中考数学模拟试卷(一)含答案解析

合集下载

2024年四川省绵阳市涪城区中考数学一诊试卷(含解析)

2024年四川省绵阳市涪城区中考数学一诊试卷(含解析)

2024年四川省绵阳市涪城区中考数学一诊试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.4的相反数是( )A. 14B. −14C. 4D. −42.下列图形中不是中心对称图形的是( )A. 圆B. 菱形C. 矩形D. 等腰三角形3.在平面直角坐标系中,点P(m2+1,2)关于原点对称的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若y=4−x+x−4+2,则x y的值为( )A. 8B. 16C. −8D. −165.已知一组数据8,5,x,8,10的平均数是8,以下说法错误的是( )A. 极差是5B. 众数是8C. 中位数是9D. 方差是2.86.在四边形ABCD中,AD//BC,AB=CD.下列说法能使四边形ABCD为矩形的是( )A. AB//CDB. AD=BCC. ∠A=∠BD. ∠A=∠D7.已知直线y=3x+a与直线y=−2x+b交于点P,若点P的横坐标为−5,则关于x的不等式3x+a<−2x+b的解集为( )A. x<−5B. x<3C. x>−2D. x>−58.如图,建筑物CD和旗杆AB的水平距离BD为9m,在建筑物的顶端C测得旗杆顶部A的仰角α为30°,旗杆底部B的俯角β为45°,则旗杆AB的高度为( )A. 32mB. 33mC. (32+9)mD. (33+9)m9.如图,A,B,C,D是⊙O上的点,AB=AD,AC与BD交于点E,AE=3,EC=5,BD=45,⊙O的半径为( )A. 6B. 552C. 5D. 2610.如图,正六边形ABCDEF内接于半径为8cm的⊙O中,连接CE,AC,AE,沿直线CE折叠,使得点D与点O重合,则图中阴影部分的面积为( )A. 323cm2B. 83cm2C. 8πcm2+3π)cm2D. (43311.若关于x的不等式组{3−2x≤1x−m<0的所有整数解的和是6,则m的取值范围是( )A. 3<m<4B. 3<m≤4C. 3≤m<4D. 3≤m≤412.如图,在直角坐标系中,四边形OABC为正方形,且边BC与y轴交于点M,反比例函数y=k(k≠0)的图象经过点A,若CM=2BM且x,则k的值为( )S△OBM=135A. −185B. 165C. 185D. 365二、填空题:本题共5小题,每小题4分,共20分。

【九年级】中考数学第一次模拟考试题(附答案)

【九年级】中考数学第一次模拟考试题(附答案)

【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。

【解析版】潍坊市中考数学模拟试卷(一)

【解析版】潍坊市中考数学模拟试卷(一)

山东省潍坊市中考数学模拟试卷(一)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×1073.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 38.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:49.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<010.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣111.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 512.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是.14.数据:1,5,6,5,6,5,6,6的众数是,中位数是,方差是.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.山东省潍坊市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.考点:算术平方根.分析:即为4的算术平方根,根据算术平方根的意义求值.解答:解:=2.故选A.点评:本题考查了算术平方根.关键是理解算式是意义.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 400 000=6.4×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一列有1个正方形,第二列有2个正方形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.考点:抛物线与x轴的交点.分析:根据图象上点的坐标性质得出m2﹣2m=﹣1,进而代入求出即可.解答:解:∵抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),∴m2﹣2m+1=0,∴m2﹣2m=﹣1,则代数式m2﹣2m+=﹣1+=.故选:B.点评:此题主要考查了函数图象上点的坐标性质以及整体思想的应用,求出m2﹣2m=﹣1是解题关键.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.考点:弧长的计算;特殊角的三角函数值.专题:压轴题.分析:扇形的弧长=圆锥的底面圆的周长.利用弧长公式计算.解答:解:设圆锥底面半径为R,∵cos∠BAE==,∴∠BAE=30°,∠EAD=60°,弧DE===2πR,∴R=.故选C.点评:熟记特殊角的三角函数值和掌握弧长公式是解题的关键.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°考点:切线的性质;圆周角定理.专题:几何图形问题.分析:连接BC,则∠ABC=90°,且∠A=35°,∠OCB=55°,又△BCO为等腰三角形,即有∠COB=70°,即可求∠D=90°﹣∠COB=20°.解答:解:连接BC,∴∠OCD=90°,∴∠OCB=55°,在△OCB中,OB=OC;即有∠COB=70°;∴∠D=90°﹣∠COB=20°.故选A.点评:本题利用了切线的概念和性质的应用以及三角形内角和为180°的知识点;在直角三角形中,同角或等角的余角相等;7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 3考点:旋转的性质;正方形的性质.专题:计算题;压轴题.分析:连接AC,由正方形的性质可知∠CAB=45°,由旋转的性质可知∠B1AB=45°,可知点B1在线段AC上,由此可得B1C=B1O,即AB1+B1O=AC,同理可得AD+DO=AC.解答:解:连接AC,∵四边形ABCD为正方形,∴∠CAB=45°,∵正方形ABCD绕点A逆时针旋转45°,∴∠B1AB=45°,∴点B1在线段AC上,易证△OB1C为等腰直角三角形,∴B1C=B1O,∴AB1+B1O=AC==,同理可得AD+DO=AC=,∴四边形AB1OD的周长为2.故选:B.点评:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在线段AC上.8.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:4考点:相似三角形的判定与性质.专题:网格型.分析:先利用勾股定理分别计算两个三角形三边的长,再计算比值,得出三条对应边成比例,利用相似三角形的判定可知两个三角形相似.解答:解:∵AB=,BC=2,AC==,DE==,DF==2,EF=4,∴===,∴△ABC∽△DEF.故选C.点评:本题考查了勾股定理、相似三角形的判定和性质.9.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<0考点:二次函数图象与系数的关系.专题:常规题型.分析:由抛物线的开口方向判断a的符号,然后结合对称轴判断b的符号,再由抛物线与y轴的交点判断c的符号,从而得出bc的符号解答即可.解答:解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的负半轴上得c<0,对称轴为x=>0,a>0,得b<0,∴bc>0.故选C.点评:本题考查了二次函数图象与系数的关系,属于基础题,关键是掌握二次函数y=ax2+bx+c系数符号的确定.10.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣1考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据题意可知,函数图象的交点坐标即为方程的解,根据格点找到交点坐标就可找到方程的解.解答:解:由图可知,两函数图象的交点坐标为(1,2);(﹣2,﹣1);则两横坐标为1和﹣2,∵函数的交点坐标符合两个函数的解析式,∴函数的交点坐标就是方程组的解,∴x=1或x=﹣2,故选C.点评:本题考查了反比例函数与一次函数的交点问题,找到两图象的交点坐标是解题的关键.11.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 5考点:反比例函数与一次函数的交点问题.专题:计算题.分析:利用反比例函数与一次函数的交点问题得到b=a﹣3,b=,则a﹣b=3,ab=2,再利用完全平方公式变形得到a2+b2=(a﹣b)2+2ab,然后利用整体代入的方法计算即可.解答:解:根据题意得b=a﹣3,b=,所以a﹣b=3,ab=2,所以a2+b2=(a﹣b)2+2ab=32+2×2=13.故选A.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.12.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2考点:扇形面积的计算;等腰直角三角形.专题:压轴题;探究型.分析:过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC 是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.解答:解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE⊥OA,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt△OCE≌Rt△ACE,∵S扇形OEC=S扇形AEC,∴与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,同理可得,与弦OC围成的弓形的面积等于与弦BC所围成的弓形面积,∴S阴影=S△AOB=×1×1=cm2.故选C.点评:本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S阴影=S△AOB是解答此题的关键.二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续进行二次因式分解.解答:解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.点评:本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.14.数据:1,5,6,5,6,5,6,6的众数是6,中位数是 5.5,方差是.考点:众数;中位数;方差.分析:根据方差,众数,中位数的定义解答.解答:解:将数据从小到大依次排列为1,5,5,5,6,6,6,6.众数是6,中位数是(5+6)÷2=5.5,平均数是(1+5×3+6×4)÷8=40÷8=5.方差为[(1﹣5)2+3(5﹣5)2+4(5﹣6)2]=.故填6,5.5,.点评:一组数据中出现次数最多的数据叫做众数.样本方差描述了一组数据围绕平均数波动的大小.把这组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)考点:二次函数的应用.专题:压轴题.分析:由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E 的横坐标即为EF的长.解答:解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).点评:以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为85度.考点:三角形内角和定理.专题:压轴题.分析:先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.解答:解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.故答案为:85.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.考点:相切两圆的性质.专题:计算题;作图题.分析:由题意作出图形,要求则这个大圆形纸片的最小半径,则在△APO中,将OA、OP分别用R表示后由勾股定理可得R值,即这个大圆形纸片的最小半径.解答:解:如图所示,⊙A、⊙B半径为5,⊙C半径为8,设⊙O半径为R.连接AB、BC、CA,则AB=10,BC=CA=13,过C作CP⊥AB,则P是AB中点.∴AP=5,在△ACP中由勾股定理CP2=AC2﹣AP2,∴CP=12,∵OC=R﹣8,∴OP=20﹣R,在△APO中,∵OA=R﹣5,AP=5,∴由勾股定理AP2=AO2﹣OP2,即52=(R﹣5)2﹣2,∴R=,则这个大圆形纸片的最小半径等于.点评:本题考查了相切圆的性质,以及勾股定理的应用,同学们应熟练掌握.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为().考点:切线的性质;勾股定理.专题:压轴题;规律型.分析:根据题意,可以首先求得A1(,1),A2(,2),A3(,3).根据这些具体值,不难发现:A n的纵坐标是n,横坐标是.解答:解:∵点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点,∴A1的纵坐标为1,横坐标为:=,即A1(,1);同理可求:A2(,2),A3(,3)∴根据这些具体值,得出规律:A n的纵坐标是n,横坐标是.即A n的坐标为().故答案为:().点评:此题可以首先求得几个具体值,然后进一步发现坐标和脚码的规律.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.考点:列表法与树状图法.分析:(1)利用频数÷百分比=总数,求得总人数;根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.解答:解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.点评:本题主要考查的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的关键.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用CE为超然楼的高度,构造直角三角形,进而利用锐角三角函数关系tan30°=得出CD的长,进而得出EC的长即可得出答案.解答:解:设根据题意画出图形得出:AB=37m,AM=BF=1.7m,∠CAD=30°,∠CBD=45°,故CD=BD,AM=DE=1.7m,∵tan30°====,∴解得:DC===≈50.5(m),则CE=DC+DE=50.5+1.7=52.2≈52(m),答:超然楼的高度为52m.点评:此题主要考查了解直角三角形中仰角问题的应用,根据锐角三角函数的关系得出CD的长是解题关键.21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)连接OC,根据等腰三角形的性质求出∠OCB=∠OBC,根据AB是直径得出∠ABC=90°,求出∠A+∠ABC=90°,代入求出∠OCB+∠BCD=90°,根据切线的判定推出即可;证△DCB∽△DAC,得出CD2=BD×DA,代入即可求出BD.解答:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵∠BCD=∠A,∴∠OCB+∠BCD=90°,∴∠OCD=90°,即OC⊥CD又∵点C在⊙O上,∴CD是⊙O的切线.解:∵∠BCD=∠A,∠D=∠D,∴△BCD∽△CAD,∴,即CD2=AD•BD又∵CD=4,AO=OB=3,∴16=(BD+6)BD,解得:BD=2.点评:本题考查了切线的判定,圆周角定理,相似三角形的性质和判定,等腰三角形的性质等知识点,主要考查学生综合运用性质进行推理的能力,题目比较典型,难度适中.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?考点:二次函数的应用;一次函数的应用.专题:压轴题;图表型.分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数图象解答.解答:解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(0≤x≤80)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.点评:根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.考点:解直角三角形;等腰三角形的性质;勾股定理;梯形;相似三角形的判定与性质.专题:压轴题.分析:(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解;平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,∴△MNC∽△GDC.∴,即.解得,.(3)分三种情况讨论:①当NC=MC时,如图③,即t=10﹣2t,∴.②当MN=NC时,如图④,过N作NE⊥MC于E.解法一:由等腰三角形三线合一性质得:EC=MC=(10﹣2t)=5﹣t.在Rt△CEN中,cosC==,又在Rt△DHC中,cosC=,∴.解得t=.解法二:∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴,即.∴t=.③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.解法一:(方法同②中解法一),解得.解法二:∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴,即,∴.综上所述,当t=、t=或t=时,△MNC为等腰三角形.点评:注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法即可求解;首先根据抛物线的顶点在圆上且与y轴平行即可确定抛物线的顶点坐标,再根据待定系数法求函数解析式;(3)三角形ABC的面积为15,所以假设三角形PDE的面积为1,因为DE长为2,所以P到DE 的距离为1,则P的坐标是(x,1),代入抛物线解析式即可求解.解答:解:(1)设直线AB的解析式为y=kx+b,。

中考第一次模拟测试《数学卷》含答案解析

中考第一次模拟测试《数学卷》含答案解析

一、选择题(每小题3分,共12小题,满分36分)1.(2019·温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.22.(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.3.(2019·浙江温州)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为A.0.25×1018B.2.5×1017C.25×1016D.2.5×10164.(2019•福建)如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.5.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.66.(2019·浙江衢州)下列计算正确的是A.a6+a6=a12B.a6×a2=a8C.a6÷a2=a3D.( a6)2=a87.(2019•甘肃)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是A.48°B.78°C.92°D.102°8.(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A. 303 n mileB. 60 n mileC. 120 n mileD. (30303)+n mile9.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--10.(2019•南充)关于x 的一元一次方程2x a –2+m =4的解为x =1,则a +m 的值为 A .9B .8C .5D .411.(2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x >4B .x >-1C .-1<x <4D .x <-112.(2019•安徽)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A. 0B. 4C. 6D. 8二、填空题(每小题3分,共4小题,满分12分)13.(2019·浙江台州)分解因式:ax 2–ay 2=__________.14. (2019•江苏苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________15.(2019•广州增城)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.16.(2019·浙江宁波)如图,过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.(2019·湖南益阳)计算:0114sin 60(2019)()232-+--+-.18.(2019•福建)先化简,再求值:(x -1)÷(x -21x x-),其中x 2+119.(2019•安徽)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格: 编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm) 8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b 按照生产标准,产品等次规定如下:尺寸(单位:cm) 产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值,(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.20.(2019•吉林)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)21.(2019•湖南娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱) 销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元? 22.(2019•广东)如图1,在平面直角坐标系中,抛物线y =233373848x x +-与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答这样的点P 共有几个?23.(2019•福建)如图,四边形ABCD 内接于⊙O ,AB =AC ,AC ⊥BD ,垂足为E ,点F 在BD 的延长线上,且DF =DC ,连接AF 、CF .(1)求证:∠BAC =2∠CAD ;(2)若AF =10,BC =45,求tan ∠BAD 的值.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.(2019·温州)计算:(-3)×5的结果是A.-15 B.15 C.-2 D.2【答案】A【解析】(-3)×5=-15,故选A.2.(2019•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【答案】A【解析】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:A.3.(2019·浙江温州)太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【答案】B【解析】科学记数法表示:250000000000000000=2.5×1017,故选B.4.(2019•福建)如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.【答案】C【解析】几何体的主视图为:,故选C.5.(2019•广东)数据3,3,5,8,11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选C.6.(2019·浙江衢州)下列计算正确的是A.a6+a6=a12B.a6×a2=a8C.a6÷a2=a3D.( a6)2=a8【答案】B【解析】A、a6+a6=2a6,故此选项错误;B、a6×a2=a8,故此选项正确;C、a6÷a2=a4,故此选项错误;D、(a6)2=a12,故此选项错误;故选B.7.(2019•甘肃)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是A.48°B.78°C.92°D.102°【答案】D【解析】∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°,∴∠2=∠3=180°–48°–30°=102°.故选D.8.(2019•湖南长沙)如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60 n mile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A. 303 n mileB. 60 n mileC. 120 n mileD. (30303)+n mile【答案】D【解析】过C 作CD ⊥AB 于D 点,∴∠ACD =30°,∠BCD =45°,AC =60. 在Rt △ACD 中,cos ∠ACD =CDAC, ∴CD =AC •cos ∠ACD =603303= 在Rt △DCB 中,∵∠BCD =∠B =45°, ∴CD =BD =3∴AB =AD +BD =30+3答:此时轮船所在的B 处与灯塔P 的距离是(30+3nmile . 故选D .9.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--【答案】D【解析】()226534y x x x =-+=--,即抛物线的顶点坐标为()3,4-,把点()3,4-向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为()4,2-,所以平移后得到的抛物线解析式为()242y x =--.故选D .10.(2019•南充)关于x 的一元一次方程2x a –2+m =4的解为x =1,则a +m 的值为 A .9 B .8C .5D .4【答案】C【解析】因为关于x 的一元一次方程2x a –2+m =4的解为x =1,可得:a –2=1,2+m =4,解得:a =3,m =2,所以a +m =3+2=5,故选C .11.(2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x >4B .x >-1C .-1<x <4D .x <-1【答案】A【解析】13224x x ->⎧⎨-<⎩①②,由①得:x >4,由②得:x >-1,不等式组的解集为:x >4,故选A . 12.(2019•安徽)如图,在正方形ABCD 中,点E ,F 将对角线AC 三等分,且AC =12,点P 在正方形的边上,则满足PE +PF =9的点P 的个数是( )A. 0B. 4C. 6D. 8【答案】D【分析】P 点是正方形的边上的动点,我们可以先求PE +PF 的最小值,然后根据PE +PF =9判断得出其中一边上P 点的个数,即可解决问题.【解析】如图,作点F 关于BC 的对称点M ,连接FM 交BC 于点N ,连接EM ,交BC 于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM2245EC+=CM则在线段BC存在点H到点E和点F的距离之和最小为59在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,5PE+PF≤12在点H左侧,当点P与点B重合时,BF22210FN+=BN∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=10∴PE+PF=10∴点P在BH上时,5PE+PF<10∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.二、填空题(每小题3分,共4小题,满分12分)13.(2019·浙江台州)分解因式:ax2–ay2=__________.【答案】a(x+y)(x–y)【解析】ax2–ay2=a(x2–y2)=a(x+y)(x–y).故答案为:a(x+y)(x–y).15. (2019•江苏苏州)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________【答案】827【解析】小正方体的个数为3×3×3=27个由图直接数出恰有三个面涂有红色的小正方体的个数为8个, 所以取得的小正方体恰有三个面涂有红色的概率为827,故填82715.(2019•广州增城)如图,点P 为等边ABC △内一点,若3PC =,4PB =,5PA =,则BPC ∠的度数是__________.【答案】150°【解析】以BP 为边作等边BPD △,连接AD ,如图,则460BD BP DP DBP BDP ===∠=∠=︒,, ∵ABC △是等边三角形,∴60AB BC ABC =∠=︒,, ∵60ABD ABP CBP ABP ∠+∠=∠+∠=︒,∴ABD CBP ∠=∠,在△ABD 与△CBF 中,AB BC ABD CBP BD BP =⎧⎪∠=∠⎨⎪=⎩,∴ABD CBP △≌△,∴3BPC BDA AD PC ∠=∠==,,在ADP △中,∵543PA PD AD ===,,, ∴222AP DP AD +=, ∴APD △是直角三角形, ∴90ADP ∠=︒,∴150ADB ADP BDP ∠=∠+∠=︒, ∴150BPC ∠=︒.16.(2019·浙江宁波)如图,过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为__________.【答案】6【解析】如图,连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF ,∵过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点, ∴A 与B 关于原点对称, ∴O 是AB 的中点, ∵BE ⊥AE , ∴OE =OA , ∴∠OAE =∠AEO , ∵AE 为∠BAC 的平分线, ∴∠BAE =∠DAE , ∴∠DAE =∠AEO , ∴AD ∥OE , ∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8, ∴S △ACE =S △AOC =12, 设点A (m ,k m), ∵AC =3DC ,DH ∥AF , ∴3DH =AF , ∴D (3m ,3k m), ∵CH ∥GD ,AG ∥DH , ∴△DHC ∽△AGD , ∴S △HDC 14=S △ADG , ∵S△AOC =S△AOF+S梯形AFHD+S△HDC1122k =+⨯(DH +AF )×FH +S △HDC114223k k m =+⨯⨯2m 112142243236k k km k m +⨯⨯⨯=++=12, ∴2k =12,∴k =6; 故答案为6.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.(2019·湖南益阳)计算:0114sin 60(2019)()2-+--+-.【解析】原式=41﹣2+=1.18.(2019•福建)先化简,再求值:(x -1)÷(x -21x x-),其中x +1【答案】1+2【解析】原式=(x −1)÷2221(1)(1)1x x x xx x x x -+=-⋅=--,当x +1时,1=. 19.(2019•安徽)为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:按照生产标准,产品等次规定如下:注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内. (1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由 (2)已知此次抽检出的优等品尺寸的中位数为9cm. (i )求a 的值,(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率. 【答案】(1)不合格,见解析;(2)(i )a =9.02,(ii )49.【解析】(1)不合格.因为15×80%=12,不合格的有15-12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴8.98a=92,解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种,∴抽到两种产品都是特等品的概率P=4 921.(2019•吉林)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170cm,花洒AC的长为30cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离CE(结果精确到1cm).(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)【答案】花洒顶端C到地面的距离CE为192cm.【解析】如图,过点C作CF⊥AB于F,则∠AFC=90°,在Rt△ACF中,AC=30,∠CAF=43°,∵cos∠CAF=AF AC,∴AF =AC •cos ∠CAF =30×0.73=21.9,∴CE =BF =AB +AF =170+21.9=191.9≈192(cm). 答:花洒顶端C 到地面的距离CE 为192cm .21.(2019•湖南娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱? (2)该商场售完这500箱矿泉水,可获利多少元?【答案】(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.【解析】(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱,依题意,得:500253514500x y x y +=⎧⎨+=⎩,解得:300200x y =⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱. (2)(3525)300(4835)2005600-⨯+-⨯=(元). 答:该商场售完这500箱矿泉水,可获利5600元.22.(2019•广东)如图1,在平面直角坐标系中,抛物线y =2848x x +-与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?【答案】(1)A (1,0),B (–7,0),D (–3,–23);(2)见解析;(3)①点P 的横坐标为–11或–373或–53;②这样的点P 共有3个. 【解析】(1)令233373848x x +-=0, 解得x 1=1,x 2=–7.∴A (1,0),B (–7,0). 由y =233373848x x +-=23(3)238x +-得,D (–3,–23);(2)∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF ,∴11D D COFD OF=, ∵D (–3,–23), ∴D 1D =23,OD =3,∵AC =CF ,CO ⊥AF ,∴OF =OA =1, ∴D 1F =D 1O –OF =3–1=2,∴321OC=, ∴OC 3∴CA =CF =FA =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF , ∵△CAD 绕点C 顺时针旋转得到△CFE , ∴∠ECF =∠AFC =60°,∴EC ∥BF , ∵EC =DC=6, ∵BF =6,∴EC =BF ,∴四边形BFCE 是平行四边形; (3)∵点P 是抛物线上一动点, ∴设P 点(x2x x +-), ①当点P 在B 点的左侧时, ∵△PAM 与△DD 1A 相似, ∴11DD D A PM MA =或11DD D AAM PM=,41x =-=,解得:x 1=1(不合题意舍去),x 2=–11或x 1=1(不合题意舍去)x 2=–373; 当点P 在A 点的右侧时, ∵△PAM 与△DD 1A 相似,∴11DD PM AM D A =或11D APM MA DD =,∴284814x x x +=-或28481x x x -=-, 解得:x 1=1(不合题意舍去),x 2=–3(不合题意舍去)或x 1=1(不合题意舍去),x 2=–53(不合题意舍去); 当点P 在AB 之间时, ∵△PAM 与△DD 1A 相似, ∴PMAM =11DD D A 或PM MA =11D A DD ,∴28481x x x +-=-或28481x x x -=-,解得:x1=1(不合题意舍去),x2=–3(不合题意舍去)或x1=1(不合题意舍去),x2=–53;综上所述,点P的横坐标为–11或–373或–53;②由①得,这样的点P共有3个.23.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.【解析】(1)∵AB=AC,∴AB AC=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°-∠BAC)=90°-∠BAC,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=5设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==。

2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利一中中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各组数中,互为相反数的是( )A. ―(―2)和2B. 1和―2 C. ―(+3)和+(―3) D. ―(―5)和―|+5|22.如图所示的几何体,若每个小正方体的棱长为2,则左视图的面积为( )A. 24B. 20C. 10D. 163.下列计算正确的是( )A. (x+2y)(x―2y)=x2―2y2B. (―x+y)(x―y)=x2―y2C. (2x―y)(x+2y)=2x2―2y2D. (―x―2y)(―x+2y)=x2―4y24.如图,已知直线a、b、c相交于A、B、C三点,则下列结论:①∠1与∠2是同位角;②内错角只有∠2与∠5;③若∠5=130°,则∠4=130°;④∠2<∠5;正确的个数是( )A. 1B. 2C. 3D. 45.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是( )A. 6cmB. 7cmC. 8cmD. 9cm6.周日早晨,妈妈送张浩到离家1000m的少年宫,用时20分钟.妈妈到了少年宫后直接返回家里,还是用了20分钟.张浩在少年宫玩了20分钟的乒乓球,然后张浩跑步回家,用了15分钟.如图中,正确描述张浩离家时间和离家距离关系的是( )A. B.C. D.7.某列车提速前行驶400km与提速后行驶500km所用时间相同,若列车平均提速20km/ℎ,设提速后平均速度为x km/ℎ,所列方程正确的是( )A. 400x =500x+20B. 400x=500x―20C. 400x―20=500xD. 400x+20=500x8.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A. 15B. 25C. 35D. 459.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AC的中点,连接BD交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为( )A. 6B. 33C. 25D. 21010.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( )A. 12B. 24C. 36D. 48第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“+30”,则“−30”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食2.下列计算正确的是( )A. a2⋅a3=a6B. (−a3b)2=−a6b2C. a6÷a3=a2D. (a2)3=a63.估计6的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.如图所示的三棱柱的展开图不可能是( )A.B.C.D.5.关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的( )A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向7.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A. 点数的和为1B. 点数的和为6C. 点数的和大于12D. 点数的和小于138.下列命题中,是真命题的是( )A. 平行四边形是轴对称图形B. 对角线互相垂直的四边形是菱形C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上D. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形9.今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12B. 13C. 23D. 110.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共5小题,每小题3分,共15分。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

山西2024年中考适应性模拟测试 (一)数学试卷及答案

山西2024年中考适应性模拟测试 (一)数学试卷及答案

山西2024年中考适应性模拟测试(一)数学试卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。

写在本试卷上无效。

4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。

写在本试卷上无效。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共10小题,每小题3分,共30分。

1.计算:()163⎛⎫-÷- ⎪⎝⎭的结果是()A.18- B.2C.18D.2-2.下列环保标志图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列各式计算正确的是()A.248a a a ⋅= B.336a a a += C.()23639a a -=- D.222(12)4ab a b -=4.如图,该几何体的左视图是()A. B. C. D.5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-,著名的“断臂维纳斯”便是如此.若小明的身高满足此黄金分割比例,且肚脐至足底的长度为108cm ,则小明的身高约为()A.155cmB.165cmC.175cmD.185cm6.不等式组2022x x +>⎧⎨≤⎩的解为()A.21x -<≤B.21x -<<C.21x -≤≤ D.21x -≤<7.小明学习了物理中的欧姆定律发现:电阻两端的电压=电流强度×电流通过的电阻.已知某滑动变阻器两端电压恒定,当变阻器的电阻调节为10Ω时,测得通过该变阻器的电流为24A ,则通过该滑动变阻器的电流I (单位:A )与电阻R (单位:Ω)之间的函数关系图象大致是()A. B. C. D.8.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是()B.cmC.3cm D.1cm9.如图,随机闭合开关1S 、2S 、3S 中的两个,则能让灯泡⊗发光的概率是()A.12B.13C.23D.1410.如图是二次函数()20y ax bx c a =++≠的一部分,对称轴是直线2x =-,关于下列结论:①0ab <;②240b ac ->;③<0a b c -+;④40b a -=;⑤方程20ax bx +=的两个根为10x =,24x =-.其中正确的结论有()A.①③④B.②③⑤C.①②⑤D.②④⑤二、填空题:本题共5小题,共15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省中考数学模拟试卷(一)一.选择题(共8小题,满分32分,每小题4分)1.(4分)据统计部门发布的信息,广州2016年常驻人口14043500人,数字14043500用科学记数法表示为()A.0.140435×108B.1.40435×107C.14.0435×106D.140.435×105 2.(4分)如图,下列图形从正面看是三角形的是()A.B.C.D.3.(4分)若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a 和c互相替换,得c+b+a;把b和c…;a+b+c就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是()A.①②B.②③C.①③D.①②③4.(4分)一个五边形的5个内角中,钝角至少有()A.5个B.4个C.3个D.2个5.(4分)△ABC中,∠A,∠B均为锐角,且(tanB﹣)(2sinA﹣)=0,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.有一个角是60°的三角形6.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的表现较甲更稳定D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖7.(4分)如图,在△ABC中,∠C=90°,AC>BC,若以AC为底面圆半径、BC 为高的圆锥的侧面积为S1,以BC为底面圆半径、AC为高的圆锥的侧面积为S2,则()A.S1=S2B.S1>S2C.S1<S2D.S1、S2的大小关系不确定8.(4分)如图,有一圆通过△ABC的三个顶点,与BC边的中垂线相交于D点,若∠B=74°,∠ACB=46°,则∠ACD的度数为()A.14°B.26°C.30°D.44°二.填空题(共6小题,满分18分,每小题3分)9.(3分)当两数时,它们的和为0.10.(3分)已知一组数列:,记第一个数为a1,第二个数为a2,…,第n个数为a n,若a n是方程的解,则n=.11.(3分)已知,如图,P为△ABC中线AD上一点,AP:PD=2:1,延长BP、CP分别交AC、AB于点E、F,EF交AD于点Q.(1)PQ=EQ;(2)FP:PC=EC:AE;(3)FQ:BD=PQ:PD;(4)S△FPQ :S△DCP=S PEF:S△PBC.上述结论中,正确的有.12.(3分)已知|a﹣2007|+=a,则a﹣20072的值是.13.(3分)如图,以正方形ABCD的边BC为直径作半圆O,过点D作直线与半圆相切于点F,交AB于点E,若AB=2cm,则阴影部分的面积为.14.(3分)如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为.三.解答题(共9小题,满分70分)15.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.16.(6分)从2开始,连续的偶数相加,它们和的情况如下表:加数的个数n和S12=1×222+4=6=2×332+4+6=12=3×442+4+6+8=20=4×552+4+6+8+10=30=5×6(1)若n=8时,则S的值为.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=.(3)根据上题的规律求102+104+106+108+…+200的值(要有过程)17.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?18.(6分)我市向民族地区的某县赠送一批计算机,首批270台将于近期启运.经与某物流公司联系,得知用A型汽车若干辆刚好装完;用B型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B型汽车比A型汽车每辆车可多装15台,求A、B两种型号的汽车各能装计算机多少台?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元.若运送这批计算机同时用这两种型号的汽车,其中B型汽车比A型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆运费多少元?19.(7分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.20.(8分)如图,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.21.(8分)阅读下列材料:有这样一个问题:关于x 的一元二次方程a x 2+bx +c=0(a >0)有两个不相等的且非零的实数根.探究a ,b ,c 满足的条件.小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程ax 2+bx +c=0(a >0)对应的二次函数为y=ax 2+bx +c (a >0); ②借助二次函数图象,可以得到相应的一元二次中a ,b ,c 满足的条件,列表如下:方程根的几何意义:请将(2)补充完整方程两根的情况 对应的二次函数的大致图象a ,b ,c 满足的条件方程有两个不相等的负实根方程有两个不相等的正实根(1)参考小明的做法,把上述表格补充完整;(2)若一元二次方程mx 2﹣(2m +3)x ﹣4m=0有一个负实根,一个正实根,且负实根大于﹣1,求实数m 的取值范围.22.(9分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,商品名称甲乙进价(元/件)80100售价(元/件)160240设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.(1)求y与x的函数关系式;(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若商场保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案.23.(12分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E 为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.2018年云南省中考数学模拟试卷(一)参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.【解答】解:14043500=1.40435×107故选:B.2.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.3.【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.4.【解答】解:∵五边形外角和为360度,∴5个外角中不能有4个或5个钝角,外角中至多有3个钝角,即内角中最多有3个锐角,至少有2个钝角.故选:D.5.【解答】解:∵△ABC中,∠A,∠B均为锐角,且(tanB﹣)(2sinA﹣)=0,∴tanB﹣=0或2sinA﹣=0,即tanB=或sinA=.∴∠B=60°或∠A=60°.∴△ABC有一个角是60°.故选:D.6.【解答】解:A、要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法,正确,故本选项正确;B、4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为=102.5,故本选项错误;C、方差越小越稳定,所以甲的表现较乙更稳定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖,错误,故本选项错误.故选:A.7.【解答】解:S1=底面周长×母线长=×2πAC×AB;S2=底面周长×母线长=×2πBC×AB,∵AC>BC,∴S1>S2.故选:B.8.【解答】解:连接BD,∵DE是线段BC的垂直平分线,∴BD=CD,∴=,∵∠B=74°,∠ACB=46°,∴=74°,=46°,∴2=﹣=74°﹣46°=28°,∴=14°,∴∠ACD=14°.故选:A.二.填空题(共6小题,满分18分,每小题3分)9.【解答】解:当两数互为相反数时,它们的和为0.故答案为:互为相反数.10.【解答】解:将方程去分母得:6(1﹣x)=5(x+1),移项,并合并同类项得:1=11x,解得x=,∵a n是方程的解,∴a n=,则n为11组第一个数,由数列可发现规律:为1组,、、为1组…每组的个数为2n﹣1,n=1+3+…+19+1=(1+19)×10÷2+1=100+1=101,或n=1+3+…+21=(1+21)×11÷2=121.故答案为:101或121.11.【解答】解:延长PD到M,使DM=PD,连接BM、CM,∵AD是中线,∴BD=CD,∴四边形BPCM是平行四边形,∴BP∥MC,CP∥BM,即PE∥MC,PF∥BM,∴AE:AC=AP:AM,AF:AB=AP:AM,∴AF:AB=AE:AC,∴EF∥BC;∴△AFQ∽△ABD,△AEQ∽△ACD,∴FQ:BD=EQ:CD,∴FQ=EQ,而PQ与EQ不一定相等,故(1)错误;∵△PEF∽△PBC,△AEF∽△ACB,∴PF:PC=EF:BC,EF:BC=AE:AC,∴PF:PC=AE:AC,故(2)错误;∵△PFQ∽△PCD,∴FQ:CD=PQ:PD,∴FQ:BD=PQ:PD;故(3)正确;∵EF∥BC,∴S△FPQ :S△DCP=()2,S△PEF:S△PBC=()2,∴S△FPQ :S△DCP=S PEF:S△PBC.故(4)正确.故答案为:(3)(4).12.【解答】解:∵|a﹣2007|+=a,∴a≥2008.∴a﹣2007+=a,=2007,两边同平方,得a﹣2008=20072,∴a﹣20072=2008.13.【解答】解:由切线长定理可知:BE=EF、DF=DC=2cm.设AE=xcm,则EF=(2﹣x)cm,ED=(4﹣x)cm.在Rt△ADE中,AD2+AE2=ED2,即22+x2=(4﹣x)2.解得:x=1.5.则AE=1.5cm.阴影部分的面积=正方形的面积﹣△ADE的面积﹣减去半圆的面积=2×2﹣××2﹣π×12,=cm2.故答案为:cm2.14.【解答】解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x 轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO中,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1•k,解得k1=,k2=,∵k﹣1>0,∴k=故答案是:.三.解答题(共9小题,满分70分)15.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.16.【解答】解:(1)当n=8时,S=8×9=72;故答案为:72;(2)根据特殊的式子即可发现规律,S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);故答案为:n(n+1);(3)102+104+106+…+200=(2+4+6+...+102+...+200)﹣(2+4+6+ (100)=100×101﹣50×51=7550.17.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.18.【解答】解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.依题意得:=+1.解得:x=45,x=﹣90(舍去).经检验:x=45是原方程的解.∴x+15=60.答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.(2)由(1)知.若单独用A型汽车运送,需6辆,运费为2100元;若单独用B型汽车运送,需车5辆,运费为2000元.若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.解得:y<.因汽车辆数为正整数.∴y=1或2.当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.当y=2时,y+1=3.则45×2+60×3=270.符合题意.此时运费为350×2+400×3=1900元.答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元.19.【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是=.20.【解答】证明:(1)∵AB=AC,AH⊥CB,∴BH=HC.(2分)∵FH=EH,∴四边形EBFC是平行四边形.(2分)又∵AH⊥CB,∴四边形EBFC是菱形.(2分)(2)证明:∵四边形EBFC是菱形.∴.(2分)∵AB=AC,AH⊥CB,∴.(1分)∵∠BAC=∠ECF∴∠4=∠3.(1分)∵AH⊥CB∴∠4+∠1+∠2=90°.(1分)∴∠3+∠1+∠2=90°.即:AC⊥CF.(1分)21.【解答】解:(1)补全表格如下:得出的结论方程两根的情况二次函数的大致图象方程有一个负实根,一个正实根故答案为:方程有一个负实根,一个正实根,,;(2)解:设一元二次方程mx2﹣(2m+3)x﹣4m=0对应的二次函数为:y=mx2﹣(2m+3)x﹣4m,∵一元二次方程mx2+(2m﹣3)x﹣4=0有一个负实根,一个正实根,且负实根大于﹣1,①当m>0时,x=﹣1时,y>0,解得m<2,∴0<m<2.②当m<0时,x=﹣1时,y<0,解得m>2(舍弃)∴m的取值范围是0<m<2.22.【解答】解:(1)根据题意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,则y与x的函数关系式为:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要购进100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y随x的增大而减小,∴当x=100时,y有最大值,y大=﹣60×100+28000=22000,∴若售完这些商品,则商场可获得的最大利润是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①当50<a<60时,a﹣60<0,y随x的增大而减小,∴当x=100时,y有最大利润,即商场应购进甲商品100件,乙商品100件,获利最大,②当a=60时,a﹣60=0,y=28000,即商场应购进甲商品的数量满足100≤x≤120的整数件时,获利最大,③当60<a<70时,a﹣60>0,y随x的增大而增大,∴当x=120时,y有最大利润,即商场应购进甲商品120件,乙商品80件,获利最大.23.【解答】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.…(4分)(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=3,即x=3.…(6分)②若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.…(9分)(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6﹣5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;故答案为:x=或0≤x<1.…(12分)。

相关文档
最新文档