大学数学分析题题库

合集下载

数学分析试卷及答案6套

数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+收敛.四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点.七. (12分)确定,a b 使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=. 三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导.七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. x e dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数0(1)n n x x ∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板?八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑.一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.1arcsin x dx ⎰4. 1000π⎰二. (各5分,共10分)求下列数列与函数极限:1. 221lim nn k nn k →∞=+∑2. 20lim1xt xx xe dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列2212,211()22211n n x x n f x n n x x n n x n ⎧ , 0≤≤⎪⎪⎪=- , <≤⎨⎪⎪0 , <≤⎪⎩证明{()}n f x 在[0,1]不一致收敛.五. (10分)求幂级数0(1)n n n x ∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1n n a ∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂ 二 (10分) 设n 个正数12, , , n x x x 之和是a ,求函数 n u x =的最大值.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明1()() ().f x o x x=→+∞四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算0sin sin (0, ).pxbx axI e dx p b a x+∞--=>>⎰六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面111111122222223333333 ,, = 0 , , a x b y c z h a b c a x b y c z h a b c a x b y c z h a b c ++=±⎧⎪++=±∆≠⎨⎪++=±⎩ 所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22Cxdy ydxx y-+⎰,其中C 是光滑的不通过原点的正向闭曲线. 九 (10分) 求dS z∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部.数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有01lim [()()] ()().xa h f t h f t dt f x f a h→+-=-⎰六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f x y z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数.九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。

数学分析试题及答案

数学分析试题及答案

数学分析试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1在x=1处的导数是()。

A. 1B. 2C. 3D. 4答案:B2. 极限lim(x→0) (sin x)/x的值是()。

A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^2-4x+4的最小值是()。

A. 0B. 1C. 4D. 8答案:A4. 定积分∫(0,1) x^2 dx的值是()。

A. 1/3B. 1/2C. 2/3D. 1答案:B二、填空题(每题5分,共20分)1. 函数f(x)=x^3+2x^2-5x+6的导数是________。

答案:3x^2+4x-52. 函数f(x)=ln(x)的原函数是________。

答案:xln(x)-x3. 函数f(x)=e^x的不定积分是________。

答案:e^x+C4. 函数f(x)=x^2-6x+8在x=3处的值是________。

答案:-1三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。

答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

然后检查二阶导数f''(x)=6x-12,发现f''(1)=-6<0,所以x=1是极大值点;f''(11/3)=2>0,所以x=11/3是极小值点。

2. 求极限lim(x→∞) (x^2+3x+2)/(x^3-4x+1)。

答案:分子和分母同时除以x^3,得到lim(x→∞)(1+3/x+2/x^2)/(1-4/x^2+1/x^3),当x趋向于无穷大时,极限为1。

3. 求定积分∫(0,2) (2x-1) dx。

答案:首先求不定积分∫(2x-1) dx = x^2 - x + C,然后计算定积分∫(0,2) (2x-1) dx = (2^2 - 2) - (0^2 - 0) = 4 - 2 = 2。

数学分析有答案的套题

数学分析有答案的套题

七章 实数的完备性判断题:1. 1. 设11,1,2,2H n n n ⎧⎫⎛⎫==⎨⎬⎪+⎝⎭⎩⎭ 为开区间集,则H 是(0, 1 )的开复盖. 2. 2. 有限点集没有聚点.3. 3. 设S 为 闭区间 [],a b , 若,x S ∈则x 必为S 的聚点.4. 4. 若lim nn a →∞存在, 则点集{}n a 只有一个聚点.5. 5. 非空有界点集必有聚点.6. 6. 只有一个聚点的点集一定是有界点集.7. 7. 如果闭区间列{}[,]n n a b 满足条件 11[,][,],1,2,n n n n a b a b n ++⊃= , 则闭区间套定理成立. 8. 8. 若()f x 在[,]a b 上一致连续, 则()f x 在[,]a b 上连续. 9. 9. 闭区间上的连续函数一定有界.10. 10. 设()f x 为R 上连续的周期函数, 则()f x 在R 上有最大值与最小值.答案: √√√√×××√√√ 证明题1. 1. 若A 与B 是两个非空数集,且,,x A y B ∀∈∈有 x y ≤, 则sup inf A B ≤.2. 证明: 若函数()f x 在(,)a b 单调增加, 且(,)x a b ∀∈, 有()f x M ≤(其中M 是常数), 则 ,c M ∃≤ 使 lim ()x b f x c-→=.3. 证明: 若E 是非空有上界数集, 设 sup ,E a =且 a E ∉, 则 存在数列1,,n n n x E x x n N +∈<∈, 有 lim n n x a →∞=.4. 证明: 函数()f x 在开区间(,)a b 一致连续⇔函数()f x 在开区间(,)a b 连续, 且(0)f a +与(0)f b -都存在.5.设{}n x 为单调数列,证明: 若{}n x 存在聚点,则必是唯一的, 且为{}n x 的确界.6. 证明:sin ()xf x x =在()0,+∞上一致连续.7. 证明: {}n x 为有界数列的充要条件是{}n x 的任一子列都存在其收敛子列.8. 设()f x 在[],a b 上连续, 又有{}[],n x a b ⊂, 使 lim ()n n f x A →∞=. 证明: 存在[]0,x a b ∈, 使得 0()f x A =.答案1.证明: 设sup ,inf .A a B b == 用反证法. 假设 s u pi n f A B > 即 ,b a <有2a b b a +<<, 一方面, sup ,2a b a A +<= 则存在 00,;2a b x A x +∈<另一方面,inf ,2a b b B +=< 则00,2a by B y +∃∈<. 于是, 00,x A y B ∃∈∈有002a b y x +<<, 与已知条件矛盾, 即 sup inf A B ≤.2. 证明: 已知数集{}()(,)f x x a b ∈有上界, 则其存在上确界, 设{}sup ()(,)f x x a b c M ∈=≤由上确界的定义, 00,(,)x a b ε∀>∃∈, 使得 0(),c f x c ε-<≤00,:b xx b x b δδ∃=->∀-<<; 或 0:,x x x b ∀<<有 0()()c f x f x c ε-<≤≤ 或 ()f x c ε-<. 即 l i m ()x b f x c -→=.3. 证明: 已知 sup E a =, 由确界定义, 111,x E ε=∃∈, 有 11a x a ε-<<2121min ,0,2a x x E ε⎧⎫=->∃∈⎨⎬⎩⎭, 有 12x x < , 并且22a x a ε-<<3231min ,0,3a x x Eε⎧⎫=->∃∈⎨⎬⎩⎭, 有 23x x <, 并且33a x a ε-<<于是, 得到数列{}1,,,n n n n x x E x x n N +∈<∀∈. 有 lim n n x a →∞=.4. 证明: ⇒ 已知 ()f x 在(,)a b 一致连续,即12120,0,,(,):x x a b x x εδδ∀>∃>∀∈-<, 有 12()()f x f x ε-< 显然 ()f x 在(,)a b 连续, 且 120,0,,(,)x x a b εδ∀>∃>∀∈1122()a x a x x a x a δδδ<<+⎧-<⎨<<+⎩, 有 12()()f x f x ε-<.根据柯西收敛准则,函数()f x 在a 存在右极限(0).f a +同理可证函数()f x 在b 存在左极限(0)f b -.⇐已知(0)f a +与(0)f b -存在, 将函数()f x 在a 作右连续开拓, 在b 作左连续开拓, 于是函数()f x 在闭区间[],a b 连续, 从而一致连续, 当然在(,)a b 也一致连续. 5. 证明: 不妨设{}n x 递增.(1) 先证若{}n x 存在聚点必唯一. 假定,ξη都是{}n x 的聚点, 且ξη<. 取02ηξε-=, 由η是{}n x 聚点, 必存在0(,).n x U ηε∈又因{}n x 递增, 故n N ≥时恒有002n N x x ξηηεξε+≥>-==+于是, 在0(,)U ξε中至多含{}n x 的有限多项, 这与ξ是{}n x 的聚点相矛盾. 因此{}n x 的聚点存在时必唯一.(2) 再证{}n x 上确界存在且等于聚点ξ. ()a ξ为{}n x 上界. 如果某个N x ξ>, 则 n N ≥时恒有n x ξ>, 取00,N x εξ=-> 则在0(,)U x ξ内至多含{}n x 的有限多项, 这与ξ为{}n x 的聚点相矛盾.()b 对0,ε∀>由聚点定义, 必存在N x 使N x ξεξε-<<+. 由定义{}sup n x ξ=.6. 6. 证明: 令10,()sin (0,)x F x xx x =⎧⎪=⎨∈+∞⎪⎩由于 00sin lim ()lim 1(0)x x x F x F x ++→→===, 而 (0,)x ∈+∞时sin ()xF x x =, 所以 ()F x 在[)0,+∞上连续, 又因lim ()0x F x →+∞=存在, 所以 ()F x 在[)0,+∞上一致连续,从而在(0,)+∞上也一致连续, 即 ()f x 在(0,)+∞上一致连续. 7. 7. 证明: ⇒ 设{}n x 为有界数列, 则{}n x 的任一子列{}kn x 也有界, 由致密性定理知{}kn x 必存在其收敛子列{}k jn x .⇐ 设 {}n x 的任一子列都存在其收敛子列. 若{}n x 无界, 则对1M =, 必存在正整数1n 使得11n x >; 对2,M =存在正整数21,n n >使得22;;n x > 一般地,对M k =, 存在正整数1,k k n n ->使得k n x k >. 于是得到{}n x 的子列{}k n x , 它满足lim k n k x →∞=∞, 从而{}kn x 的任一子列{}k jn x 必须是无穷大量, 与充分性假定相矛盾.8. 8. 证: 因{}[],n x a b ⊂为有界数列, 故{}n x 必有收敛子列{}kn x ,设lim k n k x x →∞=,由于{}[],kn x a b ⊂,故 []0,x a b ∈. 一方面, 由于()f x 在0x 连续有0l i m ()(),x x f x f x →=再由归结原则有0lim ()lim ()()k n k x x f x f x f x →∞→==; 另一方面, 由lim ()n n f x A→∞= 及{}()kn f x 是{}()nf x 的子列有lim ()lim ()k n n k n f x f x A→∞→∞==因此 0().f x A =第八章 不定积分填空题1. ()()_________x ex dx ϕϕ'=⎰.2. 若函数()F x 与()G x 是同一个连续函数的原函数, 则()F x 与()G x 之间有关系式_______________.3. 若()f x '=且3(1)2f π= , 则 ()__________.f x = 4. 若()cos f x dx x C =-+⎰, 则()()___________.n f x =5.(ln )________.f x dx x '=⎰6. 若(sin ,cos )(sin ,cos )R x x R x x =--, 则作变换___________计算(sin ,cos )R x x dx ⎰.7.[1()]()__________n x x dx ϕϕ'+=⎰.()n N +∈8.3415(1)_________x x dx -=⎰9.若()(0)f x x x =>, 则 2()___________f x dx '=⎰.10. 过点(1,)4π斜率为211x +的曲线方程为___________.答案:1. ()x eC ϕ+. 2. ()()F x G x C =+ (C 为任意常数). 3. arcsin x π+. 4. sin()2n x π+. 5.(ln )f x C +. 6. tan t x =.7. 11[1()]1n x C n ϕ++++. 8. 4161(1)64x C --+. 9. 1ln 2x x C++10. arctan y x =判断题:1. 1. 有理函数的原函数是初等函数.2. 2. ()()df x dx f x dx =⎰3. 3. 若函数()f x 存在一个原函数,则它必有无限多个原函数.4. 4. 设()F x 是()f x 在区间I 上的原函数,则()F x 在区间I 上一定连续.5. 5. 函数()f x 的不定积分是它的一个原函数.6. 6. 21(1)x x x +-的有理函数分解式为: 22221(1)1(1)x A Bx C Dx Ex x xx x +++=++--- 7. 7.()()d d f x d f x =⎰8. 8. 若函数()f x 在区间I 上连续, 则它在区间I 上必存在原函数.9. 9. 存在一些函数, 采用不同的换元法, 可以得到完全不同的不定积分. 10. 10. 若()f x dx x C =+⎰, 则(1)f x dx x C -=+⎰答案: 1---10 √√√√××√√×√ 选择题:1.下列等式中( )是正确的.()().()()xx A f x dx f x Bf edx f e C ''==+⎰⎰221..(1)(1)2C f dx f C D xf x dx f x C ''=+-=--+⎰⎰2.若()f x 满足()sin 2,f x dx x C =+⎰则()(f x '= ) .4s i n 2.2c o s 2.4s i n 2.2A x B x C x Dx-- 3.若21()(0),f x x x '=>则()f x =( ).2.l n A x CB x CxCC ++++4.设函数()f x 在[,]a b 上的某个原函数为零,则在[,]a b 上 ( ) A .()f x 的原函数恒等于零. B. ()f x 的不定积分等于零.C. ()f x 不恒等于零但其导数恒等于零.D. ()f x 恒等于零. 5. 下列凑微分正确的是 ( )221.2.(ln 1)1x x A xe dx de B dx d x x ==++21.a r c t a n .c o s 2s i n 21C x d x d D x d xd x x ==+6. 22()()xf x f x dx '=⎰( )2222221111.().().().()2244A f x CB f x CC f x CD f x C++++.7. 若()f x dx x C =+⎰, 则 (1)f x dx -=⎰ ( )21.1......(1)2A x C B x C C x C D x C -+-++-+ 8. 函数cos (0)ax a ≠的一个原函数是 ( )111.s i n .s i n .s i n .s i n A x B a xC a xD a xa a a-9. 若()21xf x dx x C =+++⎰, 则()f x =( )2111.2..2ln 2 1..21.21ln 22x x x x A x x B C D ++++++10. 下列分部积分中对u 和v '选择正确的有 ( )22.cos ,cos ,.(1)ln ,1,ln A x xdx u x v x B x xdx u x v x''==+=+=⎰⎰.,,.a r c s i n ,1,a r cx xC xe dx u x v eD xdx u v x --''====⎰⎰答案:1—10 DCCDADCBBC计算题:1.ln(x dx+⎰2. x ⎰3. dx4.44cos 2sin cos xdx x x +⎰5.ln tan cos sin x dxx x ⎰6. 7.221(1)(1)x dxx x ++-⎰. 8. 11sin cos dxx x ++⎰9. 2(1)xx xe dx e +⎰.10.2答案:1. 1. 原式=ln(x x dx+-⎰21ln(2x x =-ln(x x C =+.2. 2.原式21122x =221124x =21arctan 2x C=3. =(sin cos )2cos 2sin 2222x x x xdx C=+=-++⎰4. 4422222cos 2cos 2sin cos (sin cos )2sin cos x xdx dx x xx x x x =++-⎰⎰ 22cos 2sin 2(2)2sin 22sin 2x d xd x x x ==--⎰⎰C=+5. ln tan ln tan tan ln tan (ln tan )cos sin tan xxdx d x xd x x xx ==⎰⎰⎰2(ln tan )2x C =+.6. 2sin 2(2cos 1)cos 21cos 2cos 2x t tt dt dtt t =-=+=⎰⎰tan 2t t C =-+arcsin x C=+7. 2221111[]2(1)2(1)(1)(1)(1)x dx dx x x x x x +=+--++-+⎰⎰111ln 1ln 1221x x Cx =-+++++211ln 121x Cx =-+++.8.tan222121sin cos 211111x u dxdu x xu u uu u =⋅++-+++++=⎰⎰ln 1ln 1tan 12du xu C C u =++=+++⎰.9.21(1)111x x x x x xe x dx dx xd e e e e ⎛⎫=-=-+ ⎪++++⎝⎭⎰⎰⎰ln(1)111x x x x xx e dx x e C e e e ---=-+=--+++++⎰.10.sin 22221cos 2sin 2x a uua udu a du =-==⎰⎰⎰22sin 2()arcsin 222a u a x u C C a =-+=+.第九章 定积分一、 一、 选择题(每题2分) 1、若()⎰=+122dx k x ,则=k ( )(A )1 (B )1- (C )0 (D )212、若()x f 是奇函数,且在[]a a ,-上可积,则下列等式成立的有( )(A )()()⎰⎰-=aa adxx f dx x f 02 (B )()()⎰⎰--=aaadxx f dx x f 02(C )()⎰-=a adx x f 0(D )()()⎰-=a aa f dx x f 23、设()x f 在[]b a ,上连续,则下面式子中成立的有( )(A )()()x f dt t f dx d x a =⎰ (B )()()x f dx x f dx d ba=⎰(C )()()⎰+=C x f dx x f dx d(D )()()x f dx x f ='⎰4、设()x f 为连续函数,()()⎰-=104dxx f x x f ,则()⎰10dx x f =( )(A )1- (B )0 (C )1 (D )25、函数()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )(A ) (A ) 必要条件 (B )充要条件 (C )充分条件 (D )无关条件 6、()x f 在[]b a ,上连续,()()⎰=xa dt t f x F ,则正确的是( )(A )()x F 是()x f 在[]b a ,上的一个原函数; (B )()x f 是()x F 在[]b a ,上的一个原函数; (C )()x F 是()x f 在[]b a ,上唯一的原函数; (D )()x f 是()x F 在[]b a ,上唯一的原函数 7、⎰e edxx 1ln =( )(A )0 (B )2e-2 (C )e 22-(D )e e 222-+8、已知()()21210-=⎰x f dt t f x,且()10=f ,则()=x f ( ) (A )2xe (B )x e 21 (C )x e 2 (D )x e 2219、下列关系中正确的有( )(A )dxe dx e x x ⎰⎰≤1102(B )dxe dx e x x ⎰⎰≥112(C )dxe dx e x x⎰⎰=112(D )以上都不正确10、⎰=ba xdx dx d arcsin ( )(A )a b arcsin arcsin -(B )211x -(C )x arcsin (D )011、设410I xdxπ=⎰,4230,sin I I xdxπ==⎰,则( );(A )123I I I >> (B )213I I I >> (C )312I I I >>(D )132I I I >>12、下列积分中可直接使用牛顿—莱布尼兹公式计算其值的是( );(A )1201x dx x +⎰ (B)10⎰ (C)e (D )210x e dx ⎰13、设()f x 为连续函数,则积分()ba I f x t dx=+⎰( )(A )与,,t a b 有关 (B )与,t x 有关 (C )与,,x b t 有关 (D )仅与x 有关 14、()2x af t dt '=⎰( )(A )()()1222f x f a -⎡⎤⎣⎦ (B )()()222f x f a -⎡⎤⎣⎦ (C )()()22f x f a -⎡⎤⎣⎦ (D )()()12f x f a -⎡⎤⎣⎦15、下列积分中,使用换元积分正确的是( )(A )1arcsin 1sin dt t x t π=+⎰令 (B)10sin x t =⎰令 (C)10tan x t=⎰令 (D )12111dx x xt -=+⎰令 答案:ACACC ACCBD BAAAC 二、 二、 填空题(每题2分)1、已知⎰=Φxdtt x 02)sin()(,则=Φ')(x .;2、比较大小:⎰20πxdx⎰2s i n πx d x.3、⎰-++1142251sin dx x x xx = ;4、函数()x f 在区间[]1,2-上连续且平均值为4,则()⎰-12dxx f = ; 5、设()x f 为连续函数,则()()[]=⋅+-+⎰-dx x x x f x f 322 ;6、522cos xdx ππ-=⎰;7、()12ln 1xd t dt dx +=⎰ ;8、(211x dx -+=⎰;9、设()f x 为连续函数,且()()12,f x x f t dt =+⎰则()f x = ;10、设0a ≠,若()0120ax x dx -=⎰,则a = ;11、已知()2302xf t dt x =⎰,则()1f x dx =⎰ ;12、=⎰ ;答案:1、()2sin x 2、≥>or 3、0 4、12 5、564 6、1615 7、()2ln 1x -+ 8、2 9、1x - 10、34 11、3 12、4π三、计算题 (每题5分)1、dx x x ⎰-22101解:令t x sin =,则tdt dx cos =,tx 2010π→→ dx x x ⎰-22101=⎰2022cos sin πtdt t=()⎰⎰-=202024cos 1812sin 41ππdt t tdt=16024sin 4181ππ=⎪⎭⎫ ⎝⎛-t t2、⎰2sin πxdxx 20cos xd xπ=-⎰=⎰+-20cos 02cos ππxdxx x=102sin =πx 3、dxx x x ⎰+-20232=()()⎰⎰⎰-+-=-2121111dxx x dx x x dx x x=12325201523223252523⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-x x x x =()22154+4、⎰-2121dx x x解:令tdt t dx t x tan sec ,sec ==,3021π→→t x⎰-2121dx x x =⎰302tan πtdt =()d t t ⎰-3021sec π=()3303tan ππ-=-t t5、()dx xx 21124⎰--+=()⎰--+-+11222442dxx x x x=()d xx x ⎰-+-112442=⎰-=1184dx6、⎰⋅202cos πxdx e x=⎰202sin πx d e x=⎰⋅-⋅20222sin 02sin ππdx e x x e x x=⎰⎰-+=+2022022cos 402cos 2cos 2πππππxdxe x e e x d e e x x x=2-πe则 ⎰⋅202c o s πx d x e x =()251-πe7、⎰-⋅ππxdxx sin 4解: x x sin 4⋅为奇函数,且积分区间[]ππ,-关于原点对称sin 4=⋅∴⎰-ππxdx x8、⎰+402cos 1πdx x x=⎰⎰=4402tan 21cos 2ππx xd dx x x=⎰-40tan 2104tan 21ππxdx x x =04cos ln 218ππx + =2ln 41822ln 218-=+ππ9、()⎰-+11221x dx = ()⎰+102212x dx解:令tdt dx t x 2sec ,tan ==,4010π→→t x ()⎰-+11221x dx =⎰402cos 2πtdt=()⎰+402cos 1πdt t =042sin 21π⎪⎭⎫ ⎝⎛+t t =214+π10、⎰+301arcsindx x x解:令x x t +=1arcsin,t x 2tan =,则tdt t dx 2sec tan 2=,3030π→→t x ⎰+301arcsin dx x x =⎰302tan πt td =⎰-3022tan 03tan ππtdt t t=()d t t ⎰--3021sec ππ=()03tan ππt t -- 334)33(-=--=πππ11、⎰+133221x x dx解:令t x 1=,则dt t dx 21-=,13133→→tx⎰+133221x x dx =⎰+⋅-132221111t t dt t=⎰+3121t tdt=221312-=+t12、dxx ee⎰1ln =dxx e⎰-11)ln (+dxx e ⎰1ln=()()1ln 11ln e x x x e x x x -+-- … =e 22-13、⎰--1145x xdx解:令x t 45-=,则()2541t x -=,tdtdx 21-=,1311→→-t x ⎰--1145x x d x =()dt t ⎰-312581 =13315813⎪⎭⎫ ⎝⎛-t t =61 14、0xdx=20arctan 1xdx x x +=1ln 1ln 2323x -+=- 15、20π⎰20cos 2x dx π20c o s c o s 22x x dx dx πππ⎫=-⎪⎭⎰⎰ =2sin sin 022x x πππ⎫-=⎪⎭五、证明题(每题5分)1、 1、 证明:若f 在[],a b 上可积,F 在[],a b 上连续,且除有限个点外有()()F x f x '=,则有()()()baf x dx F b F a =-⎰证:设除[]()()12,,,n x x x a b F x f x '∈= 外,即()()[]{}12,,\,,n F x f x x a b x x x '=∀∈ 可设 0121n n x a x x x b x +=≤<<<≤= 在[]1,i i x x +上应用N-L 公式知:()()()()()()()110i innbx i i ax i i f x dx f x dx F x F x F b F a ++====-=-∑∑⎰⎰2、 2、 证明:若T T '是增加若干个分点后所得到的分割,则iiiiT Tx xωω'''∆≤∆∑∑证:由性质2知 ()()()(),S T S T s T s T ''≤≥。

大一数学分析_第一次_练习_含答案

大一数学分析_第一次_练习_含答案

数学分析期末考试题一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分,共20分)1、 函数)(x f 在[a,b ]上可积的必要条件是( B ) A 连续 B 有界 C 无间断点 D 有原函数2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( B ) A ⎰⎰=-a aa dx x f dx x f 0)(2)( B 0)(=⎰-aa dx x fC⎰⎰-=-aaadx x f dx x f 0)(2)( D )(2)(a f dx x f aa=⎰-3、 下列广义积分中,收敛的积分是( A )B? A⎰11dx xB⎰∞+11dx xC⎰+∞sin xdx D⎰-1131dx x4、级数∑∞=1n na收敛是∑∞=1n na部分和有界且0lim =∞→n n a 的( C )A 充分条件B 必要条件C 充分必要条件D 无关条件 5、下列说法正确的是( C ) A∑∞=1n na和∑∞=1n nb收敛,∑∞=1n nn ba 也收敛 (反例 : )B∑∞=1n na和∑∞=1n nb发散,∑∞=+1)(n n nb a发散 (反例:一个为-1,一个为+1.。

)C∑∞=1n na收敛和∑∞=1n nb发散,∑∞=+1)(n n nb a发散D ∑∞=1n na收敛和∑∞=1n nb发散,∑∞=1n nn ba 发散 (反例:31,n n∑∑)6、)(1x an n∑∞=在[a ,b ]收敛于a (x ),且a n (x )可导,则( D )A)()('1'x a x an n=∑∞= B a (x )可导C⎰∑⎰=∞=ban ban dx x a dx x a )()(1D∑∞=1)(n nx a一致收敛,则a (x )必连续7、下列命题正确的是( ) A)(1x an n∑∞=在[a ,b ]绝对收敛必一致收敛B)(1x an n∑∞=在[a ,b ] 一致收敛必绝对收敛C 若0|)(|lim =∞→x a n n ,则)(1x an n∑∞=在[a ,b ]必绝对收敛D)(1x an n∑∞=在[a ,b ] 条件收敛必收敛8、∑∞=++-012121)1(n n nx n 的和函数为 A xe B x sin C )1ln(x + D x cos9、函数)ln(y x z +=的定义域是( C ) A {}0,0|),(>>y x y x B {}x y y x ->|),( C {}0|),(>+y x y x D {}0|),(≠+y x y x 10、函数f (x,y )在(x 0,,y 0)偏可导与可微的关系( ) A 可导必可微 B 可导必不可微 C 可微必可导 D 可微不一定可导二、计算题:(每小题6分,共30分) 1、⎰=914)(dx x f ,求⎰+22)12(dx x xf2、计算⎰∞++02221dx x x3、计算∑∞=11n nx n的和函数并求∑∞=-1)1(n n n4、设023=+-y xz z ,求)1,1,1(xz ∂∂5、求2220lim yx yx y x +→→ 三、讨论与验证题:(每小题10分,共20分)1、 讨论⎪⎩⎪⎨⎧=≠+-=)0,0(),(0)0,0(),(),(2222y x y x y x y x xyy x f 在(0,0)点的二阶混合偏导数2、 讨论∑∞=+-221sin 2)1(n n n n nx的敛散性 四、证明题:(每小题10分,共30分)1、设)(1x f 在[a ,b ]上Riemann 可积,),2,1()()(1 ==⎰+n dx x f x f ban n ,证明函数列)}({x f n 在[a ,b ]上一致收敛于02、设yxe z =,证明它满足方程0=∂∂+∂∂yz y x z x 3、 设)(x f 在[a ,b ]连续,证明⎰⎰=πππ)(sin 2)(sin dx x f dx x xf ,并求⎰+π2cos 1sin dx xxx参考答案一、1、B 2、B3、A4、C5、C6、D7、D8、C9、C10、C 二、1、⎰⎰++=+202222)12()12(21)12(x d x f dx x xf (3分)令122+=x u ,⎰⎰==+91222)(21)12(du u f dx x xf (3分)2、⎰∞++02221dxx x =4)1arctan(lim )1()1(11lim 002π=+=+++∞→∞→⎰A A A A x x d x (6分) 3、解:令)(x f =∑∞=11n n x n ,由于级数的收敛域)1,1[-(2分),)('x f =x x n n -=∑∞=-1111,)(x f =)1ln(110x dt t x-=-⎰(2分),令1-=x ,得2ln )1(1=-∑∞=n n n 4、解:两边对x 求导02232=--x x xz z z z (3分)x z z z x 2322-=(2分)2)1,1,1(=∂∂x z(1分)5、解:x yx yx ≤+≤||0222(5分)0lim 22200=+→→y x y x y x (1分) 由于x =-2,x =2时,级数均不收敛,所以收敛域为(-2,2)(3分)三、1、解、⎪⎩⎪⎨⎧=+≠++-+=000)(4),(22222222224y x y x y x y y x x yy x f x (2分)⎪⎩⎪⎨⎧=+≠++--=000)(4),(22222222224y x y x y x y y x x xy x f y (4分)1)0,0(),0(lim )0,0(02-=∆-∆=∂∂∂→∆y f y f x y zx x y1)0,0()0,(lim )0,0(02=∆-∆=∂∂∂→∆xf x f y x zy y x (6分)2、解:由于x nx n n n n n 221sin 2|sin 2)1(|lim =-+∞→(3分),即1sin 22<x 级数绝对收敛1sin 22=x 条件收敛,1sin 22>x 级数发散(7分)所以原级数发散(2分)四、证明题(每小题10分,共20分)1、证明:因为)(1x f 在[a ,b ]上可积,故在[a ,b ]上有界,即0>∃M ,使得]),[()(1b a x M x f ∈∀≤,(3分)从而)(|)(|)(12a x M dt t f x f xa-≤≤⎰一般来说,若对n 有)!1()()(1--≤-n a x M x f n n (5分)则)()!1()()(1∞→--≤-n n a b M x f n n ,所以)}({x f n 在[a ,b ]上一致收敛于0(2分)⎰⎰⎰=+++=+aa Ta Tdt t f T t d T t f t T x dx x f 0)()()()((2)(4分)将式(2)代入(1)得证(2分)2、 y e x z y x 1=∂∂,2yx e y zy x -=∂∂,(7分)则012=-=∂∂+∂∂y x ye y xe y z y x z x y xy x (3分) 3、 证明:令t x -=π⎰⎰⎰⎰-=---=πππππππ0)(sin )(sin ))(sin()()(sin dt t tf dt t f dt t f t dx x xf 得证(7分)8cos 1sin 2cos 1sin 20202ππππ=+=+⎰⎰dx xx dx x x x (3分)。

数学分析试题库-选择题

数学分析试题库-选择题

数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。

大学数学分析试题及答案

大学数学分析试题及答案

大学数学分析试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在区间(a, b)内连续,则下列说法正确的是:A. f(x)在区间(a, b)内一定有最大值和最小值B. f(x)在区间(a, b)内一定有界C. f(x)在区间(a, b)内不一定有界D. f(x)在区间(a, b)内一定单调答案:B2. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. -1D. ∞答案:B3. 设函数f(x)=x^3-3x+1,则f'(x)等于:A. 3x^2-3B. x^2-3x+1C. 3x^2+3D. -3x^2+3答案:A4. 函数y=e^x的导数是:A. e^xB. e^(-x)C. -e^xD. 1/e^x答案:A二、填空题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则f'(a)表示______。

答案:函数f(x)在点x=a处的导数2. 设函数f(x)=x^2+2x+1,则f(2)的值为______。

答案:93. 若序列{a_n}满足a_1=1,a_{n+1}=2a_n+1,则a_5的值为______。

答案:334. 函数y=ln(x)的定义域是______。

答案:(0, +∞)三、解答题(每题15分,共60分)1. 求函数f(x)=x^2-4x+3在区间[1, 4]上的最大值和最小值。

答案:函数f(x)=x^2-4x+3的导数为f'(x)=2x-4。

令f'(x)=0,解得x=2。

在区间[1, 2)上,f'(x)<0,函数单调递减;在区间(2, 4]上,f'(x)>0,函数单调递增。

因此,最小值为f(2)=-1,最大值为f(1)=0或f(4)=3。

2. 计算极限lim(x→0) (x^2+3x+2)/(x^2-x+1)。

答案:lim(x→0) (x^2+3x+2)/(x^2-x+1) = (0+0+2)/(0-0+1) = 2。

数学分析期末考试题及答案ppt

数学分析期末考试题及答案ppt

数学分析期末考试题及答案ppt1. 极限的概念和性质- 题目1:求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

- 答案:极限值为1。

2. 连续函数的性质- 题目2:判断函数 \(f(x) = \frac{1}{x}\) 在 \(x = 0\) 处是否连续。

- 答案:不连续。

3. 导数的定义和计算- 题目3:求函数 \(f(x) = x^3 - 6x^2 + 9x + 1\) 的导数。

- 答案: \(f'(x) = 3x^2 - 12x + 9\)。

4. 微分中值定理- 题目4:证明函数 \(f(x) = x^2\) 在区间 \([0,1]\) 上至少存在一点 \(c\),使得 \(f'(c) = \frac{f(1) - f(0)}{1 - 0}\)。

- 答案:根据罗尔定理,由于 \(f(0) = 0\) 且 \(f(1) = 1\),且 \(f(x)\) 在 \([0,1]\) 上连续可导,故存在 \(c \in (0,1)\) 使得 \(f'(c) = 1\)。

5. 定积分的计算- 题目5:计算定积分 \(\int_{0}^{1} x^2 dx\)。

- 答案: \(\frac{1}{3}x^3 \Big|_0^1 = \frac{1}{3}\)。

6. 级数的收敛性- 题目6:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2}\) 是否收敛。

- 答案:收敛。

7. 多元函数的偏导数- 题目7:求函数 \(f(x, y) = x^2y + y^3\) 的偏导数 \(f_x\) 和 \(f_y\)。

- 答案: \(f_x = 2xy\),\(f_y = x^2 + 3y^2\)。

8. 多元函数的极值- 题目8:求函数 \(f(x, y) = x^2 + y^2\) 在点 \((1, 1)\) 处的极值。

- 答案:点 \((1, 1)\) 是局部最小值点。

(完整word版)数学分析复习题及答案(word文档良心出品)

(完整word版)数学分析复习题及答案(word文档良心出品)

数学分析复习题及答案一.单项选择题1. 已知, 则=()A. B. C. D.2. 设, 则()A. B. C. D.3. ()A. B. C. D.4. 下列函数在内单调增加的是()A. B. C. D.二、填空题1. 设函数2.3.在处连续, 则三、判断题1. 若函数在区间上连续, 则在上一致连续。

()2. 实轴上的任一有界无限点集至少有一个聚点。

()3.设为定义在上的单调有界函数, 则右极限存在。

()四、名词解释1. 用的语言叙述函数极限的定义2. 用的语言叙述数列极限的定义五、计算题1. 根据第四题第1小题证明2. 根据第四题第2小题证明3. 设, 求证存在, 并求其值。

4.证明:在上一致连续, 但在上不一致连续。

5. 证明: 若存在, 则6. 证明: 若函数在连续, 则与也在连续, 问: 若在或在上连续, 那么在上是否必连续。

一、1.D 2.C 3.B 4.C二、1. 2. 3.三、1.× 2.√ 3.√四、1.函数极限定义: 设函数在点的某个空心邻域内有定义, 为定数。

, , 当时, , 则。

2.数列极限定义:设为数列, 为定数, , , 当时, 有, 则称数列收敛于。

五、1.证明:, , 当时, ;得证。

2.证明:令, 则, 此时, ,, , 当时,3.证明:⑴,⑵)1)(1(1111111----+++-=+-+=-n n n n n n n n n n x x x x x x x x x x 而, 由数学归纳法可知, 单调增加。

综合⑴, ⑵可知存在,设, 则由解得=A 215+(负数舍去)4.证明: 先证在上一致连续。

, 取, 则当且有时, 有 []δ•''+'≤''-'''+'=''-'x x x x x x x f x f ))(()()(εε<+⋅++≤)(2)1(2b a b a故2)(x x f =在[]b a ,上一致连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学数学分析题题库题目一:极限与连续性
1. 计算下列极限:
(a) $\lim_{x \to 0} \frac{\sin(3x)}{4x}$
(b) $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$
(c) $\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$
2. 判断函数在给定点或区间内的连续性:
(a) 函数$f(x) = \sqrt{x}$在$x=0$处是否连续?
(b) 函数$g(x) = \frac{1}{x}$在区间$(1, 2)$内是否连续?
(c) 函数$h(x) = \begin{cases} x, & x < 1 \\ 2, & x \geq 1 \end{cases}$在$x=1$处是否连续?
题目二:微分学基础
1. 计算下列函数的导数:
(a) $f(x) = 3x^2 - 2x + 1$
(b) $g(x) = \sin(x) + \cos(x)$
(c) $h(x) = e^x \cdot \ln(x)$
2. 判断函数在给定点处的可导性:
(a) 函数$f(x) = |x|$在$x=0$处是否可导?
(b) 函数$g(x) = \sqrt[3]{x}$在$x=8$处是否可导?
题目三:积分与面积
1. 计算下列定积分:
(a) $\int_{0}^{1} x^2 \, dx$
(b) $\int_{-\pi}^{\pi} \sin(x) \, dx$
(c) $\int_{1}^{e} \frac{1}{x} \, dx$
2. 计算两个曲线之间的面积:
(a) 曲线$y = x^2$与$x$轴所围成的面积;
(b) 曲线$y = \sin(x)$与$y = \cos(x)$在区间$[0, \pi/2]$内所围成的面积。

题目四:级数与收敛性
1. 判断下列级数的敛散性:
(a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
(b) $\sum_{n=1}^{\infty} \frac{1}{2^n}$
(c) $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n}$
2. 判断函数项级数的一致收敛性:
(a) 级数$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$在区间$[0,
\pi]$上是否一致收敛?
(b) 级数$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n}$在区间$(-\infty, \infty)$上是否一致收敛?
总结:数学分析题库涵盖了极限与连续性、微分学、积分与面积以及级数与收敛性等重要概念和技巧。

通过解答这些问题,可以提升对大学数学分析的理解和应用能力。

请根据个人学习需求,自行选择题目进行解答和练习。

相关文档
最新文档