2015年中考数学模拟试卷(一)
重庆市初三中考数学第一次模拟试卷

重庆市初三中考数学第一次模拟试卷一、选择题(本大题共12小题,共36.0分)1.下列各组数中结果相同的是()A. 与B. 与C. 与D. 与2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个5.某班班长统计去年1-8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A. 平均数是58B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月6.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.下列命题错误的是()A. 若一个多边形的内角和与外角和相等,则这个多边形是四边形B. 矩形一定有外接圆C. 对角线相等的菱形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形8.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.9.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A. B. C. D.10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A. 1B. 2C. 3D. 411.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.12.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形=2S△BGE.ECFGA. 4B. 3C. 2D. 1二、填空题(本大题共4小题,共12.0分)13.分解因式:4ax2-ay2=______.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为______.15.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,cos A=,则k的值为______.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=______.三、计算题(本大题共2小题,共12.0分)17.先化简,再求值:(-)÷,其中a=.18.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.四、解答题(本大题共5小题,共40.0分)19.计算:+tan30°+|1-|-(-)-2.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E 组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?22.如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为______;(2)求证:EF为⊙P的切线;(3)若点H是上一动点,连接OH、FH,当点P在上运动时,试探究是否为定值?若为定值,求其值;若不是定值,请说明理由.23.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.答案和解析1.【答案】D【解析】解:A、32=9,23=8,故不相等;B、|-3|3=27(-3)3=-27,故不相等;C、(-3)2=9,-32=-9,故不相等;D、(-3)3=-27,-33=-27,故相等,故选:D.利用有理数乘方法则判定即可.本题主要考查了有理数乘方,解题的关键是注意符号.2.【答案】A【解析】解:14420000=1.442×107,故选:A.根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.【答案】D【解析】解:A、5a3-a3=4a3,正确,本选项不符合题意;B、(-a)2•a3=a5,正确,本选项不符合题意;C、(a-b)3•(b-a)2=(a-b)5,正确,本选项不符合题意;D、2m•3n≠6m+n,错误,本选项符合题意;故选:D.根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘.4.【答案】C【解析】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.【答案】C【解析】解:A、每月阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;故选:C.根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.6.【答案】D【解析】解:由题意这个正n边形的中心角=60°,∴n==6,∴这个多边形是正六边形,故选:D.求出正多边形的中心角即可解决问题.本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.8.【答案】A【解析】解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的棱长为2,正六边形的半径为2,所以表面积为2×2×6+×2××6×2=24+12,故选:A.首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题.9.【答案】B【解析】解:画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过三次传球后,球仍回到甲手中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】D【解析】解:∵3※2=1,∴运算※就是找到第三列与第二行相结合的数,∴(2※4)=3,(1※3)=3,∴3※3=4.故选:D.根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.11.【答案】C【解析】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.12.【答案】B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x-k)2+4k2,∴x=,∴sin∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S=4S△BGE,故④错误.四边形ECFG故选:B.首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.13.【答案】a(2x+y)(2x-y)【解析】解:原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为:a(2x+y)(2x-y).首先提取公因式a,再利用平方差进行分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】+【解析】解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG=×1×=在菱形ABCD中,∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2×(-)+=+.故答案为:+.设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.15.【答案】-4【解析】解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,cosA=,∴∠BOD+∠AOC=90°,tanA=,∴∠BOD=∠OAC,∴△OBD∽△AOC,∴=()2=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-4.故答案为:-4.作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.16.【答案】2+或4+2【解析】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x2=2,解得:x=1(负数舍去),则AE=EC=2,EN==,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2.故答案为:2+或4+2.根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长.此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.17.【答案】解:原式=[-]÷=•=,当a=时,原式===5-2.【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.【答案】解:根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=DE=DF=AF=4,∵DE∥AC,∴BE:AE=BD:CD,即BE:4=6:3,∴BE=8.【解析】根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE 的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.19.【答案】解:原式=2+×+-1-4=2+1+-1-4=3-4.【解析】依据二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质进行化简,然后再进行计算即可.本题主要考查的是实数的运算,熟练掌握二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质是解题的关键.20.【答案】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50-5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:=.【解析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50-5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m(m为整数)个地上停车位,则建(50-m)个地下停车位,根据题意,得:12<0.1m+0.5(50-m)≤13,解得:30≤m<32.5.∵m为整数,∴m=30,31,32,共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.【解析】(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;(2)设建m个地上停车位,则建(50-m)个地下停车位,根据题意建立不等式组就可以求出结论本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法.在解答中要注意实际问题中未知数的取值范围的运用.22.【答案】5【解析】解:(1)连接PC,∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠PCA=∠PAC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴,∵A(-8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5;故答案为:5;(2)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(3)是定值,=,连接PH,由(1)得AP=PC=PH=5,∵A(-8,0),∴OA=8,∴OP=OA-AP=3,在Rt△POC中,OC===4,由射影定理可得OC2=OP•OF,∴OF=,∴PF=PO+OF=,∵=,==,∴,又∵∠HPO=∠FPH,∴△POH∽△PHF,∴,当H与D重合时,.(1)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论;(2)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(3)连接PH,由(1)得AP=PC=PH=5,根据勾股定理得到OC== =4,根据射影定理得到OF=,根据相似三角形的判定和性质即可得到结论.本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,射影定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)由题意可得,解得a=1,b=-5,c=5;∴二次函数的解析式为:y=x2-5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,设对称轴交x轴于Q.则,∵MQ=,∴NQ=2,B(,);∴ ,解得,∴,D(0,),同理可求,,∵S△BCD=S△BCG,∴①DG∥BC(G在BC下方),,∴=x2-5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,-1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2-5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,-1),G(,).(3)由题意可知:k+m=1,∴m=1-k,∴y l=kx+1-k,∴kx+1-k=x2-5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4-)(),∵k>0,∴k==-1+.【解析】(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别分析出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.此题主要考查二次函数的综合问题,会中学数学一模模拟试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.C(第4题)1ABDEADEF第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =,∠DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠55.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;。
初中数学湖南省衡阳市中考模拟数学考试卷及答案解析(word版)

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣4的相反数是()A.﹣B.C.﹣4 D.4试题2:如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>1试题3:如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70° B.80° C.90° D.100°试题4:下列几何体中,哪一个几何体的三视图完全相同()A.评卷人得分球体 B.圆柱体 C.四棱锥 D.圆锥试题5:下列各式中,计算正确的是()A.3x+5y=8xy B.x3•x5=x8C.x6÷x3=x2D.(﹣x3)3=x6试题6:为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房3600000套,把3600000用科学记数法表示应是()A.0.36×107B.3.6×106C.3.6×107D.36×105试题7:要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数 B.中位数 C.众数 D.方差试题8:正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13试题9:随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9 B.10(1+2x)=16.9 C.10(1﹣x)2=16.9 D.10(1﹣2x)=16.9关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为()A.k=﹣4 B.k=4 C.k≥﹣4 D.k≥4试题11:下列命题是假命题的是()A.经过两点有且只有一条直线B.三角形的中位线平行且等于第三边的一半C.平行四边形的对角线相等D.圆的切线垂直于经过切点的半径试题12:如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P 点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.试题13:因式分解:a2+ab= .计算:﹣= .试题15:点P(x﹣2,x+3)在第一象限,则x的取值范围是.试题16:.若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.试题17:若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为.试题18:如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.试题19:先化简,再求值:(a+b)(a﹣b)+(a+b)2,其中a=﹣1,b=.试题20:为庆祝建党95周年,某校团委计划在“七一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为;(2)请将图②补充完整;(3)若该校共有1530名学生,根据抽样调查的结果估计全校共有多少学生选择此必唱歌曲?(要有解答过程)试题21:如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.试题22:在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.试题23:为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/台)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.试题24:在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?试题25:在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.试题26:如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y 轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN 是等腰三角形?若存在,求t的值;若不存在请说明理由.试题1答案:D【考点】相反数.【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣4的相反数是:4.故选:D.试题2答案:B【考点】分式有意义的条件.【分析】直接利用分式有意义的条件得出x的值.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:B.试题3答案:C【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选C.试题4答案:A【考点】简单几何体的三视图.【分析】根据各个几何体的三视图的图形易求解.【解答】解:A、球体的三视图都是圆,故此选项正确;B、圆柱的主视图和俯视图都是矩形,但左视图是一个圆形,故此选项错误;C、四棱柱的主视图和左视图是一个三角形,俯视图是一个四边形,故此选项错误;D、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,故此选项错误.故选:A.试题5答案:B【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘除法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、3x+5y,无法计算,故此选项错误;B、x3•x5=x8,故此选项正确;C、x6÷x3=x3,故此选项错误;D、(﹣x3)3=﹣x9,故此选项错误;故选:B.试题6答案:B【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3600000=3.6×106,故选:B.试题7答案:D【考点】统计量的选择.【分析】根据方差的意义:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.标准差是方差的平方根,也能反映数据的波动性;故要判断他的数学成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:D试题8答案:C【考点】多边形内角与外角.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.试题9答案:A【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.试题10答案:B【考点】根的判别式.【分析】根据判别式的意义得到△=42﹣4k=0,然后解一次方程即可.【解答】解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42﹣4k=0,解得:k=4,故选:B.试题11答案:C【考点】命题与定理.【分析】根据直线公理、三角形中位线定理、切线性质定理即可判断A、B、D正确.【解答】解:A、经过两点有且只有一条直线,正确.B、三角形的中位线平行且等于第三边的一半,正确.C、平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.D、圆的切线垂直于经过切点的半径,正确.故选C.试题12答案:A【考点】动点问题的函数图象.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sin α•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.试题13答案:a(a+b).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2+ab=a(a+b).故答案为:a(a+b).试题14答案:1 .【考点】分式的加减法.【分析】由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.【解答】解:原式==1.故答案为:1.试题15答案:x>2 .【考点】点的坐标.【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.试题16答案:5:4 .【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方求出相似比,再根据相似三角形周长的比等于相似比求解.【解答】解:∵△ABC与△DEF相似且面积之比为25:16,∴△ABC与△DEF的相似比为5:4;∴△ABC与△DEF的周长之比为5:4.故答案为:5:4.试题17答案:16 .【考点】圆锥的计算.【分析】设该圆锥的母线长为l,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到8π=,然后解方程即可.【解答】解:设该圆锥的母线长为l,根据题意得8π=,解得l=16,即该圆锥的母线长为16.故答案为16.试题18答案:10 .【考点】点、线、面、体.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得x1=﹣11(不合题意舍去),x2=10.答:n的值为10.故答案为:10.试题19答案:【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式、完全平方公式展开后再合并同类项即可化简,将a、b的值代入求值即可.【解答】解:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=﹣1,b=时,原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.试题20答案:【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可以求得选择曲目代号为A的学生占抽样总数的百分比;(2)根据条形统计图和扇形统计图可以求得选择C的人数,从而可以将图②补充完整;(3)根据条形统计图和扇形统计图可以估计全校选择此必唱歌曲的人数.【解答】解:(1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:×100%=20%.故答案为:20%;(2)由题意可得,选择C的人数有:30÷﹣36﹣30﹣44=70(人),故补全的图②如下图所示,(3)由题意可得,全校选择此必唱歌曲共有:1530×=595(人),即全校共有595名学生选择此必唱歌曲.试题21答案:【考点】全等三角形的判定与性质.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.试题22答案:【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.【解答】解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:=.试题23答案:【考点】一次函数的应用.【分析】(1)根据题意表示出甲仓库和乙仓库分别运往A、B两港口的物资数,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简;最后根据不等式组得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=80时,y最小,并求出最小值,写出运输方案.【解答】解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.试题24答案:【考点】解直角三角形的应用-方向角问题.【分析】(1)求出OC,由题意r≥OC,由此即可解决问题.(2)作AM⊥BC于M,求出AM即可解决问题.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,先列出方程求出x,再求出BN、AN利用不等式解决问题.【解答】解:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.试题25答案:【考点】圆的综合题.【分析】(1)由A、B、C三点坐标可知∠CBO=60°,又因为点D是△ABC的内心,所以BD平分∠CBO,然后利用锐角三角函数即可求出OD的长度;(2)根据题意可知,DF为半径,且∠DFE=90°,过点F作FG⊥y轴于点G,求得FG和OG的长度,即可求出点F的坐标,然后将E和F的坐标代入一次函数解析式中,即可求出直线EF的解析式;(3)⊙P上存在一点到△ABC三个顶点的距离相等,该点是△ABC的外接圆圆心,即为点D,所以DP=2,又因为点P在直线EF上,所以这样的点P共有2个,且由勾股定理可知PF=3.【解答】解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).试题26答案:【考点】二次函数综合题.【分析】(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.【解答】解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.设正方形OEFG的边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.综上所述:点F的坐标为(1,1);(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;②当ND=NM时,﹣t+==,解得t=3﹣;③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。
2015年吉林省长春市中考数学二模试卷(解析版)

2015年吉林省长春市中考数学二模试卷一、选择题(每小题3分,共24分)1.(3分)﹣的绝对值是()A.5B.﹣5C.D.﹣2.(3分)据统计,长春市第十届国际动漫艺术博览会的观众累计达到543200人次,543200这个数用科学记数法表示()A.54.32×104B.5.432×105C.5.432×106D.0.5432×106 3.(3分)图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图都改变4.(3分)不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.5.(3分)一元二次方程x2﹣4x+2=0根的判别式的值为()A.8B.﹣8C.2D.﹣26.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F,若AB=2,AC=6,DE=1.5,则DF的长为()A.7.5B.6C.4.5D.37.(3分)如图,P A为⊙O的切线,A为切点,B是OP与⊙O的交点,C是优弧AB上一点(不与点A、B重合).若∠P=36°,则∠ACB的大小为()A.18°B.27°C.36°D.54°8.(3分)如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A.逐渐减小B.逐渐增大C.先增大后减小D.不变二、填空题(每小题3分,共18分)9.(3分)比较大小:3(填写“<”或“>”).10.(3分)计算:(2ab2)3=.11.(3分)若一次函数y=(m﹣1)x+3(m为常数)的图象经过第一、二、四象限,则m 的取值范围是.12.(3分)如图,点C在直线AB上,按如下步骤作图:①以点C为圆心,任意长为半径作圆弧,交AB于点D、E;②分别以点D、E为圆心,大于DE的长为半径作圆弧,两弧相交于点F;③作直线CF,连结DF、EF.若∠FDC=50°,则∠CFE的大小为度.13.(3分)如图,⊙O经过▱OABC的顶点A、B、C,若OA=3,则的长为(结果保留π).14.(3分)如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为.三、解答题(本题共10小题,共78分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)小明和小刚各有一枚硬币,小明在硬币的正面贴上黄色标签,反面贴上红色标签;小刚在硬币的正面贴上蓝色标签,反面贴上红色标签,两人分别抛掷各自的硬币,请用画树状图(或列表)的方法,求硬币落地后出现颜色相同的概率.17.(6分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是△ABC内一点,连结AD,将线段AD绕点A逆时针旋转90°,得到线段AE,连结BD、CE.求证:BD=CE.18.(7分)某图书馆2013年年底有图书10万册,预计2015年年底图书增加到14.4万册,求这两年图书册数的年平均增长率.19.(7分)如图,在热气球上A处测得塔顶B的仰角为52°,测得塔底C的俯角为45°,已知A处距地面98米,求塔高BC.(结果精确到0.1米)【参考数据:sin52°=0.79,cos52°=0.62,tan52°=1.28】20.(7分)某校八年级全体男同学参加了跳绳比赛,从中随机抽取某班男同学的跳绳成绩,制作了如下频数分布表:根据上面统计信息,解答下列问题:(1)不全频数分布直方图.(2)班级准备对跳绳成绩优秀的男同学进行奖励,奖励人数占班级男同学的20%,该班张辉同学的成绩为140个,通过计算判断张辉能否获得奖励.(3)八年级共有200名男同学,若规定男同学的跳绳成绩在120个以上(含120个)为合格,估计该校八年级男同学成绩合格的人数.21.(8分)甲、乙两个工程队共同开凿一条隧道,甲对按一定的工作效率先施工,一段时间后,乙队从隧道的另一端按一定的工作效率加入施工,中途乙队遇到碎石层,工作效率降低,当乙队完成碎石层时恰好隧道被打通,此时甲队工作了50天.设甲、乙两队各自开凿隧道的长度为y(米),甲对的工作时间为x(天),y与x之间的函数图象如图所示.(1)求甲队的工作效率;(2)求乙队在碎石层施工时y与x之间的函数关系式;(3)求这条隧道的总长度.22.(9分)探究:如图①,点A在直线MN上,点B在直线MN外,连结AB,过线段AB 的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC,求证:BC⊥AD.应用:如图②,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB 的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC、BE.若∠MAN=150°,则∠CBE的大小为度.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣2(a>0)与y轴交于点A,点B的坐标为(,﹣2),过点B作y轴的平行线,交抛物线于点C,连结AB、AC.(1)当点B与点C关于x轴对称时,求该抛物线所对应的函数表达式;(2)当点B在抛物线对称轴上时,求点C的坐标;(3)在y轴上取一点D,使AD=AB,且点D、B在AC的两侧,连结CD,求AC,将四边形ABCD的面积分为1:2两部分时a的值.24.(12分)如图,在△ABC中,∠C=90°,AC=4,BC=3,点P从点A出发,以每秒4个单位长度的速度沿折线AC﹣CB运动,到点B停止.当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB于点Q,再以PQ为斜边作等腰直角三角形△PQR,且点R与△ABC的另一条直角边始终在PQ同侧,设△PQR与△ABC重叠部分图形的面积为S(平方单位).点P的运动时间为t(秒).(1)求点P在AC边上时PQ的长,(用含t的代数式表示);(2)求点R到AC、PQ所在直线的距离相等时t的取值范围;(3)当点P在AC边上运动时,求S与t之间的函数关系式;(4)直接写出点R落在△ABC高线上时t的值.2015年吉林省长春市中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)﹣的绝对值是()A.5B.﹣5C.D.﹣【考点】15:绝对值.【解答】解:根据负数的绝对值是它的相反数,得|﹣|=,故选:C.2.(3分)据统计,长春市第十届国际动漫艺术博览会的观众累计达到543200人次,543200这个数用科学记数法表示()A.54.32×104B.5.432×105C.5.432×106D.0.5432×106【考点】1I:科学记数法—表示较大的数.【解答】解:543200=5.432×105,故选:B.3.(3分)图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图都改变【考点】U2:简单组合体的三视图.【解答】解:①的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;②的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;故选:A.4.(3分)不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【解答】解:,由①得,x>﹣1,由②得,x≤1,故不等式组的解集为:﹣1<x≤1.在数轴上表示为:.故选:D.5.(3分)一元二次方程x2﹣4x+2=0根的判别式的值为()A.8B.﹣8C.2D.﹣2【考点】AA:根的判别式.【解答】解:∵一元二次方程x2﹣4x+2=0中a=1,b=﹣4,c=2,∴△=b2﹣4ac=(﹣4)2﹣4×2=8,故选:A.6.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F,若AB=2,AC=6,DE=1.5,则DF的长为()A.7.5B.6C.4.5D.3【考点】S4:平行线分线段成比例.【解答】解:∵AD∥BE∥CF,∴=,即=,∴DF=4.5.故选:C.7.(3分)如图,P A为⊙O的切线,A为切点,B是OP与⊙O的交点,C是优弧AB上一点(不与点A、B重合).若∠P=36°,则∠ACB的大小为()A.18°B.27°C.36°D.54°【考点】MC:切线的性质.【解答】解:∵P A为⊙O的切线,∴∠OAP=90°,∵∠P=36°,∴∠O=90°﹣∠P=90°﹣36°=54°,∴∠ACB=∠O=54°=27°,故选:B.8.(3分)如图,在平面直角坐标系中,点A是y轴正半轴上的一个定点,点B是反比例函数y=(k为常数)在第一象限内图象上的一个动点.当点B的纵坐标逐渐增大时,△OAB的面积()A.逐渐减小B.逐渐增大C.先增大后减小D.不变【考点】G6:反比例函数图象上点的坐标特征.【解答】解:∵反比例函数y=(k为常数)的图象在第一象限,∴y随x的增大而减小.∵点A是y轴正半轴上的一个定点,∴OA是定值.∵点B的纵坐标逐渐增大,∴其横坐标逐渐减小,即△OAB的底边OA一定,高逐渐减小,∴△OAB的面积逐渐减小.故选:A.二、填空题(每小题3分,共18分)9.(3分)比较大小:<3(填写“<”或“>”).【考点】2A:实数大小比较.【解答】解:∵7<9,∴<3.故答案为:<.10.(3分)计算:(2ab2)3=8a3b6.【考点】47:幂的乘方与积的乘方.【解答】解:(2ab2)3=8a3b6,故答案为:8a3b6.11.(3分)若一次函数y=(m﹣1)x+3(m为常数)的图象经过第一、二、四象限,则m 的取值范围是m<1.【考点】F1:一次函数的定义;F7:一次函数图象与系数的关系.【解答】解:∵一次函数y=(m﹣1)x+3的图象经过第一、二、四象限,∴m﹣1<0,解得m<1.故答案为:m<1.12.(3分)如图,点C在直线AB上,按如下步骤作图:①以点C为圆心,任意长为半径作圆弧,交AB于点D、E;②分别以点D、E为圆心,大于DE的长为半径作圆弧,两弧相交于点F;③作直线CF,连结DF、EF.若∠FDC=50°,则∠CFE的大小为40度.【考点】KG:线段垂直平分线的性质;N2:作图—基本作图.【解答】解:由题意可得:FC垂直平分DE,则DF=EF,∠DCF=∠ECF=90°,故∠CFE=90°﹣50°=40°.故答案为:40.13.(3分)如图,⊙O经过▱OABC的顶点A、B、C,若OA=3,则的长为π(结果保留π).【考点】L5:平行四边形的性质;MN:弧长的计算.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴AB=OC,∵OA=OB=OC,∴△OAB为等边三角形,∴∠AOB=60°,∴l===π,故答案为π.14.(3分)如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为5.【考点】HA:抛物线与x轴的交点.【解答】解:∵抛物线y=a(x﹣1)2+k(a、k为常数),∴对称轴为直线x=1,∵点A和点B关于直线x=1对称,且点A(﹣1,0),∴点B(3,0),∴OB=3,∵C点和D点关于x=1对称,且点C(0,a+k),∴点D(2,a+k),∴CD=2,∴线段OB与线段CD的长度和为5,故答案为5.三、解答题(本题共10小题,共78分)15.(6分)先化简,再求值:÷,其中x=.【考点】6D:分式的化简求值.【解答】解:原式=•=x2+2,当x=时,原式=6+2=8.16.(6分)小明和小刚各有一枚硬币,小明在硬币的正面贴上黄色标签,反面贴上红色标签;小刚在硬币的正面贴上蓝色标签,反面贴上红色标签,两人分别抛掷各自的硬币,请用画树状图(或列表)的方法,求硬币落地后出现颜色相同的概率.【考点】X6:列表法与树状图法.【解答】解:列树状图为:∵共有4种等可能的结果,颜色相同的有1种,∴P(出现颜色相同)=.17.(6分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是△ABC内一点,连结AD,将线段AD绕点A逆时针旋转90°,得到线段AE,连结BD、CE.求证:BD=CE.【考点】KD:全等三角形的判定与性质;R2:旋转的性质.【解答】解:由旋转的性质,可得∠DAE=90°,AD=AE,∵∠BAD+∠DAC=∠BAC=90°,∠CAE+∠DAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.18.(7分)某图书馆2013年年底有图书10万册,预计2015年年底图书增加到14.4万册,求这两年图书册数的年平均增长率.【考点】AD:一元二次方程的应用.【解答】解:设这两年图书册数的年平均增长率为x.根据题意,得10(1+x)2=14.4解得x1=0.2=20%,x2=﹣2.2 (不符合题意,舍去).答:这两年图书册数的年平均增长率为20%.19.(7分)如图,在热气球上A处测得塔顶B的仰角为52°,测得塔底C的俯角为45°,已知A处距地面98米,求塔高BC.(结果精确到0.1米)【参考数据:sin52°=0.79,cos52°=0.62,tan52°=1.28】【考点】TA:解直角三角形的应用﹣仰角俯角问题.【解答】解:如图,过点A作AD⊥BC于点D.由题意可知,在Rt△ADC中,∠ADC=90°,∠CAD=45°,CD=98,∴∠ACD=∠CAD=45°.∴AD=CD=98.在Rt△ABD中,BD=AD×tan∠BAD=98×1.28=125.44.∴BC=BD+CD=125.44+98=223.44≈223.4(米).答:塔高BC约为223.4米.20.(7分)某校八年级全体男同学参加了跳绳比赛,从中随机抽取某班男同学的跳绳成绩,制作了如下频数分布表:根据上面统计信息,解答下列问题:(1)不全频数分布直方图.(2)班级准备对跳绳成绩优秀的男同学进行奖励,奖励人数占班级男同学的20%,该班张辉同学的成绩为140个,通过计算判断张辉能否获得奖励.(3)八年级共有200名男同学,若规定男同学的跳绳成绩在120个以上(含120个)为合格,估计该校八年级男同学成绩合格的人数.【考点】V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图.【解答】解:(1)如图所示.;(2)∵==16%<20%,所以张辉能获得奖励.(3)因为200×=152,所以该校八年级男同学成绩合格的人数约为152人.21.(8分)甲、乙两个工程队共同开凿一条隧道,甲对按一定的工作效率先施工,一段时间后,乙队从隧道的另一端按一定的工作效率加入施工,中途乙队遇到碎石层,工作效率降低,当乙队完成碎石层时恰好隧道被打通,此时甲队工作了50天.设甲、乙两队各自开凿隧道的长度为y(米),甲对的工作时间为x(天),y与x之间的函数图象如图所示.(1)求甲队的工作效率;(2)求乙队在碎石层施工时y与x之间的函数关系式;(3)求这条隧道的总长度.【考点】FH:一次函数的应用.【解答】解:(1)720÷36=20,∴甲队的工作效率为20米/天;(2)设乙队在碎石层施工时y与x之间的函数关系式为y=kx+b,将点A(21,480)、B(36,720)代入,得,解得:,∴乙队在碎石层施工时y与x之间的函数关系式为y=16x+144;(3)20×50+16×50+144=1 944;∴这条隧道的总长度为1 944米.22.(9分)探究:如图①,点A在直线MN上,点B在直线MN外,连结AB,过线段AB 的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC,求证:BC⊥AD.应用:如图②,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB 的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC、BE.若∠MAN=150°,则∠CBE的大小为105度.【考点】J3:垂线;JA:平行线的性质.【解答】解:探究:∵PC∥MN,∴∠PCA=∠MAC.∵AD为∠MAB的平分线,∴∠MAC=∠P AC.∴∠PCA=∠P AC,∴PC=P A.∵P A=PB,∴PC=PB,∴∠B=∠BCP.∵∠B+∠BCP+∠PCA+∠P AC=180°,∴∠BCA=90°,∴BC⊥AD;应用:∵∠MAB的平分线AD,∠NAB的平分线AF,∠MAN=150°,∴∠BAC+∠BAE=75°,∵∠BAC+∠BAE+∠CBA+∠ABE=180°,∴∠CBE=∠CBA+∠ABE=180°﹣75°=105°故答案为:105.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣2(a>0)与y轴交于点A,点B的坐标为(,﹣2),过点B作y轴的平行线,交抛物线于点C,连结AB、AC.(1)当点B与点C关于x轴对称时,求该抛物线所对应的函数表达式;(2)当点B在抛物线对称轴上时,求点C的坐标;(3)在y轴上取一点D,使AD=AB,且点D、B在AC的两侧,连结CD,求AC,将四边形ABCD的面积分为1:2两部分时a的值.【考点】HF:二次函数综合题.【解答】解:(1)∵B(,﹣2),∴C(,2).∴﹣2﹣2=2,∴a=,∴抛物线所对应的函数表达式为y=x2﹣x﹣2;(2)∵抛物线的对称轴为x=1,∴=1,∴a=1.∴点C的坐标为(1,﹣3).(3)∵点C在抛物线上,点B的坐标为(,﹣2),∴点C的坐标为(,﹣4).当AC将四边形ABCD的面积分为1:2两部分时,BC=2AD或AD=2BC.当点C在点B上方时,如图①.﹣4﹣(﹣2)=,a=﹣(舍去).﹣4﹣(﹣2)=,a=.当点C在点B下方时,如图②.﹣2﹣(﹣4)=,a=.﹣2﹣(﹣4)=,a=.综上,a=,a=,a=.24.(12分)如图,在△ABC中,∠C=90°,AC=4,BC=3,点P从点A出发,以每秒4个单位长度的速度沿折线AC﹣CB运动,到点B停止.当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB于点Q,再以PQ为斜边作等腰直角三角形△PQR,且点R与△ABC的另一条直角边始终在PQ同侧,设△PQR与△ABC重叠部分图形的面积为S(平方单位).点P的运动时间为t(秒).(1)求点P在AC边上时PQ的长,(用含t的代数式表示);(2)求点R到AC、PQ所在直线的距离相等时t的取值范围;(3)当点P在AC边上运动时,求S与t之间的函数关系式;(4)直接写出点R落在△ABC高线上时t的值.【考点】SO:相似形综合题.【解答】解:(1)如图①,由题意可知AP=4t,tan A===,∴PQ=3t;(2)①当点P在AC边上时,如图①.∵∠RPQ=45°,∠CPQ=90°,∴∠CPR=45°=∠RPQ,∴点R到直线AC、PQ距离相等,此时0<t<1.②当点P在BC边上时,过点R作RH⊥PQ于点H,如图②,则有PC=4t﹣4,PB=7﹣4t,∵tan B===,∴PQ=PB=(7﹣4t).由题可得:RH=PC.∵RH=PQ,∴PC=PQ,∴4t﹣4=(7﹣4t),解得:t=.综上所述:0<t<1或t=;(3)①当0<t≤时,如图①.过点R作RH⊥PQ于点H,S=PQ•RH=×3t×=t2.②当<t<1时,如图③.过点R作RH⊥PQ于点H,交BC于点G,则有RG⊥MN,RH=PQ=t,GH=PC=4﹣4t,∴S=S△RPQ﹣S△RMN=PQ•RH﹣MN•RH=RH2﹣RG2=(t)2﹣[t﹣(4﹣4t)]2=﹣28t2+44t﹣16;(4)点R落在△ABC高线上时,t的值为,,,.提示:可分以下几种情况讨论:如图④~⑦①点P在AC上,且点R在AB的高CH上,如图④,过点P作PG⊥CH于G,易证△PGR≌△RHQ,则有PG=RH,GR=QH.易求得AB=5,CH=,AH=,BH=.PC=4﹣4t,CG=PC=(4﹣4t),PG=PC=(4﹣4t),AQ=AP=5t,QH=AH﹣AQ=﹣5t.根据CH=CG+GR+RH=CG+QH+PG=,得(4﹣4t)+﹣5t+(4﹣4t)=,解得:t=.②点P在AC上,且点R在AC的高BC上,如图⑤过点R作RH⊥PQ于H,易得PQ=2RH=2PC,PQ=AP=3t,PC=4﹣4t,∴3t=2(4﹣4t),解得:t=.③点P在BC上,且点R在BC的高AC上,如图⑥,过点R作RH⊥PQ于H,易得PQ=2RH=2PC,PQ=PB=(7﹣4t),PC=4t﹣4,∴(7﹣4t)=2(4t﹣4),解得:t=.④点P在BC上,且点R在AB的高CH上,如图⑦,过点P作PG⊥CH于G,易证△PGR≌△RHQ,则有PG=RH,GR=QH.易证△CGP∽△CHB,∴==.∵BC=3,CH=,BH=,CP=4t﹣4,∴CG=PC=(4t﹣4),PG=PC=(4t﹣4),同理可得QB=PB=(7﹣4t),QH=QB﹣BH=(7﹣4t)﹣.根据CH=CG+GH=CG+RH﹣RG=CG+PG﹣QH=,得(4t﹣4)+(4t﹣4)﹣[(7﹣4t)﹣]=,解得:t=.。
山西2024年中考适应性模拟测试 (一)数学试卷及答案

山西2024年中考适应性模拟测试(一)数学试卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共10小题,每小题3分,共30分。
1.计算:()163⎛⎫-÷- ⎪⎝⎭的结果是()A.18- B.2C.18D.2-2.下列环保标志图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列各式计算正确的是()A.248a a a ⋅= B.336a a a += C.()23639a a -=- D.222(12)4ab a b -=4.如图,该几何体的左视图是()A. B. C. D.5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-,著名的“断臂维纳斯”便是如此.若小明的身高满足此黄金分割比例,且肚脐至足底的长度为108cm ,则小明的身高约为()A.155cmB.165cmC.175cmD.185cm6.不等式组2022x x +>⎧⎨≤⎩的解为()A.21x -<≤B.21x -<<C.21x -≤≤ D.21x -≤<7.小明学习了物理中的欧姆定律发现:电阻两端的电压=电流强度×电流通过的电阻.已知某滑动变阻器两端电压恒定,当变阻器的电阻调节为10Ω时,测得通过该变阻器的电流为24A ,则通过该滑动变阻器的电流I (单位:A )与电阻R (单位:Ω)之间的函数关系图象大致是()A. B. C. D.8.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是()B.cmC.3cm D.1cm9.如图,随机闭合开关1S 、2S 、3S 中的两个,则能让灯泡⊗发光的概率是()A.12B.13C.23D.1410.如图是二次函数()20y ax bx c a =++≠的一部分,对称轴是直线2x =-,关于下列结论:①0ab <;②240b ac ->;③<0a b c -+;④40b a -=;⑤方程20ax bx +=的两个根为10x =,24x =-.其中正确的结论有()A.①③④B.②③⑤C.①②⑤D.②④⑤二、填空题:本题共5小题,共15分。
杭州市部分重点初中中考模拟考试数学试卷与答案解析(共五套)

杭州市部分重点初中中考模拟考试数学试卷(一)一、选择题(本题有10小题,每小题3分,共30分)1.实数﹣,﹣,2,﹣3中,为负整数的是()A.﹣B.﹣C.2 D.﹣32.+=()A.3 B.C.D.3.太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×1094.一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0 B.x﹣2<0 C.2x≥4 D.2﹣x<05.某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补6.将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.7.如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米8.已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<09.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%10.如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则的值是()A.B.3πC.5πD.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)二次根式中,字母x的取值范围是.12.(4分)已知是方程3x+2y=10的一个解,则m的值是.13.(4分)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是.14.(4分)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm 得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.15.(4分)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC 及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是.16.(4分)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣1)2021+﹣4sin45°+|﹣2|.18.(6分)已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.19.(6分)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长.(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.20.(8分)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.21.(8分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y 轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EF=1.8m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.22.(10分)在扇形AOB中,半径OA=6,点P在OA上,连结PB,将△OBP沿PB折叠得到△O′BP.(1)如图1,若∠O=75°,且BO′与所在的圆相切于点B.①求∠APO′的度数.②求AP的长.(2)如图2,BO′与相交于点D,若点D为的中点,且PD∥OB,求的长.23.(10分)背景:点A在反比例函数y=(k>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形.如图1,点A在第一象限内,当AC=4时,小李测得CD=3.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请帮助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了x>0时“Z函数”的图象.①求这个“Z函数”的表达式.②补画x<0时“Z函数”的图象,并写出这个函数的性质(两条即可).③过点(3,2)作一直线,与这个“Z函数”图象仅有一个交点,求该交点的横坐标.24.(12分)在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:y=x 上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.答案解析一、选择题(本题有10小题,每小题3分,共30分)1.实数﹣,﹣,2,﹣3中,为负整数的是()A.﹣B.﹣C.2 D.﹣3【分析】根据实数的分类即可做出判断.【解答】解:A选项是负分数,不符合题意;B选项是无理数,不符合题意;C选项是正整数,不符合题意;D选项是负整数,符合题意;故选:D.2.+=()A.3 B.C.D.【分析】根据同分母的分式的加减法法则计算即可.【解答】解:+==,故选:D.3.太阳与地球的平均距离大约是150000000千米,其中数150000000用科学记数法表示为()A.1.5×108B.15×107C.1.5×107D.0.15×109【分析】对于大于10的数,可以写成a×10n的形式,其中1≤a<10,n为正整数,n的值比原数的位数少1.【解答】解:150 000 000=1.5×108,故选:A.4.一个不等式的解在数轴上表示如图,则这个不等式可以是()A.x+2>0 B.x﹣2<0 C.2x≥4 D.2﹣x<0【分析】解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】解:A、x>﹣2,故A错误;B、x<2,故B正确;C、x≥2,故C错误;D、x>2,故D错误.故选:B.5.某同学的作业如下框,其中※处填的依据是()如图,已知直线l1,l2,l3,l4.若∠1=∠2,则∠3=∠4.请完成下面的说理过程.解:已知∠1=∠2,根据(内错角相等,两直线平行),得l1∥l2.再根据(※),得∠3=∠4.A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,同旁内角互补【分析】先证l1∥l2,再由平行线的性质即可得出结论.【解答】解:已知∠1=∠2,根据内错角相等,两直线平行,得l1∥l2,再根据两直线平行,同位角相等,得∠3=∠4.故选:C.6.将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【分析】直三棱柱的表面展开图的特点,由三个长方形的侧面和上下两个等边三角形的底面组成.【解答】解:选项A、B、C均可能是该直棱柱展开图,而选项D中的两个底面会重叠,不可能是它的表面展开图,故选:D.7.如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米【分析】直接利用等腰三角形的性质得出BD=DC,再利用锐角三角函数关系得出DC的长,即可得出答案。
甘肃省2023年中考数学模拟试卷1(含答案)

分为上下两部分,其中 E 为边 的
黄金分割点,即
.已知 为 2 米,则线段 的长为
米.
12.如图,直线 与反比例函数
ܿ , ܿ 的图象交于 A,B 两点,与 x 轴交于点 C,且
,连接 OA.已知
的面积为 12,则 k 的值为
.
2
13.如图,在菱形
中, ɣ,
.若 M、N 分别是边 、 上的动点,且 ܯ
∴ܾ ɣɣ ܿ , 即 ܾ ܿ ɣɣ , 故 B 不符合题意;
当 x=2 时, ɣɣ ܾ
,即 ɣɣ ܾ
,故 C 符合题意;
∵抛物线对称轴为直线
∴ܾ
ɣ ,即 ɣ ܾ
ܾ ɣ
,故 D 不符合题意,
故答案为:C.
【分析】由抛物线开口向上且与 y 轴负半轴相交,对称轴为直线
,可得 a>0,b<0,c<0,据此
∴
,
∴矩形
的面积为 ɣ
,
故答案为:C.
【分析】根据矩形的性质得到 OA=OB=OC=OD,推出
,即可求出矩
形 ABCD 的面积.
5.【答案】D
【解析】【解答】解:∵
,
∴
,
∵直角△ADC 中,tan
,
∴
tan
,
∴直角△ABD 中,由勾股定理可得,
.
故答案为:D. 【分析】根据已知条件知 BD=2CD=6,则 CD=3,根据三角函数的概念可得 AD,然后利用勾股定理进行
∴△ABD≌△ACE(SAS) ∴∠D=∠E. 【解析】【分析】利用等边三角形的性质,可证得∠ABC=∠ACB,AB=AC,利用邻补角的定义可推出 ∠ABD=∠ACE;再利用 SAS 证明△ABD≌△ACE,利用全等三角形的对应角相等,可证得结论.
【名师原创】中考数学三轮冲刺:全真模拟试卷(1)及答案解析
中考模拟题1(总分120分120分钟)一.选择题(共8小题,每题3分)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.963.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<25.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C58°D.30°6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=二.填空题(共6小题,每题3分)9.计算:=.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC的长为.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.三.解答题(共10小题)15.(6分)先化简,再求值:(1﹣)÷,其中x=3.16.(6分)有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)17.(6分)甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?18.(7分)如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.19.(7分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.20.(7分)君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?21.(8分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.22.(9分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.23.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.24.(12分)1.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.中考模拟题1答案一.选择题(共8小题)1.在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个考点:有理数.分析:根据有理数是有限小数或无限循环小数,可得答案.解答:解:,0,,﹣1.414,是有理数,故选:D.点评:本题考查了有理数,有理数是有限小数或无限循环小数.2.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A.48B.96 C.144 D.96考点:简单几何体的三视图;几何体的表面积.专题:压轴题.分析:根据AE的长,求底面正六边形的边长,用正六边形的周长×AD,得正六棱柱的侧面积.解答:解:如图,正六边形的边长为AC、BC,CE垂直平分AB,由正六边形的性质可知,∠ACB=120°,∠A=∠B=30°,AE=AB=3,所以,AC===2,正六棱柱的侧面积=6AC×AD=6×2×8=96.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.4.不等式组的解集是()A.﹣1≤x<2 B.﹣1<x≤2C.﹣1≤x≤2D.﹣1<x<2考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:求出不等式①②的解集,再根据找不等式组解集得规律求出即可.解答:解:,由①得:x<2由②得:x≥﹣1∴不等式组的解集是﹣1≤x<2,故选A.点评:本题主要考查对解一元一次不等式组,不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.5.如图,已知直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于()A.21°B.48°C.58°D.30°考点:平行线的性质;平行公理及推论.专题:计算题.分析:过C作CE∥直线m,根据平行公理的推论得到直线m∥n∥CE,根据平行线的性质得出∠ACE=∠DAC=42°,∠ECB=∠a,由∠ACB=90°即可求出答案.解答:解:过C作CE∥直线m,∵直线m∥n,∴直线m∥n∥CE,∴∠ACE=∠DAC=42°,∠ECB=∠a,∵∠ACB=90°,∴∠a=90°﹣∠ACE=90°﹣42°=48°.故选B.点评:本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能灵活运用性质进行计算是解此题的关键.6.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°考点:圆周角定理.分析:首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.点评:本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.7.在平面直角坐标系中,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,则c的值有()A.1个B.2个C.3个D.4个考点:坐标与图形性质.分析:分别过A、B点作x轴的垂线,垂足即为所求;以AB的中点为圆心,AB 为直径作圆,交x轴于两点,该两点即为所求.解答:解:如图所示,若A(﹣1,1),B(2,1),C(c,0)为一个直角三角形的三个顶点,c的值有4个.故选D.点评:考查了坐标与图形性质,注意C(c,0)的点在x轴上,有一定的难度.8.如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B (x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=考点:反比例函数综合题.专题:综合题;压轴题.分析:首先由AC=2BC,可得出A点的横坐标的绝对值是B点横坐标绝对值的两倍.再由|x1﹣x2|=2,可求出A点与B点的横坐标,然后根据点A、点B既在一次函数的图象上,又在反比例函数(k>0)的图象上,可求出k、b的值.解答:解:∵AC=2BC,∴A点的横坐标的绝对值是B点横坐标绝对值的两倍.∵点A、点B都在一次函数的图象上,∴可设B(m,m+b),则A(﹣2m,﹣m+b).∵|x1﹣x2|=2,∴m﹣(﹣2m)=2,∴m=.又∵点A、点B都在反比例函数(k>0)的图象上,∴(+b)=(﹣)(﹣+b),∴b=;∴k=(+)=.故选D.点评:此题综合考查了反比例函数、一次函数的性质,注意通过解方程组求出k、b的值.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.二.填空题(共6小题)9.计算:=.考点:二次根式的混合运算.分析:按照运算规则先算乘法,再算减法,即合并同类二次根式.解答:解:原式=﹣=2﹣=.点评:本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.10.若一件衣服两次打九折后,售价为y元,则原价为元(用y的代数式表示).考点:列代数式.分析:设原价为x,则x×0.9×0.9=y,从而可得出原价的表达式.解答:解:设原价为x,则x×0.9×0.9=y,故x=y,即原价为:y.故答案为:y.点评:本题考查了列代数式的知识,可以设出原价,用方程的思想解决,也可以直接表示出来.11.如图,∠B=∠C=90°,E是BC的中点,EF⊥AD于点F,DE平分∠ADC,∠CED=35°,则∠EAB=35°.考点:角平分线的性质.分析:根据角平分线上的点到角的两边距离相等可得CE=EF,然后求出EF=BE,再根据到角的两边距离相等的点在角的平分线上判断出AE平分∠BAD,根据直角三角形两锐角互余求出∠CDE,再求出∠ADC,然后求出∠BAD,再求解即可.解答:解:∵DE平分∠ADC,∠C=90°,EF⊥AD于点F,∴CE=EF,∵E是BC的中点,∴BE=CE,∴EF=BE,∴AE平分∠BAD,∵∠CED=35°,∴∠CDE=90°﹣35°=55°,∴∠ADC=2∠CDE=2×55°=110°,∵∠B=∠C=90°,∴AB∥CD,∴∠BAD=180°﹣110°=70°,∴∠EAB=∠BAD=×70°=35°.故答案为:35°.点评:本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,直角三角形两锐角互余的性质和平行线的判定与性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.12.如图,AB是⊙O的直径,AB=10,C是⊙O上一点,OD⊥BC于点D,BD=4,则AC 的长为6.考点:垂径定理;勾股定理;三角形中位线定理;圆周角定理.分析:根据垂径定理求出BC,根据圆周角定理求出∠C=90°,根据勾股定理求出即可.解答:解:∵OD⊥BC,OD过O,BD=4,∴BC=2BD=8,∵AB是直径,∴∠C=90°,在Rt△ACB中,AB=10,BC=8,由勾股定理得:AC==6,故答案为:6.点评:本题考查了垂径定理,勾股定理的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.13.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.专题:常规题型.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD 的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(0,1),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于A、B两点,若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,则a=.考点:二次函数综合题.分析:根据二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,得出ON=,根据M在反比例函数y=上,得出点M的纵坐标是﹣3a,从而得出NO+MN=+3a,再根据+3a≥2,得出+3a的最小值是2,求出a的值即可.解答:解:∵二次函数y=ax2+2x+c(a>0)图象的顶点M的横坐标是﹣,∴ON=,∵M在反比例函数y=上,∴点M的纵坐标是﹣3a,∴MN=3a,∴NO+MN=+3a,∵+3a≥2,∴+3a≥2,∴+3a的最小值是2,即+3a=2,解得;a=,经检验a=是原方程的解.故答案为:.点评:此题考查了二次函数的综合,用到的知识点是二次函数和反比例函数的图象与性质,关键是求出+3a的最小值是2,列出方程.三.解答题(共10小题)15.先化简,再求值:(1﹣)÷,其中x=3.考点:分式的化简求值.分析:先计算括号内的分式减法,然后把除法转化为乘法进行化简,最后代入求值.解答:解:原式=(﹣)×=×=.把x=3代入,得==,即原式=.故答案为:.点评:本题考查了分式的化简求值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.16.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(请用树状图或列表法求解)考点:列表法与树状图法.专题:数形结合.分析:列举出所有情况,看抽出的两张纸片上的数字之积小于6的情况数占总情况数的多少即可.解答:解:共有16种情况,积小于6的情况有8种,所以P(小于6)==.点评:考查列树状图解决概率问题;找到抽出的两张纸片上的数字之积小于6的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.17.甲喜欢喝西湖龙井茶,乙喜欢喝咖啡.1包西湖龙井茶叶,甲、乙两人一起喝10天喝完,甲单独喝则比乙单独喝快48天喝完;1罐咖啡,甲、乙两人一起喝12天喝完,乙单独喝则需20天喝完.(1)甲、乙单独喝完1包茶叶各需多少天?(2)假如现在让甲单独先喝咖啡,而让乙单独先喝茶,甲在有咖啡的情况下决不能喝自己喜欢的茶,而乙在有茶叶的情况下决不能喝自己喜欢的咖啡,问两人一起喝完1包茶叶和1罐咖啡需要多少天?考点:分式方程的应用.专题:应用题.分析:(1)用一个字母表示出甲乙两人的工作量,等量关系为:甲乙和喝10天的工作量=1,把相关数值代入计算即可;(2)易得甲乙喝咖啡的工作效率,喝咖啡用的天数少,算出甲喝咖啡用的天数,进而加上甲乙和喝茶叶用的天数即为两人一起喝完1包茶叶和1罐咖啡需要天数.解答:解:(1)设甲单独x天喝完1包茶叶,则每天喝的茶叶为,乙单独(x+48)天喝完1包茶叶,则每天喝的茶叶为.;解得x=12或x=﹣40(舍去),经检验,x=12是原方程的解,∴x+48=60.答:甲单独12天喝完1包茶叶,乙单独60天喝完1包茶叶;(2)甲单独喝一罐咖啡的时间为:1÷()=30天;∴30天后甲喝完咖啡而乙只喝完茶叶的一半,故剩下的茶叶变成两人合喝,由题意可知,他们两人还能喝5天.∴两人35天才全部喝完.点评:考查分式方程的应用;得到甲乙和喝完茶叶的工作量的等量关系是解决本题的关键.18.如图,在某隧道建设工程中,需沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.为了使开挖点E在直线AC上,现在AC上取一点B,AC外取一点D,测得∠ABD=140°,BD=704m,∠D=50°.求开挖点E到点D的距离.(精确到1米)参考数据:sin50°=0.8,cos50°=0.6,tan50°=1.2.考点:解直角三角形的应用.分析:先根据∠ABD=140°,∠D=50°,求出∠E=90°,判断出△BED为直角三角形,再根据锐角三角函数的定义进行求解即可.解答:解:根据题意得:BD=704m,∠ABD=140°,∠D=50°.∵∠EBD=180°﹣∠ABD,∴∠EBD=180°﹣140°=40°.在△BDE中,∠E=180°﹣∠EBD﹣∠D,∴∠E=180°﹣40°﹣50°=90°,∴△BED为直角三角形,在Rt△BED中,∵cos∠D=,∴DE=BD×cos50°=704×0.6=422.4≈422(m).答:开挖点E到点D的距离为422m.点评:本题考查的是解直角三角形在实际生活中的运用,涉及到三角形内角和定理及锐角三角函数的定义,熟知以上知识是解答此题的关键.19.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.考点:切线的判定与性质.专题:压轴题.分析:(1)AF为为圆O的切线,理由为:连接OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF 的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.解答:解:(1)AF为圆O的切线,理由为:连接OC,∵PC为圆O切线,∴CP⊥OC,∴∠OCP=90°,∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB,∵OC=OB,∴∠OCB=∠B,∴∠AOF=∠COF,∵在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠OAF=∠OCF=90°,则AF为圆O的切线;(2)∵△AOF≌△COF,∴∠AOF=∠COF,∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC,∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=5,∵S△AOF=•OA•AF=•OF•AE,∴AE=,则AC=2AE=.点评:此题考查了切线的判定与性质,涉及的知识有:全等三角形的判定与性质,平行线的性质,等腰三角形的性质,三角形的面积求法,熟练掌握切线的判定与性质是解本题的关键.20.君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)由最需要直尺的学生数除以占的百分比求出总人数,确定出最需要圆规的学生数,补全条形统计图即可;(2)求出最需要钢笔的学生占的百分比,乘以970即可得到结果.解答:解:(1)根据题意得:18÷30%=60(名),60﹣(21+18+6)=15(名),则本次调查中,最需要圆规的学生有15名,补全条形统计图,如图所示:(2)根据题意得:970×=97(名),则估计全校学生中最需要钢笔的学生有97名.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图所示:(1)根据图象,请判断:y与x(1≤x≤6)的变化规律应该符合②函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);(2)求出y与x(1≤x≤6)的函数关系式(不写取值范围);(3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.考点:一次函数的应用;一元二次方程的应用.分析:(1)根据图象是一条直线,可得函数的类型;(2)根据待定系数法,可得函数解析式;(3)根据自变量的值,可得相应的函数值,根据等量关系,可得方程,根据解方程,可得答案.解答:解:(1)②;(2)设函数解析式为y=kx+b (a≠0),将(1,80)、(4,95)代入得:,∴∴一次函数的解析式是y=5x+75;(3)把x=6代入y=5x+75得y=105,6月份的收入是105万元,设这个增长率是a,根据题意得105(1+a)2=151.2,解得∴,(不合题意,舍去)答:这个增长率是20%.点评:本题考查了一次函数的应用,利用待定系数法求解析式,(3)找出等量关系列方程是解题关键,不符合题意的要舍去.22.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.考点:四边形综合题.分析:(1)三角形ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)首先证明△BAD≌△CAF,△FCD是直角三角形,然后根据正方形的性质即可求得DF 的长,则OC即可求得.解答:证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;(2)CF﹣CD=BC;(3)①CD﹣CF=BC②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为2且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴OC=DF=2.点评:本题考查了正方形与全等三角形的判定与性质的综合应用,证明三角形全等是关键.23.如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:几何综合题;压轴题.分析:(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为c.解答:解:(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C两点的坐标代入y=﹣x2+bx+c得,,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y=﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠OBC,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(﹣c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣(﹣c)2+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).点评:本题主要考查了二次函数对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.24.如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC 垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考点:相似形综合题.专题:压轴题.分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC 延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x 轴,y轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DB,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,。
2015年荆门市中考数学试卷及答案2
荆门市2015年初中毕业生学业水平考试数 学 试 题说明:1.全卷分两部分,第一部分为选择题,第二部分为非选择题,考试时间120分钟,满分120分.2.本卷试题,考生必须在答题卡上按规范作答;凡在试卷、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁、不能折叠.3.选择题1—12题,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;非选择题13—24题,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡对应的区域内.第一部分 选择题一、选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,有且只有一个答案是正确的)1.64的立方根为A .4B .4±C .8D .8±2.下列计算正确的是A .235a a a +=B .236a a a ⋅=C .235()a a =D .523a a a ÷=3.下列四个几何体中,俯视图为四边形的是4.某市2014年的国民生产总值为2073亿元,这个数用科学记数法表示为A .102.07310⨯元B .112.07310⨯元C .122.07310⨯元D .132.07310⨯元5.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为A .8或10B .8C .10D .6或126.如图,m ∥n ,直线l 分别交m 、n 于点A 、点B ,AC ⊥AB ,AC 交直线n 于点C ,若∠1=35°,则DC B A∠2等于A .35°B .45°C .55°D .65°7.若关于x 的一元二次方程2450x x a -+-=有实数根,则a 的取值范围是A .1a ≥B .1a >C .1a ≤D .1a <8.当1<a <2时,代数式2(2)10a a -+-=的值是A .1-B .1C .23a -D .32a -9.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是A .甲的速度随时间的增加而增大B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人相遇D .在起跑后第50秒时,乙在甲的前面 10.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记为第一次传球).则经过三次传球后,球仍回到甲手中的概率是A .12B .14C .38D .58 11.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan DBC ∠的值为A .13B 21C .23-D .1412.如图,点A ,B ,C 在一条直线上,△ABD ,△BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD ,BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:①△ABE ≌△DBC ;②∠DMA =60°;③△BPQ 为等边三角形;④MB 平分∠AMC .其中结论正确的有A .1个B .2个C .3个D .4个C B A 21n m第6题图 第9题图 D O t (秒)s (米)80060040030020022018050C B A 第11题图 E D C A第12题图 MPQ E DC BA第二部分 非选择题二、填空题(本题共5小题,每小题3分,共15分)13.不等式组352,1212x x x x -⎧⎪⎨-+⎪⎩<≤的解集是 ▲ . 14.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材购买了 ▲ 千克.15.已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 ▲ .16.在矩形ABCD 中,AB =5,A D =12,将矩形ABCD 沿直线l 向右翻滚两次至如图所示位置,则点B 所经过的路线长是▲ (结果不取近似值).17.如图,点1A ,2A 依次在93(0)y x x =>的图象上,点1B ,2B 依次在x 轴的正半轴上,若11A OB △,212A B B △均为等边三角形,则点2B 的坐标为▲ .三、解答题(本大题共7题,共69分)18.(本题满分8分)先化简,再求值: 22222a b a b a a b a ba ab b --⋅-+--+,其中13a =13b =-.19.(本题满分9分)已知,如图在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE =CF ,DF ∥BE ,AC 平分∠BAD .求证:四边形ABCD 为菱形.第16题图 D 'C 'B 'A 'D C B A l 第17题图 B 2B 1A 2A 1O xy第19题图 F E D C BA20.(本题满分10分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制如图所示的统计图表. 组别 身高(cm )Ax <150 B150≤x <155 C155≤x <160 D160≤x <165 Ex ≥165[根据图表中提供的信息,回答下列问题: (1)在样本中,男生身高的中位数落在_______组(填组别序号),女生身高在B 组的人数有 _______人;(2)在样本中,身高在150≤x <155之间的人数共有_______人,身高人数最多的在____组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x <165之间的学生约有多少人?21.(本题满分10分)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000 米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).女生身高情况扇形图男生身高情况直方图5%15%30%20%/cm 频数(人数)E D C B A 14128420第21题图60°45°D C22.(本题满分10分)已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线;(2)求证:2CE EH EA =⋅;(3)若⊙O 的半径为5,3sin 5A =,求BH 的长.23.(本题满分10分)甲经销商库存有1200套A 品牌服装,每套进价400元,每套售价500元,一年内可卖完.现市场上流行B 品牌服装,每套进价300元,每套售价600元,但一年内只允许经销商一次性订购B 品牌服装,一年内B 品牌服装销售无积压.因甲经销商无流动资金,只有低价转让A 品牌服装,用转让来的资金购进B 品牌服装,并销售.经与乙经销商协商,甲、乙双方达成转让协议,转让价格y (元/套)与转让数量x (套)之间的函数关系式为1360(1001200)10y x x =-+≤≤.若甲经销商转让x 套A 品牌服装,一年内所获总利润为w (元).(1)求转让后剩余的A 品牌服装的销售款1Q (元)与x (套)之间的函数关系式;(2)求B 品牌服装的销售款2Q (元)与x (套)之间的函数关系式;(3)求w (元)与x (套)之间的函数关系式,并求w 的最大值.第22题图B24.(本题满分12分) 如图,在矩形OABC 中,OA =5,AB =4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长及经过O ,D ,C 三点的抛物线的解析式;(2)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,DP =DQ ;(3)若点N 在(1)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使得以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.第24题图 E D C B AO x y。
中考数学模拟试卷精选汇编:不等式(组)答案
不等式(组)一.选择题1.(2015·吉林长春·二模)答案:D2..(2015·湖南永州·三模)已知点P (3﹣m ,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是()A .B.C.D .答案:A 解析:已知点P (3﹣m ,m ﹣1)在第二象限,3﹣m <0且m ﹣1>0,解得m >3,m >1,故选:A .3.(2015·江苏江阴青阳片·期中)不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为(▲)A .B.C. D.[w^*#w~*************]答案:D4.(2015·安徽省蚌埠市经济开发·二摸)不等式组215,3112x x x -<⎧⎪⎨-+≥⎪⎩的解集在数轴上表示正确的是【】答案:A5.(2015·广东广州·一模)若x >y ,则下列式子中错误的是()A .x -3>y -3 B.x 3>y3C .x +3>y +3D .-3x >-3y答案:A6.(2015·广东高要市·一模)不等式组⎩⎨⎧<≥593x x 的整数解共有(▲)A .1个B .2个C .3个D .4个答案:B7.(2015•山东潍坊•第二学期期中)不等式的解集在数轴上表示为A. B. C. D.答案:D ;8.+2>5,-2x≥1的解在数轴上表示为答案:C9.(2015•山东青岛•一模)从下列不等式中选择一个与x +1≥2组成不等式组,若要使该不等式组的解集为x ≥1,则可以选择的不等式是A .x >0B .x >2C .x <0D .x <2答案:A二.填空题1.(2015·湖南岳阳·调研)不等式5x x -<的解集是;答案:52x >2.(2015·江西赣三中·2014—2015学年第二学期中考模拟)不等式组的解集是.答案:x>3.(2015·江西省·中等学校招生考试数学模拟)不等式组⎪⎩⎪⎨⎧≥+<--x xx 1222的解集是.答案:1 2.x -<≤4.(2015·网上阅卷适应性测试)如图,函数2y x =-和y kx b =+的图像相交于点(,3)A m ,则关于x 的不等式02x b kx >++的解集为____▲_______.答案:23->x 5.(2015·江苏无锡北塘区·一模)已知关于x 的方程2x +4=m -x 的解为负数,则m 的取值范围是▲.答案:m <46.(2015·无锡市南长区·一模)已知0≤x ≤1,若x -2y =6,则y 的最小值是____________.答案:-3三.解答题1.(2015·江苏高邮·一模)(本题满分8分)解:(1)解不等式①得:x ≥-1解不等式②得:x <3………………………2分∴不等式组的解集为:-1≤x<3………………………2分(2)原式=11a -………………………2分当x =-3时,原式=14-………………………2分第3题2.(2015·江苏常州·一模)解不等式组:⎩⎨⎧+-≤+<-)173252x x x (答案:解不等式组:252371)x x x -<⎧⎨+≤-+⎩(①②解:解不等式①得:25->x ------------------------------------------------------------2′解不等式②得:910-≤x -----------------------------------------------------------4′∴原不等式组的解集是91025-≤<-x .53.(2015·江苏江阴·3月月考)解不等式组212(3)33x x x +≥⎧⎨+->⎩,,答案:(1)解:由x +2≥1得x ≥-1,由2x +6-3x 得x <3,∴不等式组的解集为-1≤x <3.4.(2015·江苏江阴·3月月考)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?答案:解:(1)设今年甲型号手机每台售价为x 元,由题意得,80000x +500=60000x ,解得x =1500.经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m 台,由题意得,17600≤1000m +800(20﹣m )≤18400,8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案.(3)方法一设总获利W 元,则W =(1500﹣1000)m +(1400﹣800﹣a )(20﹣m ),W =(a ﹣100)m +12000﹣20a .所以当a =100时,(2)中所有的方案获利相同.5.(2015·江苏江阴长泾片·期中)解不等式组211432x x x+>-⎧⎨-≤-⎩答案:解不等式①,得x >-1.解不等式②,得1x ≤.所以,不等式组的解集是-1<x 1≤.6.(2015·江苏江阴夏港中学·期中)解不等式组:()⎪⎩⎪⎨⎧<-+≤+321234xx x x 答案:解:由(1)得,1-≥x ………………….1分由(2)得,x <3……………………2分不等式组的解集是31<≤-x ……………4分7.(2015·江苏江阴要塞片·一模)解不等式组:()②①⎪⎩⎪⎨⎧≤-+≤+321234xx x x 答案::由①得:x ≥-1…1分由②得:x ≤3……2分∴-1≤x ≤3……4分8.(2015·北京市朝阳区·一模)解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,答案:解:解不等式①,得2->x (2)分解不等式②,得x <1.………………………………………………………………4分∴不等式组的解集是x <-2<1.…………………………………………………5分9.(2015·合肥市蜀山区调研试卷)解不等式3(1)64x x +-≤,并把解集在数轴上表示出来.第15题图答案:解:3364x x +-≤……………………………………2分3x -≤……………………………………………4分3x ≥-……………………………………………6分不等式解集在数轴上表示为:……………………………8分10.(2015·安庆·一摸)某加工厂投资兴建2条全自动生产线和1条半自动生产线共需资金26万元,而投资兴建1条全自动生产线和3条半自动生产线共需资金28万元(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2015年每条全自动生产线的毛利润为26万元,每条半自动生产线的毛利润为16万元.这-年,该加工厂共投资兴建10条生产线,若想获得不少于120万元的纯利润...,则2015年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润-成本)答案:解:(1)设每条全自动生产线的成本为x 万元,每条半自动生产线的成本为y 万元,根据题意,得⎩⎨⎧=+=+283262y x y x ,解得⎩⎨⎧==610y x .答:每条全自动生产线的成本为10万元,每条半自动生产线的成本为6万元.…………5分(2)设2015年该加工厂需兴建全自动生产线a 条,根据题意,得(26-10)a +(16-6)(10-a )≥120,解得a ≥331,由于a 是正整数,所以a 至少取4.即2015年该加工厂至少需投资兴建4条全自动生产线.…………10分11.“(2015·合肥市蜀山区调研试卷)大湖名城·创新高地·中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?答案:解:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.………1分设九(1)班共有x 人去旅游,则人均费用为[100﹣2(x ﹣30)]元,由题意得:x [100﹣2(x ﹣30)]=3150……………………4分整理得x 2﹣80x +1575=0,解得x 1=35,x 2=45……………………6分当x =35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x =45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.…7分答:该班共有35名同学参加了研学旅游活动.…………8分12.(2015·福建漳州·一模)(满分9分)福建省第15届省运会将于2014年10月在漳州市举行,体训基地欲购买单价为100元的排球和单价为300元的篮球共100个.(1)如果购买两种球的总费用不超过...24000元,并且篮球数不少于...排球数的2倍,那么有哪几种购买方案?(2)从节约开支的角度来看,你认为采用哪种方案最合算?解:(1)设购买排球x 个,则购买篮球的个数是(100-x )个根据题意:⎩⎨⎧≤-+≥-24000)100(3001002100x x xx …………………2分解得:30≤x ≤3133…………………3分∵x 为整数,∴x 取30,31,32,33…………………4分∴有4种购买方案:方案①:排球30个,篮球70个;方案②:排球31个,篮球69个;方案③:排球32个,篮球68个;方案④:排球33个,篮球67个.……………5分(2)设购买篮球和排球的总费用为y 元则:)100(300100x x y -+=…………………7分即:30000200+-=x y 0200<-=k ∴增大而减小随x y …………………8分最小时,当y 33=∴x ∴方案④最合算…………………9分13.(2015·广东广州·二模)解不等式组:231821x x x +>⎧⎨-≤-⎩,并把解集在数轴上表示出来.解:231821x x x +>⎧⎨-≤-⎩解不等式①,得1x >---------------------------------------------------------1分解不等式②,得3x ≥.-------------------------------------------------------2分所以此不等式组的解集为:3x ≥.----------------------------------------------4分不等式①②的解集在数轴上表示为:(图略)--------------------------------------------6分14.(2015·广东广州·一模)x +1,,并在数轴上表示出其解集.解:3x -1>2x +1,①x -32≤1,②由①,得x >3.由②,得x ≤5.∴不等式组的解集为3<x ≤5.解集在数轴上表示如图.15.(2015·广东潮州·期中)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩,并把它的解集在数轴上表示出来.解不等式①,得:2x <,………2分解不等式②,得:1x ≥,………4分∴不等式组的解集为:12x ≤<,…………………5分在数轴表示为:…………………6分16.(2015•山东滕州张汪中学•质量检测二)(9分)解不等式组⎪⎩⎪⎨⎧<-+≥+,22),12(232x x x x 并写出不等式组的整数解.答案:解:由不等式(1)得:12x ≤………………………………2分由(2)得x >-2………………………………2分∴此不等式组的解集是:-2<12x ≤………………………………8分∴此不等式组的整数解是:-1,0.………………………………9分17.(2015•山东潍坊广文中学、文华国际学校•一模)商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.答案:解:(1)设该商场能购进甲种商品x 件,根据题意,得1535(100)2700x x +-= ----------------------------3分解得,40x =,乙种商品:1004060-=(件)答:该商品能购进甲种商品40件,乙种商品60件.----------4分(2)设该商场购进甲种商品a 件,则购进乙种商品(100)a -件.根据题意,得(2015)(4535)(100)750(2015)(4535)(100)760a a a a -+--⎧⎨-+--⎩≥≤----------------------6分因此,不等式组的解集为4850a ≤≤根据题意,a 的值应是整数,48a ∴=或49=a 或50a =---------8分∴该商场共有三种进货方案:方案一:购进甲种商品48件,乙种商品52件,方案二:购进甲种商品49件,乙种商品51件,方案三:购进甲种商品50件,乙种商品50件.--------------10分18.(2015·呼和浩特市初三年级质量普查调研)(5分)已知不等式组523(1)1222x x x a x ->+⎧⎪⎨--⎪⎩≤①②的解包含两个正整数,求a 的取值范围.答案:512x >解:解不等式()得:,2x a ≤解不等式()得:,45a ≤<由数轴可以看出当时不等式组的解集包含两个正整数19.(2015·山东省济南市商河县一模)(本小题满分3分)解不等式:236+>-x x 答案:(1)x-6>3x+2解:x-3x>2+6,-2x>8解得:x<-420.(2015·山东省东营区实验学校一模)解不等式组,并写出不等式组的整数解.解:解3x+2≤2(x+3)得出:x≤4,解2132x x->得出:x>2,因此不等式的解集是2<x ≤4所以整数解有两个,即是3与4.21.(2015·辽宁盘锦市一模)24.(12分)草梅是我地区的特色时令水果,草梅一上市,水果店的老板用1200元购进一批草梅,很快售完;老板又用2500元购进第二批草梅,所购箱数是第一批的2倍,但进价比第一批每箱多了5元.(1)第一批草梅每箱进价多少元?(2)老板以每箱150元的价格销售第二批草梅,售出80%后,为了尽快售完,决定打折促销,要使第二批草梅的销售利润不少于320元,剩余的草梅每箱售价至少打几折?(利润=售价﹣进价)解:(1)设第一批草梅每件进价x元,则×2=,解得x=120.经检验,x=120是原方程的根.答:第一批草梅每箱进价为120元;(2)设剩余的草梅每箱售价打y折.则:×150×80%+×150×(1﹣80%)×0.1y﹣2500≥320,解得y≥7.答:剩余的草梅每箱售价至少打7折.22.(2015·辽宁东港市黑沟学校一模,12分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过600元,求这所中学最多可以购买多少个篮球?解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤600,解得:m≤33,∵m是整数,∴m 最大可取33.答:这所中学最多可以购买篮球33个23.(2015山东·枣庄一模)解不等式组:⎪⎩⎪⎨⎧≥+<-②①131202x x ,并把它的解集在数轴上表示出来.答案:解:解不等式①,得:2x <,解不等式②,得:1x ≥,∴不等式组的解集为:12x ≤<,在数轴表示为:24.(2015·山东枣庄·二模)先化简,再求值:22151()939x x x x x x --÷----,其中x 是不等式组35157332x x x x -≤+⎧⎪⎨+≤+⎪⎩的整数解.答案:解:原式1(3)(51)=3)(3)(3)(3)x x x x x x x x -+--÷+-+-(2121=3)(3)(3)(3)x x x x x x x --+÷+-+-(213)(3)=3)(3)(1)x x x x x x -+-⋅+--((11x =-6分解得不等式组35157332x x x x -≤+⎧⎪⎨+≤+⎪⎩的解集为13x ≤≤123x x =∴ 又为整数,,,13x x ≠≠ 又且2x =∴8分12121x ===-当时,原式10分25.(2015•山东东营•一模)解不等式组,并写出不等式组的整数解.答案:2<x ≤4;3和426.(2015•山东济南•网评培训)解不等式1233x x +-<,并把解集在数轴上表示出来.解:3(23)1x x -<+.691x x -<+.510x <.2x <.∴原不等式的解集是2x <.它在数轴上的表示如图:-143210-2-3-427.(2015•山东济南•一模)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.解:设车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品.根据题意可得,12x ×100+10(10﹣x )×180≥15600,解得;x ≤4,∴10﹣x ≥6,∴至少要派6名工人去生产乙种产品才合适.28.(2015•山东东营•一模)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:,解得:,答:A 、B 两种型号电风扇的销售单价分别为250元、210元;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,解得:a ≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.29.(2015-2)≤4,x -1..答案:解:解不等式1,得x ≥1,……1分解不等式2,得x <4……2分∴不等式组的解集是1≤x <4……4分30.(2015·江苏南京溧水区·一模)3x >18,-x -22.并写出不等式组的整数解.答案:解:解不等式①,得x >133;…………………………2分解不等式②,得x ≤6.…………………………4分所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6.…………………………………6分31.(2015·江苏无锡北塘区·一模)-2)≤4,x -1..答案:解:解不等式1,得x ≥1,……1分解不等式2,得x <4……2分∴不等式组的解集是1≤x <4……4分32.(2015·江苏扬州宝应县·一模)解不等式组54312125x x x x +>⎧⎪--⎨⎪⎩,≤.答案:解:由(1)得:2x >-;…………………………………3分由(2)得:3x ≤-;…………………………………6分所以:原不等式组的解集是:23x -<≤.…………………………………8分33.(2015·江苏南菁中学·期中)化简:31922+--a a a 答案:(2)原式=)3)(3(3)3)(3(2-+---+a a a a a a …………1分=)3)(3()3(2-+--a a a a …………2分=)3)(3(3-++a a a …………3分=31-a …………4分34.(2015·无锡市南长区·一模)解不等式组:+3≥x ,x -1)<8-x .答案:+3≥x ,x -1)<8-x .解:解不等式①得:x ≤3解不等式②得:x >-2∴此不等式组的解集为-2<x ≤335.(2015·无锡市宜兴市洑东中学·一模)解不等式组:⎪⎩⎪⎨⎧-≤-〉-121312x x x x .答案:解:由⎪⎩⎪⎨⎧-≤-〉-121312x x xx ⇒211132x x >x x --≤-+⇒14x >x ≤14<x ⇒≤36.(2015·无锡市宜兴市洑东中学·一模)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?答案:解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,……(1分)解得:,∴y与x之间的函数关系式为y=﹣x+300;……(2分)(2)∵y=﹣x+300;∴当x=120时,y=180.……(3分)设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,由题意,得120a+180×2a=7200,解得:a=15,……(4分)∴乙品牌的进货单价是30元.……(5分)答:甲、乙两种品牌的文具盒进货单价分别为15元,30元;(3)设甲品牌进货m个,则乙品牌的进货(﹣m+300)个,由题意,得,解得:180≤m≤181,……(6分)∵m为整数∴m=180,181.……(7分)∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个;……(8分)设两种品牌的文具盒全部售出后获得的利润为W 元,由题意,得W =4m +9(﹣m +300)=﹣5m +2700.……(9分)∵k =﹣5<0,∴W 随m 的增大而减小,∴m =180时,W 最大=1800元.……(10分)37.(2015,…………①<3x .…②,…………①<3x .…②解:由①得2≤x 由②得2->x 故原不等式组的解集为22≤<-x 38.(2015·无锡市新区·期中)为了迎接无锡市排球运动会,市排协准备新购一批排球.(1)张会长问小李:“我们现在还有多少个排球?”,小李说:“两年前我们购进100个新排球,由于训练损坏,现在还有81个球.”,假设这两年平均每年的损坏率相同,求损坏率.(2)张会长说:“我们协会现有训练队是奇数个,如果新购进的排球,每队分8个球,新球正好都分完;如果每队分9个球,那么有一个队分得的新球就不足6个,但超过2个.”请问市排协准备新购排球多少个?该协会有多少个训练队?(3)张会长要求小李去买这批新排球,小李看到某体育用品商店提供如下信息:信息一:可供选择的排球有A 、B 、C 三种型号,但要求购买A 、B 型号数量相等.信息二:如表:设购买A 、C 型号排球分别为a个、b 个,请你能帮助小李制定一个购买方案.要求购买总费用w (元)最少,而且要使这批排球两年后没有损坏的个数不少于27个.型号每个型号批发单价(元)每年每个型号排球的损坏率A 300.2B 200.3C500.1答案:解:(1)由题意可设损坏率为x ,∴()8111002=-x .(1分)解得:1.01=x ,9.12=x (不合题意,舍去)(2分)答:损坏率为10%(3分)(2)设有x 个训练队,则有8x 个排球(4分).∴()61982<--<x x (5分)解之3<x <7∵有奇数个训练队∴x 取5答:有5个训练队,40个排球。
2024年上海中考数学模拟练习卷一及参考答案
上海市2024年中考数学模拟练习卷1一、单选题+A.1.425sinα+C.1.425tanα中,6.如图,锐角ABC∠与∠点E,使得ADEA .甲正确乙错误B .甲错误乙正确C .甲、乙皆正确D .甲、乙皆错误二、填空题12.如图,在ABC 中,ACB ∠么ACD 与CBD △的相似比k 13.已知点A 在抛物线y 果点A 的横坐标是1-,那么点14.如图,抛物线y x =-15.已知点P 为等边三角形角形的边长为2,那么PD 16.如图,在边长为1的正方形网格中,点上,连结AB 、CD 相交于于.17.ABC 中,点D 在边19BDE BDF ABC S S S ==△△△,如果18.如图,矩形ABCD 中,边AD 上一点,将ABP 沿三、解答题19.计算:24sin 30cos30︒-(1)求BD 的长;(2)小明继续作图,如图③,分别以点B 、D 为圆心,以大于12BD 的长为半径作弧,两弧分别相交于点P 、Q ,连接PQ ,分别交BD 、OD 于点E 、F .如果BC 的长.(1)求证:ABD ECD ∽ ;(2)如果90ACB ∠=︒,求证:(1)求m 的值和点E 的坐标;(2)点M 是抛物线的对称轴上一点且在直线①连接AM 、CM ,如果AME ∠(1)求证:DBA DEC ∽△△;(2)点F 在边CA 的延长线上,DF 与BE 的延长线交于点M (如图②)①如果2AC AF =,且DEC 是以DC 为腰的等腰三角形,求tan FDC ∠②如果52DE CD =,3EM =,:5:3FM DM =,求AF 的长.参考答案:∵点P是线段AB的黄金分割点,且则有四边形CDEB 是矩形,∴ 1.4CD BE ==米,DE 在Rt ADE △中,tan α=∴25tan AE α=,∴甲正确;乙:如图,∵取AC 中点交AC 于点E ,∴,AD DC AE EB ==,∴,A ACD A ∠=∠∠=∠∴A ACD ABE ∠=∠=∠∴乙正确;故选:C【点睛】本题考查了线段的垂直平分线的性质,基本作图,四点共圆,圆的内接四边形的性质,等腰三角形的性质,正确的理解题意是解题的关键.7.72故答案为:3 3.16.55/15 5【分析】本题考查了勾股定理逆定理、求余弦值、平行四边形的判定及性质,由题意得由勾故答案为:4.18.22102<<-AP【分析】本题考矩形的折叠问题,相似三角形的性质,勾股定理;根据翻折的性质、直角三角形的边角关系以及相似三角形的性质,分别求得最大值,当BP AE⊥时,AP∴∠+∠=︒,90ABP BAF四边形ABCD是矩形,由题意可知,AP A P '=,在Rt BCE 中,9BC =,22310BE BC EC ∴=+=由翻折可知6AB A B '==,在Rt BCH △中,sin 7.2cm BH ∴=,CH =在Rt BEH △中,BEH ∠ cot 530.757.2HE HE BH ∴︒==≈∵=90ACD ∠︒,∴12DG CG AD ==,∴GDC GCD ∠=∠,∴1802DGC ADC ∠=︒-∠∵BDE ADC ∠=∠,(3,0)A - ,(0,3)C -,(1,2)E --,22(31)222AE ∴=-++=,∠3,=90 OA OC==AOC∴∠=∠=︒,45OAC OCA∴∠=︒,AEM45直线AC垂直平分MN,∴=,AEM AEN ME NE∠=∠∴∠=︒.NEM90∵点E的纵坐标为2-,∴点N的纵坐标为2-,2232∴+-=-,x x2210+-=,x x由(1)知:BD DE AD CD =, 52DE CD =,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年中考数学模拟试卷(一)
(本试卷三个大题,共24个小题,满分150分,考试时间120分钟)
一、选择题:(每个小题4分,10个小题共40分)
1.21的值为( )
A.21 B.21 C.2 D.2
2.若92yx与3yx互为相反数,则yx的值为( )
A.3 B.9 C.12 D.27
3.若32x,54y,则yx22的值为( )
A.53 B.35 C.3 D.2
4.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组
成这个几何体的小正方体的个数为n,则n的最小值为( )
A.6 B.5 C.4 D.3
5.如图,在ABCD中,对角线AC与BD相交于点O,经过点O的直线分别交BC、
AD于点E、F,若∠ABC=60,AB=6,BC=10,则图中阴影部分的面积为( )
A.330 B.315 C.3215 D.3
6.函数xky(k是常数,且0k)中,当0x时,y随
x
的增大而减小,则二次函数kxkxy22的大致图象是( )
7.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O
上的一个动点,那么∠OAP的最大值为( )
A.60 B.45 C.30 D.15
(第5题图)
B
A
D
O
C
E
F
x y O A x
y
O
B
x
y
O
C
x
y
O
D
O
A
B
P
(第7题图)
主视图
左视图
(第4题图)
8.抛物线12xxy关于坐标原点对称的抛物线的解析式为( )
A. 12xxy B. 12xxy
C. 12xxy D. 12xxy
9.已知点P是函数xy2在第一象限图象上的任意一点,过点P作PA⊥x轴,垂足为A,
点Q是y轴上的动点,则△PAQ的面积为( )
A.1 B.2 C.3 D.4
10.如图,在Rt△ACB中,∠ACB=90,∠A=60,AC=1,
将△ACB沿CD折叠,使点A落在点E的位置,则AD的长
为( )
A.3 B.2 C.13 D.32
二、填空题:(每个小题4分,6个小题共24分)
11.60tan=____________.
12.在实数范围内分解因式:xx45=_________________________.
13.如图,将两块全等的直角三角形纸片△ABC和△FDE叠放在一起,其中∠ACB=∠
E=90,BC=DE=6,AC=FE=8,顶点D与AB边的中点重合,
DE经过点C,DF交AC于点G.则GF=_______.
14.已知实数a、b满足012aa,012bb,
则22ba=___________。
15.已知二次函数cbxaxy2(0a)的部分图象如图所示,
则关于x的一元二次方程02cbxax的根为____________。
16.如图,⊙O的半径为1,AB是⊙O的直径,C、D是⊙O上的
两点,且,点P是直径AB上的任意一点,则
PC+PD的最小值为____________。
.
B
C
.
A
D
.
O
.
P
(第16题图)
A
C
B
D
F
(第13题图)
E
G
x
y
P
A Q O
(第9题图)
O 1
x
y
(第15题图)
3
A
C
B
(第10题图)
D
E
三、解答题:(8个小题,共86分)
17.计算:(8分)20)21(21)2015(45cos22
18.(10分)先化简,再求值:
11)1111(2x
xx
,其中21x.
19.(10分)解方程:1112112xxxx
20.(12分)如图,AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.
(1)求证:CD是⊙O的切线;
(2)若∠D=30°,BD=10,求⊙O的半径.
21.(10分)如图,小明为测量河对岸的树高(BC),他站在河的一岸比水面高m2的A处观
测得河对岸的树BC的顶部B的仰角为30°,同时在A处测得树BC在水中的倒影CB顶
部B的俯角是45,请你根据这些数据帮助小明求树高BC(结果保留根号).
A
D
O
B
C
(第20题图)
A
D
B
E
C
B
╭
30
45
╰
(第21题图)
22.(12分)为丰富课外活动,某校开设了A:篮球,B:足球,C:跳绳,D:健美操四种体
育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进
行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进
行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共查了多少名学生?
(2)请补全两幅统计图;
(3)若有3名最喜欢足球运动的学生与1名最
喜欢跳绳运动的学生组队外出参加一次联谊互活动,
欲从中选出2人担任组长(不分正副),求两人均是 最喜欢足球运动的学生的概率. 23.(12分)某文具店准备购进甲、乙种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元.若购进甲种钢笔50支,乙种钢笔30支,需要550元. (1)求购进甲、乙两种钢笔每支各需多少元? (2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案? (3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? 24.(12分)如图,抛物线cbxaxy2(0a)经过A(0,1)、B(1,3)、C(7,0)三点. (1)求抛物线的解析式; (2)试判断△ABC的形状; (3)设点P是线段AC上的一个动点,过点P作x轴的垂线 与抛物线相交于点E,当点P运动到什么位置时,△AEC 的面积最大,求此时点P的坐标。 A B C D 20% 30% 15% A B C D 10 20 30 40 50 60 70 80
项目
人数
x
y
O A B · · D C
P
E
(第24题图)