C.6 D.7解析:列2×2列联表可知:当c=5时,K2=66×(10×30-5×21)215×51×31×35≈3.024>2.706,所以c=5时,X与Y有关系的可信程度为90%,而其余的值c=4,c=6,c=7皆不满足.5.⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( ) A.3516 B.358 C.354D .105 解析:二项展开式的通项为T k +1=C k 8(x )8-k ⎝ ⎛⎭⎪⎫12x k =⎝ ⎛⎭⎪⎫12k C k 8x 4-k,令4-k =0,解得k =4,所以T 5=⎝ ⎛⎭⎪⎫124C 48=358.答案:B6.ξ,η为随机变量,且η=aξ+b ,若E (ξ)=1.6,E (η)=3.4,则a ,b 可能的值为( )A .2,0.2B .1,4C .0.5,1.4D .1.6,3.4解析:由E (η)=E (aξ+b )=aE (ξ)+b =1.6a +b =3.4,把选项代入验证,只有A 满足.答案:A7.已知随机变量ξ的分布列为ξ=-1,0,1,对应P =12,16,13,且设η=2ξ+1,则η的期望为( )A .-16 B.23 C.2936D .1解析:E (ξ)=-1×12+0×16+1×13=-16,所以E (μ)=E (2ξ+1)=2E (ξ)+1=23.8.若随机变量ξ~N (-2,4),ξ在下列区间上取值的概率与ξ在区间(-4,-2]上取值的概率相等的是( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4]解析:此正态曲线关于直线x =-2对称,所以ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.答案:C9.设随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )A.56B.45C.2021D.3132解析:函数f (x )=x 2+4x +X 存在零点, 所以Δ=16-4X ≥0,所以X ≤4,因为随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12, 所以P (X ≤4)=1-P (X =5)=1-125=3132.答案:D10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:) A.99%的可能性B.99.75%的可能性C.99.5%的可能性D.97.5%的可能性解析:由题意可知a=16,b=28,c=20,d=8,a+b=44,c +d=28,a+c=36,b+d=36,n=a+b+c+d=72.代入公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),得K2=72×(16×8-28×20)244×28×36×36≈8.42.由于K2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.答案:C11.某日A,B两个沿海城市受台风袭击的概率相同,已知A市或B市至少有一个受台风袭击的概率为0.36,若用X表示这一天受台风袭击的城市个数,则E(X)=()A.0.1 B.0.2 C.0.3 D.0.4解析:设A,B两市受台风袭击的概率均为p,则A市或B市都不受台风袭击的概率为(1-p)2=1-0.36,解得p=0.2或p=1.8(舍去).法一 P (X =0)=1-0.36=0.64.P (X =1)=2×0.8×0.2=0.32, P (X =2)=0.2×0.2=0.04,所以E (X )=0×0.64+1×0.32+2×0.04=0.4.法二 X ~B (2,0.2),E (X )=np =2×0.2=0.4. 答案:D12.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析:当x >0时,f (f (x ))=⎝ ⎛⎭⎪⎫-x +1x 6=⎝ ⎛⎭⎪⎫1x -x 6,则展开式中常数项为C 36⎝⎛⎭⎪⎫1x 3(-x )3=-20. 答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.314.已知随机变量ξ~B (36,p ),且E (ξ)=12,则D (ξ)=________. 解析:由E (ξ)=36p =12,得p =13,所以D (ξ)=36×13×23=8.答案:815.欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”可见“行行出状元”,卖油翁的技艺让人叹为观止,如图铜钱是直径为4 cm 的圆形,正中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2 cm 的球),记“油滴不出边界”为事件A ,“油滴整体正好落入孔中”为事件B .则P (B |A )________(不作近似值计算).解析:因为铜钱的有效面积S =π·(2-0.1)2,能够滴入油的图形为边长为1-2×110=45的正方形,面积为1625, 所以P (B |A )=64361π.答案:64361π16.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的数学期望是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.376三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f (x )=(1+x )m +(1+x )n (m ,n ∈N *)展开式中x 的系数为19,求f (x )的展开式中x 2的系数的最小值.解:f (x )=1+C 1m x +C 2m x 2+…+C m m x m +1+C 1n x +C 2n x 2+…+C nnx n ,由题意知m +n =19,m ,n ∈N *, 所以x2项的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=⎝ ⎛⎭⎪⎫m -1922+19×174.因为m ,n ∈N *,所以当m =9或m =10时,上式有最小值. 所以当m =9,n =10或m =10,n =9时,x 2项的系数取得最小值,最小值为81.18.(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元,否则月工资定为2 100元,令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.解:(1)X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i 4C 48(i =0,1,2,3,4),故X 的分布列为:(2)令Y 表示新录用员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500,则P (Y =3 500)=P (X =4)=170,P (Y =2 800)=P (X =3)=835,P (Y =2 100)=P (X ≤2)=5370, E (Y )=3 500×170+2 800×835+2 100×5370=2 280.所以新录用员工月工资的期望为2 280元.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3, 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3,又P (X =1)=16,P (X=2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.20.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1 x i =80,∑10i =1 y i =20,∑10i =1 x i y i =184,∑10i =1 x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b =∑ni =1 x i y i -n x y∑n i =1 x 2i -nx 2,a ^=y -b ^x ,其中x ,y 为样本平均值. 解:(1)由题意知n =10,x =1n ∑n i =1 x i =8010=8,y=1n∑ni=1y i=2010=2,又l xx=∑ni=1x2i-nx2=720-10×82=80,l xy=∑ni=1x i y i-nxy=184-10×8×2=24,由此得b^=l xyl xx=2480=0.3,a^=y-b^x=2-0.3×8=-0.4.故所求线性回归方程为y=0.3x-0.4.(2)由于变量y的值随x值的增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).21.(本小题满分12分)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.⎝⎭⎪参考公式:K 2=(a +b )(c +d )(a +c )(b +d )解:(1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10(个),“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=(7个),所以P =710. (2)2×2列联表如下:K 2=40×(6×6-14×14)220×20×20×20=6.4>5.024.因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 22.(本小题满分12分)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的.(1)求蜜蜂落入第二实验区的概率.(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率.(3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望E (X ).解:(1)记“蜜蜂落入第一实验区”为事件A ,“蜜蜂落入第二实验区”为事件B ,依题意得:P (A )=V 小锥体V 圆锥体=13·14·S 圆锥底面·12h 圆锥13·S 圆锥底面·h 圆锥=18,所以P (B )=1-P (A )=78,所以蜜蜂落入第二实验区的概率为78.(2)记“蜜蜂被染上红色”为事件C ,则事件B ,C 为相互独立事件,又P (C )=1040=14,P (B )=78.则P (BC )=P (B )P (C )=14×78=732,所以恰有一只红色蜜蜂落入第二实验区的概率为732.(3)因为蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的,所以变量X 服从二项分布,即X ~B ⎝⎛⎭⎪⎫40,18,所以随机变量X 的数学期望E (X )=40×18=5.。
新课改高二数学选修2-2模块综合测试题!(含答案)
新课改高二数学选修2-2模块综合测试题(本科考试时间为120分钟,满分为100分)说明:本试题分有试卷I和试卷U,试卷I分值为30分,试卷U分值为70分•选择题(本大题有10小题,每小题3分,共30 分)1 •在“近似替代”中,函数f(X)在区间[x i, x i d]上的近似值( )(A )只能是左端点的函数值f(xj(B)只能是右端点的函数值f(Xi 1)(C)可以是该区间内的任一函数值 f \ ( - [x i,x i d]) (D)以上答案均正确2 •已知Z,=m2_ 3m ■ m2i, z2 = 4 (5m - 6)i ,其中m为实数, i为虚数单位,若乙-Z2 =0,贝U m的值为(A) 4 (B) -1 (C) (D) 03 •已知X<1, y <1,下列各式成立的是(A) x +y| +|x -y| >2 (B)(C) x y :: 1 (D) xy 1 x yf (x)为可导函数,且满足I[叫f⑴[f(1— X)=—1,则曲线2xy=f (x)在点(1, f(1))处的切线的斜率是(A) 2(B)—1 (D)—25 •若a、b、c是常数,则“ a > 0 且b2—4ac v 0” 是“对任意x€ R,有ax2+bx+c>0”(A )充分不必要条件(B)必要不充分条件(C) 充要条件(D)必要条件3 2 6 •函数f (x)二x - ax2-bx a在x =1处有极值10,则点(a,b)为 ( )(A) (3,-3) (B) (-4,11) (C) (3,-3)或(-4,11) (D)不存在(A)1 3 (B)-46(C) —115(D) — 8& 曲线y =e x , y =e 公和直线x =1围成的图形面积是( )1(A) e-e1(B) e e1(C) e _e _21(D) e e -2( )9 •点P 是曲线y =x 2 —In x 上任意一点,则点P 到直线y=x-2的距离的最小值是(2 2 27. x y z =1,则2x 3y - z 的最小值为 (A) 1(B)2(C) 2(D) 2 210 .设 f (x ) = x 2 ax b ( a ,b R ),当 x I -1,1 I 时, f (x )的最大值为 m ,则m 的最小值为( )1 (A)(B)12(C) (D) 2•填空题(本大题有 4小题,每小题4分,共16 分)11 .定义运算1 =ad - be ,若复数z 满足z -1=2,其中i 为虚数单位,则复数zi12 .如图,数表满足:⑴第n 行首尾两数均为n ;⑵表中递推关系类似杨辉三角 记第n(n 1)行第2个数为f (n).根据表中上下两行数据关系 可以求得当n …2时,f(n)二 ___________13 .设函数f(x)= n 2x 2(1 — x)n (n 为正整数),则f(x)在]0,1]上的最大值为 ____________ 14 .设 a^ R ., Xj R., i =1,2川In ,且 a ' a^ 11|a^ =1 , x : x ; 11| x ;=1,则色,a,| 1(,旦i 的值中,现给出以下结论,其中你认为正确的是 ________ ①都大于1②都小于1③至少有一个不大于 1④至多有一个不小于1⑤至少有一个不小于三 解答题(本大题共 5小题,共54分)⑵若复数 z^ = a 2i (a R ), z ?"-4i ,且兰为纯虚数,求Z jZ 216 (本小题满分10分)现要制作一个圆锥形漏斗,其母线长为l ,要使其体积最大,求高为多少?17 (本小题满分12分)X已知函数f (X )=ln( X 1)- x +1(1) 求f (X )的单调区间;(2) 求曲线y 二f (X )在点(1, f (1))处的切线方程; (3) 求证:对任意的正数 a 与b ,恒有In a - In b _1 -巴.a15 (本小题满分10分)1 2(1)求定积分-2 dx 的值;18 (本小题满分10分)(提示:请从以下两个不等式选择其中一个证明即可,若两题都答以第一题为准)(1)设R .,R.,i ^1,2川|n,且印a? |1耳勺b? |()bn =2求证:2a ia1 - 02 2.』a n1a2 b2 a n b n(2)设a^ R ( i -1,2,|||n )求证:.. 2(a a:a.)乞a a:川a n2(a2a;Hla;) a:a? a? a°a「a:佃(本小题满分12分)设数列玄』满足a n ^a^ - na n 1, n =1,2,3,|||,(1)当a^2时,求a2, a3, ,并由此猜想出'a^f的一个通项公式; (2)当印-3时,证明对所有n_1,有①a n _ n 2②」1—1 a1 1 a2 1 a n 2新课改高二数学选修 2-2模块综合测试题参考答案1a F (t ) =ln t • - -1 一0,记 t 代入得证。
高二数学 选修2-2.2-3知识练习
复数知识1.若复数()R x i x x z ∈++-=)3()4(2,则“z 是纯虚数”是“x=2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.复数的i 125+的平方根是( )A .3+2i 或3-2iB .3+2i 或-3-2iC .-3+2i 或3-2iD .-3+2i 或-3-2i3.写出i i ++121的实、虚部,共轭复数4.imi z -+=11是纯虚数,则m =__________5.设复数z 满足|z |=1,且(3+4i )•z 是纯虚数,求z .6.已知0<a <2,复数z 的实部为a ,虚部为1,则|z|的取值范围是 ( )A .(1,3)B .(1,5)C .(1,5)D .(1,3)推理1.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A+∠B=180°B .某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人C .由平面三角形的性质,推测空间四面体的性质D .在数列{}n a 中,11=a ,⎪⎪⎭⎫ ⎝⎛-+=-11211n n n a a a (n ≥2),由此归纳出{}n a 的通项公式 2.因为指数函数x a y =是增函数,x y ⎪⎭⎫ ⎝⎛=21是指数函数,则xy ⎪⎭⎫ ⎝⎛=21是增函数.这个结论是错误的,这是因为( )A.大前提错误 B .小前提错误 C .推理形式错误 D .非以上错误3.有这样一段演绎推理:“有些复数是实数,c 是复数,则c 是实数”,则( )A .大前提错误B .小前提错误C .推理形式错误 D.推理正确 4.证明:()1121413121122>+<+++++<+n n nn ,当2=n 时,中间式子是( ) A .1 B .211+ C .31211++ D .4131211+++导数与定积分1.下列结论中正确的是( )A .导数为零的点一定是极值点B .如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值C .如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么f (x0)是极小值D .如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么f (x0)是极大值2.函数)(x f y =的图象如图所示,若m dx x f f =)(0π,则=dx x f f )(20π( )A .mB .2mC .0D .-m3.dx e x f x )(20+的值为( )A .24e +B .23e +C .22e +D .21e +4.设x x f sin )(0=,)()(01x f x f '=,)()(12x f x f '=,…,)()(1x f x f n n '=+,n ∈N ,则)(2005x f =( )A .x sinB .x sin -C .x cosD .x cos -5.曲线4x y =上某点切线的斜率等于4,求该点坐标6.已知函数1)(23--+-=x ax x x f 在()+∞∞-,是单调函数,求a 的取值范围7.已知函数63+-=ax x y 的一个单调增区间为(1,+∞),求a 的值及函数的其他单调区间.9.已知函数x ax x x f 3)(23+-=,R a ∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标人教版A高二数学选修(2-3)2.1测试题
一、选择题
1.要从10名女生与5名男生中选出6名学生组成课外活动小组,如果按性别依比例分层随
机抽样,试问组成此课外学习小组的概率为( )
A.33105615CCC B.615615CA C.42105615CCC D.42105615AAC
答案:C
2.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为X,则“X
≥5”表示的实验结果( )
A.第一枚6点,第二枚2点 B.第一枚5点,第二枚1点
C.第一枚1点,第二枚6点 D.第一枚6点,第二枚1点
答案:D
3.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X,那么随机变
量X可能取得的值有( )
A.17个 B.18个 C.19个 D.20个
答案:A
4.在15个村庄中,有7个村庄交通不太方便,现从中任意选10个村庄,用X表示这10
个村庄中交通不方便的村庄数,下列概率中等于46781015CCC的是( )
A.(2)PX B.(2)PX≤ C.(4)PX D.(4)PX≤
答案:C
5.设随机变量X的分布列为2()1233iPXiai,,·,则a的值为( )
A.1738 B.2738 C.1719 D.2719
答案:B
6.设随机变量X的分布列为()15kPXk,12345k,,,,,则1522PX等于( )
A.215 B.25 C.15 D.115
答案:C
二、填空题
7.甲、乙两队进行围棋对抗赛,每队各出5名队员进行5场比赛,每场胜队得3分,负队
得0分.若用x表示甲队得的总分,y表示乙队得的总分,则有xy .
答案:15
8.某地上网的费用月租费为10元,上网时每分钟0.18元,某学生在一个月内上网的时间
(min)为随机变量X,则该学生一个月上网的费用 元.
答案:0.0410X
9.设随机变量X只能取5,6,7,…,16这十二个值,且取每一个值的概率均相同,则
(10)PX
≥
.
答案:712
10.若随机变量X服从两点分布,且(0)0.8PX,(1)0.2PX.令32X,则
(2)P
.
答案:0.8
11.随机变量X的分布列为()(1234)iPXiim,,,,则(2)PX≤ .
答案:310
12.设随机变量X的可能取值为2,0,2,相应的概率分别为abc,,,已知这三个数成
等差数列,且2ca,则X的分布列为 .
答案:
X 2
0 2
P
2
9
1
3
4
9
三、解答题
13.某产品40件,其中有次品3件,现从其中任取3件,求取出的3件产品中次品数X的
分布列.
解:X的所有可能取值为0,1,2,3,则X服从参数为4033NMn,,的超几何分
布.
337340777(0)988CPXC,21373340999(1)4940CCPXC,12
373
3
40
111
(2)9880CCPXC
,
3
3
3
40
1
(3)9880CPXC
.
X∴
的分布列为
X
0 1 2 3
P
777988 9994940 1119880 1
9880
14.设随机变量X的分布列为kPXakn,123kn,,,,.
(1)求常数a的值;
(2)若2006n,求2002200620062006PX.
解:(1)1231nPXPXPXPXnnnn,
即2231(1)aaanaann.
(2)若2006n,则220062007a,
故2002200620032004200520062006200620062006PXPXPXPX
12024668
(200320042005)20062007223669a
.
15.从一批有10个合格品与3个次品的产品中,一件一件地抽取产品,设各个产品被抽到
的概率相同,在下列两种情况下,分别求出直到取出合格品为止所需抽取次数X的分布列.
(1)每次取出的产品都立即放回该产品中,然后再取下一件产品;
(2)每次取出一件次品后总以一件合格品放回该产品中.
解:(1)X的取值有无穷多个,即123Xn,,,,,.
当Xk时,表示前1k次取到的是次品,第k次取到的是合格品.
根据分步乘法计数原理,得1310()1313kPXk·.
故随机变量X的分布列为
x
1 2
k
p
1013 30
169
13101313k
·
(2)X的取值为1,2,3,4,根据分步乘法计数原理,
则10113PX;311(2)1313PX;3212(3)131313PX;32113(4)13131313PX.
故椭机变量X的分布列为
X
1 2 3 4
p
1013 33169 722197 6
2197