2020年高考数学 考点13 数列

合集下载

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练【题型归纳】等差数列、等比数列的基本运算题组一 等差数列基本量的计算例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2−S n =36,则n = A .5 B .6 C .7 D .8【答案】D【解析】解法一:由题知()21(1)21n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2−S n =36得,(n +2)2−n 2=4n +4=36,所以n =8.解法二:S n +2−S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2−S n =36,解析为a n +2,发生错误。

题组二 等比数列基本量的计算例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即4220q q --=,解得q 2=2,∴4624a a q ==.【易错点】忘了条件中的正数的等比数列. 【思维点拨】等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.等差数列、等比数列的判定与证明题组一 等差数列的判定与证明例1设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项. (1)证明:数列{a n }为等差数列;(2)若b n =−n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值. 【答案】(1)见解析;(2) 当n =2或n =3时,{a n ·b n }的最大项的值为6. 【解析】(1)由已知可得2S n =a 2n +a n ,且a n >0, 当n =1时,2a 1=a 21+a 1,解得a 1=1; 当n ≥2时,有2S n −1=a 2n -1+a n −1,所以2a n =2S n −2S n −1=a 2n −a 2n -1+a n −a n −1,所以a 2n −a 2n -1=a n +a n −1,即(a n +a n −1)(a n −a n −1)=a n +a n −1,因为a n +a n −1>0, 所以a n −a n −1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列. (2)由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (−n +5)=−n 2+5n =−⎝⎛⎭⎫n -522+254, 因为n ∈N *,所以当n =2或n =3时,{a n ·b n }的最大项的值为6.【易错点】S n 是a 2n 和a n 的等差中项,无法构建一个等式去求解出a n 。

2020届高考数学二轮复习专题《与数列奇偶项有关的问题》

2020届高考数学二轮复习专题《与数列奇偶项有关的问题》

(2k-1)·2k 2

(2k-2)(2k+3) 2
=4k2-3=
n2+64n-3,
特别地,当n=1时,P1=1也符合上式;
③当n=4k-1(k∈N*)时,Pn=S2k-1+B2k=(2k-21)2k+2k(22k+5) =4k2+4k=n2+64n+5.
14n2+32n,n=2k, 综上,Pn=n2+64n-3,n=4k-3,k∈N*,
②当n=2m-1,m∈N*时,Tn=T2m-1=T2m-(-1)2m-1a2ma2m+1=-
1 9
(8m2+12m)+
1 9
(16m2+16m+3)=19(8m2+4m+3)=19(2n2+6n+7).
所以Tn=19-(219n(22+n26+n+6n7),),nn为为偶奇数数,.
要使Tn≥tn2对n∈N*恒成立,只要使-
n2+64n+5,n=4k-1.
数列{an}的前n项和Sn=n(n2+1),数列{bn}的前n项和Bn=n(n2+5),
①当n=2k(k∈N*)时,Pn=Sk+Bk=
k(k+1) 2

k(k+5) 2
=k2+3k=
n 2
2+3×n2

1 4
n2+
3 2
n;
②当n=4k-3(k∈N*)时,Pn=S2k-1+B2k-2=
Sn=n2;
设数列{an}的公差为d.因为2a5-a3=13,S4=16, 所以42a(a1+1+64dd=)-16(,a1+2d)=13, 解得da=1=21,, 所以an=2n-1,Sn=n2.
n
(2)设Tn= (-1)i·ai,若对一切正整数n,不等式λTn<[an+1+(-1)n+1an]·2n-1恒成

高考数学必考点 数列涉及的21个必考点梳理

高考数学必考点  数列涉及的21个必考点梳理

C. 15
D.25
例题 14: 若等差数列{an} 满足 a7 a8 a9 0,a7 a10 0 ,则当 n __________时,{an} 的前 n 项和
最大.
必考点 8: 等差数列综合问题
例题 15: 已知等差数列an 的前 n 项和为 Sn , a1 2 , S3 18 .
(1)求an 的通项公式;
是两个原等差数列公差的最小公倍数.
5.若{an} 与{bn} 为等差数列,且前 n 项和分别为 Sn 与 Sn ' ,则
am bm
S 2m 1 S '2m1
.
6.等差数列的增减性: d 0 时为递增数列,且当 a1 0 时前 n 项和 Sn 有最小值. d 0 时为递减数列,
且当 a1 0 时前 n 项和 Sn 有最大值.
2
【小结】
已知 Sn 求 an 的三个步骤 (1)先利用 a1=S1 求出 a1. (2)用 n-1 替换 Sn 中的 n 得到一个新的关系,利用 an=Sn-Sn-1(n≥2)便可求出当 n≥2 时 an 的表达式. (3)对 n=1 时的结果进行检验,看是否符合 n≥2 时 an 的表达式,如果符合,则可以把数列的通项公式合写; 如果不符合,则应该分 n=1 与 n≥2 两段来写..
(4)待定系数法: an1 pan q n(其中 p, q 均为常数,( pq( p 1)(q 1) 0) ). (或 an1 pan rq n 其中 p, q, r 均为常数).
解法:在原递推公式两边同除以
q n1
,得:
an1 q n 1
p an q qn
1 q
,令 bn
an qn
,得: bn1
【小结】

2020年高考理科数学一轮总复习:等差数列及其前n项和教师版

2020年高考理科数学一轮总复习:等差数列及其前n项和教师版

2020年高考理科数学一轮总复习等差数列及其前n 项和[基础梳理]1.等差数列的有关概念 (1)定义:①文字语言:从第2项起,每一项与它的前一项的差都等于同一个常数. ②符号语言:a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.1.两个重要技巧(1)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .(2)若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 2.三个必备结论(1)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S偶-S 奇=nd ,S 奇S 偶=a n a n +1.(2)若等差数列{a n }的项数为奇数2n +1,则①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .(3)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .3.两个函数等差数列{a n },当d ≠0时,a n =dn +(a 1-d ),是关于n 的一次函数; S n =d 2n 2+(a 1-d2)n 是无常数项的二次函数. [四基自测]1.(教材改编)已知数列{a n }中,a n =3n +4,若a n =13,则n 等于( ) A .3 B .4 C .5 D .6答案:A2.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 答案:B3.(教材改编)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54 D .72 答案:D4.在100以内的正整数中有________个能被6整除的数. 答案:165.已知等差数列5,427,347,…,则前n 项和S n =________. 答案:514(15n -n 2)考点一 等差数列的性质及基本量的运算◄考基础——练透 角度1 用等差数列的基本量a 1和d 进行计算[例1] (1)(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .12解析:设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3⎣⎢⎡⎦⎥⎤3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10. 故选B. 答案:B(2)已知等差数列{a n }的各项都为整数,且a 1=-5,a 3a 4=-1,则|a 1|+|a 2|+…+|a 10|=( ) A .70 B .58 C .51D .40解析:设等差数列{a n }的公差为d , 由各项都为整数得d ∈Z ,因为a 1=-5,所以a 3a 4=(-5+2d )(-5+3d )=-1,化简得6d 2-25d +26=0,解得d =2或d =136(舍去),所以a n =2n -7,所以|a 1|+|a 2|+…+|a 10|=5+3+1+1+3+…+13=9+7×(1+13)2=58.故选B.答案:B角度2 用等差数列性质进行计算[例2] (1)已知等差数列{a n }的前n 项和为S n ,若a 2+a 3+a 10=9,则S 9=( ) A .3 B .9 C .18D .27 解析:设等差数列{a n }的首项为a 1,公差为d .∵a 2+a 3+a 10=9,∴3a 1+12d =9,即a 1+4d =3,∴a 5=3,∴S 9=9×(a 1+a 9)2=9×2a52=27.故选D.答案:D(2)(2019·河北唐山第二次模拟)设{a n}是任意等差数列,它的前n项和、前2n项和与前4n项和分别为X,Y,Z,则下列等式中恒成立的是()A.2X+Z=3Y B.4X+Z=4YC.2X+3Z=7Y D.8X+Z=6Y解析:设数列{a n}的前3n项的和为R,则由等差数列的性质得X,Y-X,R-Y,Z-R成等差数列,所以2(Y-X)=X+R-Y,解之得R=3Y-3X,又因为2(R-Y)=Y-X+Z-R,把R=3Y-3X代入得8X+Z=6Y,故选D.答案:D等差数列的计算技巧1.已知等差数列{a n}中,a2=1,前5项和S5=-15,则数列{a n}的公差为()A.-3 B.-5 2C.-2 D.-4 解析:设等差数列{a n}的首项为a1,公差为d,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15,解得d =-4,故选D.答案:D2.在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( ) A .11 B .10 C .7D .3解析:∵a 1+a 5=2a 3=8,∴a 3=4, 又∵a 3+a 5=2a 4, ∴a 5=2a 4-a 3=14-4=10. 故选B. 答案:B3.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列的前13项和为( ) A .13 B .26 C .52D .156解析:3(a 3+a 5)+2(a 7+a 10+a 13)=24,∴6a 4+6a 10=24,∴a 4+a 10=4,∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26,故选B.答案:B考点二 等差数列的判定与证明◄考能力——知法 角度1 用等差数列定义证明[例3] (2019·南京模拟)已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求a n 的表达式.解析:(1)证明:因为a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,所以S n -1-S n =2S n ·S n -1,S n ≠0.因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n=1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又因为a 1=12,不适合上式. 所以a n =⎩⎪⎨⎪⎧12(n =1),-12n (n -1)(n ≥2).角度2 用等差中项法证明[例4] 已知等比数列{a n }的公比为q ,前n 项和为S n . (1)若S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列;(2)若a m +2是a m +1和a m 的等差中项,则S m ,S m +2,S m +1成等差数列吗? 解析:(1)证明:由S 3,S 9,S 6成等差数列,得S 3+S 6=2S 9.若q =1,则3a 1+6a 1=18a 1,解得a 1=0,这与{a n }是等比数列矛盾,所以q ≠1, 于是有a 1(1-q 3)1-q +a 1(1-q 6)1-q =2a 1(1-q 9)1-q ,整理得q 3+q 6=2q 9.因为q ≠0且q ≠1,所以q 3=-12,a 8=a 2q 6=14a 2,a 5=a 2q 3=-12a 2, 所以2a 8=a 2+a 5,即a 8-a 2=a 5-a 8,故a 2,a 8,a 5成等差数列.(2)依题意,得2a m +2=a m +1+a m ,则2a 1q m +1=a 1q m +a 1q m -1.在等比数列{a n }中,a 1≠0,q ≠0,所以2q 2=q +1,解得q =1或q =-12.当q =1时,S m +S m +1=ma 1+(m +1)a 1=(2m +1)a 1,S m +2=(m +2)a 1. 因为a 1≠0,所以2S m +2≠S m +S m +1,此时S m ,S m +2,S m +1不成等差数列. 当q =-12时,S m +2=a 1[1-⎝ ⎛⎭⎪⎫-12m +2]1-⎝ ⎛⎭⎪⎫-12=2a 13[1-(-12)m +2] =2a 13 [1-14×(-12)m ],S m +S m +1=a 1[1-⎝ ⎛⎭⎪⎫-12m ]1-(-12)+a 1[1-⎝ ⎛⎭⎪⎫-12m +1]1-(-12)=2a 13[1-(-12)m +1-(-12)m +1] =2a 13[2-12×(-12)m ],所以2S m +2=S m +S m +1.故当q =1时,S m ,S m +2,S m +1不成等差数列;当q =-12时,S m ,S m +2,S m +1成等差数列.判定数列{a n }是等差数列的常用方法(1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数.(证明用) (2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1.(证明用) (3)通项公式法:数列的通项公式a n 是n 的一次函数.(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.提醒:判断是否为等差数列,最终一般都要转化为定义法判断.将本例1条件变为“数列{a n }的前n 项和为S n (n ∈N *),2S n -na n =n ,”求证:{a n }为等差数列.证明:因为2S n -na n =n ,①所以当n ≥2时,2S n -1-(n -1)a n -1=n -1,② 所以①-②得:(2-n )a n +(n -1)a n -1=1, (1-n )a n +1+na n =1,所以2a n =a n -1+a n +1(n ≥2), 所以数列{a n }为等差数列.考点三 等差数列前n 项和及综合问题◄考素养——懂理[例5] (1)(2018·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.①求{a n }的通项公式; ②求S n ,并求S n 的最小值.解析:①设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -9. ②由①得S n =a 1+a n2·n =n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16.(2)已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).①求证数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;②设b n =2a n -15,求数列{|b n |}的前n 项和T n . 解析:①∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *), ∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a nn =2, ∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn =2+2(n -1)=2n .②由①知a n =2n 2,∴b n =2a n -15=2n -15, 则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n .令b n =2n -15≤0,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n . n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎨⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.关于等差数列前n 项和问题,主要是求和方法及性质的应用,其关键点为: (1)定性质,根据已知条件判断出数列具有哪些特性.(2)定方法,根据已知条件或具有的性质,确定解决问题的方法. ①_x0001_求和:用哪个公式,需要哪些量.②求S n 最值:(ⅰ)借助S n 的二次函数法; (ⅱ)借用通项的邻项变号法a 1>0,d <0,满足⎩⎨⎧ a m ≥0a m +1≤0S n 取得最大值S m ;a 1<0,d >0,满足⎩⎨⎧a m ≤0a m +1≥0,S n 取得最小值S m .1.在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( ) A .21 B .20 C .19D .18解析:由a 1+a 3+a 5=3a 3=105,∴a 3=35. a 2+a 4+a 6=3a 4=99,∴a 4=33,∴d =a 4-a 3=-2. ∴a n =a 4+(n -4)×d =33+(n -4)×(-2)=-2n +41. ∴a 20>0,a 21<0,∴当n =20时,S 20最大,故选B. 答案:B2.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值. 解析:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎨⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31, 令⎩⎨⎧ b n ≤0,b n +1≥0,即⎩⎨⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312, ∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小. ∵数列{b n }的首项是-29,公差为2, ∴T 15=15×(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.数学建模——传统文化中的数列的学科素养在传统文化中,涉及很多等差数列的模型,经过转化用等差数列的知识求解,体现了数学建模,数学运算的素养.[例1] 《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺 D.1631尺解析:设该女子织布每天增加d 尺,由题意知S 30=30×5+30×292d =390,解得d =1629.故该女子织布每天增加1629尺.故选B. 答案:B[例2] 中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A.174斤B .184斤C.191斤 D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解得a 1=65.∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤,故选B.答案:B课时规范练1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14 D.12解析:由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.答案:B2.等差数列{a n }中,a 1=1,a n =100(n ≥3).若{a n }的公差为某一自然数,则n 的所有可能取值为( )A .3,7,9,15,100B .4,10,12,34,100C .5,11,16,30,100D .4,10,13,43,100解析:由等差数列的通项公式得,公差d =a n -a 1n -1=99n -1.又因为d ∈N ,n ≥3,所以n -1可能为3,9,11,33,99,n 的所有可能取值为4,10,12,34,100,故选B. 答案:B3.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11解析:因为{a n }是等差数列,∴a 1+a 5=2a 3,即a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5,故选A. 答案:A4.等差数列{a n }的前n 项和为S n ,若S 8-S 4=36,a 6=2a 4,则a 1=( )A .-2B .0C .2D .4解析:设等差数列{a n }的公差为d ,∵S 8-S 4=36,a 6=2a 4,∴⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫8a 1+8×72d -⎝ ⎛⎭⎪⎫4a 1+4×32d =36,a 1+5d =2a 1+6d ,解得⎩⎨⎧a 1=-2,d =2.故选A. 答案:A5.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A .12B .13C .14D .15 解析:由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.答案:B6.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:由题意可知,⎩⎨⎧a 1+4d =3,a 1+9d =8,解得a 1=-1,d =1,所以a 100=-1+99×1=98.答案:C7.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于__________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n-a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38, 解得n =10.答案:108.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5. 答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值.(2)已知数列{b n }满足b n =S n n ,证明数列{b n }是等差数列,并求其前n 项和T n .解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a=8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 10.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *). (1)求证:数列{b n }为等差数列;(2)求数列{a n }的通项公式.解析:(1)证明:∵b n =1a n,且a n =a n -12a n -1+1,∴b n+1=1a n+1=1a n2a n+1=2a n+1a n,∴b n+1-b n=2a n+1a n-1a n=2.又∵b1=1a1=1,∴数列{b n}是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n}的通项公式为b n=1+(n-1)×2=2n-1,又b n=1a n,∴a n=1b n=12n-1.∴数列{a n}的通项公式为a n=12n-1.。

高考数学题型总结13__数列的通项与求和

高考数学题型总结13__数列的通项与求和

难点13 数列的通项与求和例题讲解[例1]已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x )=(x -1)2,且a 1=f (d -1),a 3=f (d +1),b 1=f (q +1),b 3=f (q -1),(1)求数列{a n }和{b n }的通项公式;(2)设数列{c n }的前n 项和为S n ,对一切n ∈N *,都有nn c c b c b c +++ 2111=a n +1成立,求lim∞→n nn S S 212+. 题目分析:本题主要考查等差、等比数列的通项公式及前n 项和公式、数列的极限,利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n 项和,实质上是该数列前n 项和与数列{a n }的关系,借助通项与前n 项和的关系求解c n 是该条件转化的突破口.解:(1)∵a 1=f (d -1)=(d -2)2,a 3=f (d +1)=d 2, ∴a 3-a 1=d 2-(d -2)2=2d ,∵d =2,∴a n =a 1+(n -1)d =2(n -1);又b 1=f (q +1)=q 2,b 3=f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2, ∴b n =b ·q n -1=4·(-2)n -1 (2)令nnb c =d n ,则d 1+d 2+…+d n =a n +1,(n ∈N *), ∴d n =a n +1-a n =2, ∴n n b c =2,即c n =2·b n =8·(-2)n -1;∴S n =38[1-(-2)n ]. ∴2lim ,1)21(2)21()2(1)2(121222212212-=--+-=----=+∞→++n n n n n nn n n S SS S[例2]设A n 为数列{a n }的前n 项和,A n =23(a n -1),数列{b n }的通项公式为b n =4n +3; (1)求数列{a n }的通项公式;(2)把数列{a n }与{b n }的公共项按从小到大的顺序排成一个新的数列,证明:数列{d n }的通项公式为d n =32n +1;(3)设数列{d n }的第n 项是数列{b n }中的第r 项,B r 为数列{b n }的前r 项的和;D n 为数列{d n }的前n 项和,T n =B r -D n ,求lim∞→n 4)(n na T . 题目分析:本题考查数列的通项公式及前n 项和公式及其相互关系;集合的相关概念,数列极限,利用项与和的关系求a n 是本题的先决;(2)问中探寻{a n }与{b n }的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点.解:(1)由A n =23(a n -1),可知A n +1=23(a n +1-1), ∴a n +1-a n =23 (a n +1-a n ),即n n a a 1+=3,而a 1=A 1=23(a 1-1),得a 1=3,所以数列是以3为首项,公比为3的等比数列,数列{a n }的通项公式a n =3n .(2)∵32n +1=3·32n =3·(4-1)2n =3·[42n +C 12n ·42n -1(-1)+…+C 122-n n ·4·(-1)+(-1)2n]=4n +3,∴32n +1∈{b n }.而数32n =(4-1)2n =42n +C 12n ·42n -1·(-1)+…+C 122-n n ·4·(-1)+(-1)2n =(4k +1), ∴32n ∉{b n },而数列{a n }={a 2n +1}∪{a 2n },∴d n =32n +1.(3)由32n +1=4·r +3,可知r =43312-+n ,∴B r =)19(827)91(9127,273433)52(2)347(1212-=-⋅-=+⋅-=+=++++nn n n n D r r r r ,89)(lim ,3)(,433811389)19(827821349444241212=∴=+⋅-⋅=---⋅+=-=∴∞→++n n n n n n n nn n n r n a T a D B T 方法总结:1.数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同.因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性.2.数列{a n }前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧≥-=-2,1,11n S S n S n n3.求通项常用方法①作新数列法.作等差数列与等比数列.②累差叠加法.最基本形式是:a n =(a n -a n -1+(a n -1+a n -2)+…+(a 2-a 1)+a 1. ③归纳、猜想法.4.数列前n 项和常用求法 ①重要公式 1+2+…+n =21n (n +1)12+22+…+n 2=61n (n +1)(2n +1) 13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2②等差数列中S m +n =S m +S n +mnd ,等比数列中S m +n =S n +q n S m =S m +q m S n .③裂项求和:将数列的通项分成两个式子的代数和,即a n =f (n +1)-f (n ),然后累加时抵消中间的许多项.应掌握以下常见的裂项:等)!1(1!1)!1(1,C C C ,ctg2ctg 2sin 1,!)!1(!,111)1(111+-=+-=-=-+=⋅+-=++-n n n ααn n n n n n n n rn r n n nα④错项相消法 ⑤并项求和法数列通项与和的方法多种多样,要视具体情形选用合适方法.习题训练一、填空题1.(★★★★★)设z n =(21i -)n,(n ∈N *),记S n =|z 2-z 1|+|z 3-z 2|+…+|z n +1-z n |,则lim ∞→n S n =_________.2.(★★★★★)作边长为a 的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________.二、解答题3.(★★★★)数列{a n }满足a 1=2,对于任意的n ∈N *都有a n >0,且(n +1)a n 2+a n ·a n +1-na n +12=0,又知数列{b n }的通项为b n =2n -1+1.(1)求数列{a n }的通项a n 及它的前n 项和S n ; (2)求数列{b n }的前n 项和T n ;(3)猜想S n 与T n 的大小关系,并说明理由.4.(★★★★)数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,(n ∈N *). (1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ; (3)设b n =)12(1n a n -(n ∈N *),T n =b 1+b 2+……+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *均有T n >32m成立?若存在,求出m 的值;若不存在,说明理由.5.(★★★★★)设数列{a n }的前n 项和为S n ,且S n =(m +1)-ma n .对任意正整数n 都成立,其中m 为常数,且m <-1.(1)求证:{a n }是等比数列;(2)设数列{a n }的公比q =f (m ),数列{b n }满足:b 1=31a 1,b n =f (b n -1)(n ≥2,n ∈N *).试问当m 为何值时,)(3lim )lg (lim 13221n n n n n n b b b b b b a b -∞→∞→+++=⋅ 成立?6.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项b n ; (2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1),记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论.7.(★★★★★)设数列{a n }的首项a 1=1,前n 项和S n 满足关系式:3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4…).(1)求证:数列{a n }是等比数列;(2)设数列{a n }的公比为f (t ),作数列{b n },使b 1=1,b n =f (11 n b )(n =2,3,4…),求数列{b n }的通项b n ;(3)求和:b 1b 2-b 2b 3+b 3b 4-…+b 2n -1b 2n -b 2n b 2n +1.参考答案一、,)22(|)21()21(|||:.1111+++=---=-=n n n n n n i i z z c 设解析22)22(1221])22(1[2121--=--=+++=∴nn n n c c c S 221222221lim +=+=-=∴∞→n n S 答案:1+222.解析:由题意所有正三角形的边长构成等比数列{a n },可得a n =12-n a ,正三角形的内切圆构成等比数列{r n },可得r n =12163-n a ,∴这些圆的周长之和c =lim ∞→n 2π(r 1+r 2+…+r n )=233π a 2, 面积之和S =lim ∞→n π(n 2+r 22+…+r n 2)=9πa 2 答案:周长之和233πa ,面积之和9πa 2 二、3.解:(1)可解得11+=+n na a n n ,从而a n =2n ,有S n =n 2+n , (2)T n =2n +n -1.(3)T n -S n =2n -n 2-1,验证可知,n =1时,T 1=S 1,n =2时T 2<S 2;n =3时,T 3<S 3;n =4时,T 4<S 4;n =5时,T 5>S 5;n =6时T 6>S 6.猜想当n ≥5时,T n >S n ,即2n >n 2+1可用数学归纳法证明(略).4.解:(1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n 可知{a n }成等差数列,d =1414--a a =-2,∴a n =10-2n . (2)由a n =10-2n ≥0可得n ≤5,当n ≤5时,S n =-n 2+9n ,当n >5时,S n =n 2-9n +40,故S n =⎪⎩⎪⎨⎧>+-≤≤+-540951 922n n n n n n(3)b n =)111(21)22(1)12(1+-=+=-n n n n a n n)1(2)]111()3121()211[(2121+=+-++-+-=+++=∴n n n n b b b T n n ;要使T n >32m总成立,需32m <T 1=41成立,即m <8且m ∈Z ,故适合条件的m 的最大值为7.5.解:(1)由已知S n +1=(m +1)-ma n +1①,S n =(m +1)-ma n ②,由①-②,得a n +1=ma n -ma n +1,即(m +1)a n +1=ma n 对任意正整数n 都成立.∵m 为常数,且m <-1∴11+=+m ma a n n ,即{1+n n a a }为等比数列. (2)当n =1时,a 1=m +1-ma 1,∴a 1=1,从而b 1=31. 由(1)知q =f (m )=1+m m,∴b n =f (b n -1)=111+--n n b b (n ∈N *,且n ≥2)∴1111-+=n n b b ,即1111=--n n b b ,∴{n b 1}为等差数列.∴nb 1=3+(n -1)=n +2,21+=∴n b n (n ∈N *). 910,101,11lg 1)211151414131(3lim )(3lim ,1lg ]1lg 21[lim )lg (lim ,)1(132211-=∴=+∴=+=+-+++-+-=++++=++-=⋅∴+=∞→-∞→∞→∞→-m m m m m n n b b b b b b m m m m n n a b m m a n n n n n n n n n n 由题意知而 6.解:(1)设数列{b n }的公差为d ,由题意得:⎪⎩⎪⎨⎧=-+=1452)110(1010111d b b 解得b 1=1,d =3, ∴b n =3n -2.(2)由b n =3n -2,知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n ) =log a [(1+1)(1+41)…(1+231-n )],31log a b n +1=log a 313+n . 因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)…(1+231-n )与313+n 的大小,取n =1时,有(1+1)>3113+⋅取n =2时,有(1+1)(1+41)>3123+⋅… 由此推测(1+1)(1+41)…(1+231-n )>313+n①若①式成立,则由对数函数性质可判定:当a >1时,S n >31log a b n +1, ② 当0<a <1时,S n <31log a b n +1,③下面用数学归纳法证明①式. (ⅰ)当n =1时,已验证①式成立. (ⅱ)假设当n =k 时(k ≥1),①式成立,即:313)2311()411)(11(+>-+++k k .那么当n =k +1时,333322223323331)1(3)1311)(2311()411)(11(1)1(343)23(1313,0)13(49)13()13)(43()23(]43[)]23(1313[).23(1313)1311(13)2)1(311)(2311()411)(11(++>++-+++++=+>+++∴>++=+++-+=+-++++++=+++>-++-+++k k k k k k k k k k k k k k k k k k k k k k k k k 因而这就是说①式当n =k +1时也成立.由(ⅰ)(ⅱ)可知①式对任何正整数n 都成立. 由此证得:当a >1时,S n >31log a b n +1;当0<a <1时,S n <31log a b n +1.7.解:(1)由S 1=a 1=1,S 2=1+a 2,得3t (1+a 2)-(2t +3)=3t .∴a 2=tt a a t t 332,33212+=+. 又3tS n -(2t +3)S n -1=3t ,① 3tS n -1-(2t +3)S n -2=3t②①-②得3ta n -(2t +3)a n -1=0. ∴t t a a n n 3321+=-,n =2,3,4…,所以{a n }是一个首项为1公比为tt 332+的等比数列; (2)由f (t )=t t 332+=t132+,得b n =f (11-n b )=32+b n -1.可见{b n }是一个首项为1,公差为32的等差数列. 于是b n =1+32(n -1)=312+n ; (3)由b n =312+n ,可知{b 2n -1}和{b 2n }是首项分别为1和35,公差均为34的等差数列,于是b 2n =314+n ,∴b 1b 2-b 2b 3+b 3b 4-b 4b 5+…+b 2n -1b 2n -b 2n b 2n +1=b 2(b 1-b 3)+b 4(b 3-b 5)+…+b 2n (b 2n -1-b 2n +1) =-34 (b 2+b 4+…+b 2n )=-34·21n (35+314 n )=-94 (2n 2+3n )。

2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结高考数学中的数列作为重要考点之一,经常涉及到的知识点较多且易错。

在2024年高考数学考试中,以下是数列的易错知识点总结:一、数列的基本概念与性质1. 数列的概念:数列是由一系列按照一定规律排列的数字组成的序列。

需要区分数列的元素与项,元素是指数列中的具体数字,而项是指元素所在的位置。

2. 等差数列与等差中项:等差数列是指数列中相邻两项之间的差值相等的数列。

等差中项是指位于等差数列中的任意一项。

3. 等差数列的通项公式:对于等差数列${a_1, a_2,a_3, ..., a_n}$,其通项公式为$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示首项,d表示公差。

4. 等比数列与等比中项:等比数列是指数列中相邻两项之间的比值相等的数列。

等比中项是指位于等比数列中的任意一项。

5. 等比数列的通项公式:对于等比数列${a_1, a_2,a_3, ..., a_n}$,其通项公式为$a_n = a_1r^{n-1}$,其中$a_n$表示第n项,$a_1$表示首项,r表示公比。

6. 等差数列与等比数列的前n项和公式:等差数列的前n项和公式为$S_n = \\frac{n}{2}(a_1 + a_n)$,等比数列的前n项和公式为$S_n = \\frac{a_1(1 - r^n)}{1 - r}$。

7. 数列的性质:数列的奇数项和与偶数项和的关系,数列的倒数项和与首项和的关系。

如等差数列中的奇数项和是首项和的一半,倒数项和是首项和的倒数。

二、数列的综合应用1. 数列的增长率与减少率:通过对序列中的元素进行操作,可以计算出数列的增长率与减少率。

如等差数列中,相邻元素的增长率是公差d;等比数列中,相邻元素的增长率是公比r。

2. 数列的问题转化:将数列问题转化为方程或等价式,从而找到解题的方法。

如通过设置未知数,将一个复杂的数列问题转化为简单的方程求解。

2020年山东高考数学真题及答案

【答案】C
【解析】
【分析】
根据集合并集概念求解.
【详解】
故选:C
【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.
2. ()
A. 1B. −1
C. iD. −i
【答案】D
【解析】
【分析】
根据复数除法法则进行计算.
【详解】
故选:D
【点睛】本题考查复数除法,考查基本分析求解能力,属基础题.
3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()
2020年普通高等学校招生全国统一考试
数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
A. B.
C. D.
12.信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为 ,且 ,定义X的信息熵 .()
A 若n=1,则H(X)=0
B.若n=2,则H(X)随着 的增大而增大
C.若 ,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为 ,且 ,则H(X)≤H(Y)
三、填空题:本题共4小题,每小题5分,共20分。
9.已知曲线 .()
A.若m>n>0,则C是椭圆,其焦点在y轴上
B.若m=n>0,则C是圆,其半径为
C.若mn<0,则C是双曲线,其渐近线方程为
D.若m=0,n>0,则C是两条直线

【高考数学秒杀系列-数列秒杀】专题13 裂项相消法(原卷版)-高考数学二轮复习

第13 讲 裂项相消法知识与方法将数列中的通项进行拆分,然后重新组合,使之能消去一些项,以达到求和的目的,一般是一项拆成两项,消掉中间所有项,剩余首尾对称项。

一般拆成形如:()()1n a f n f n =-+,或者()()2n a f n f n =-+的形式。

常见裂项消形式:1.形如()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭型:分母由两项相乘,两项之差是k ,就提1k 出来。

()11111n n n n =-++()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭22221111(2)4(2)n n n n n ⎡⎤+=-⎢⎥++⎣⎦()()114111341414141n n n n n ++⎡⎤=-⎢⎥----⎣⎦2.()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎢⎥⎣⎦3.()()()()12121111212212n n n nn n n n n n n n n -+-+=⋅=-++⋅+(此类题型可以用待定系数法处理)4.分母有理化型:=1k=1a b=-5.23311(1)33n n n n ⎛⎫⎡⎤=+--+ ⎪⎣⎦⎝⎭ 6.()!1!n n n n ⋅=+-!7.11m m m nn n C C C -+=- 8.形如:()tan tan tan tan 1tan αβαβαβ-=--型:()()1tan 1tan tan 1tan 1tan1n n n n ⎡⎤+⋅=+--⎣⎦ 9.形如:log log log aa a MM N N=-型: ()1log log 1log aa a n n n n +=+-典型例题【例1】数列()()123n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭的前20项和为()A.723B.2069 C.13D.1969【例2】已知数列{}n a 的前n 项和n S 满足2n S n =,记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,*n ∈N .则20T 的值为()A.1939B.3839C.2041D.4041【例3】高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x R =用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数.在数列{}n a 中,记[]n a 为不超过n a 的最大整数,则称数列[]{}n a 为{}n a 的取整数列,设数列{}n a 满足1a 1211,3n n a a +⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦,记数列{}n a 的前n 项和为n S ,则数列21211n n S S -+⎧⎫⎨⎬⎩⎭的前1010项和为( )A.5042021B.5052021C.10102021D.5042022【例4】设数列{}n a 的前n 项和为n S ,若n a =则()99 S =A.7B.8C.9D.10【例5】已知等差数列{}n a 的前n 项和为n S ,公差为12239101111,0,3n a a a a a a a >+++=12,当10n S n+取最小值时,n 的值为() A.7 B.8 C.9 D.10【例6】已知数列{}n a 的通项公式为()1!n na n =+,则其前项和为() A.()111!n -+ B.11!n -C.12!n -D.()121!n -+【例7】已知数列{}n a 的前n 项和为,n S【例8】已知公差不为零的等差数列{}n a 满足36a =,且124,,a a a 成等比数列. (1)求{}n a 的通项公式n a ;(2)设n S 为数列{}n a 的前n 项和,求数列1n S ⎧⎫⎨⎬⎩⎭的前20项和.【例9】在(1)749S =,(2)5810S a =+,(3)8628S S =+这三个条件中任选一个,补充在下面问题中,并完成解答.问题:已知等差数列{}n a 的前n 项和为5,9n S a =,,若数列{}n b 满足11n n n b a a +=,证明:数列{}n b 的前n 项和12n T <.【例10】在(1)184n n a a n --=-;(2)12n n a a +-=;(3)n ()()()()111412n n a n a n n ++=+++,三个条件中任选一个,补充在下面问题中,并求解. 已知数列{}n a 中,13a =, (1)求n a ;(2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:1132n T <.【例11】已知等差数列{}n a 的公差为d ,前n 项和为41,9n S S a =+,且995S a =. (1)求数列{}n a 的通项公式; (2)设11n nn n n S S b S S ++-=,求数列{}n b 的前n 项和n T .【例12】已知数列{}n a 的前n 项和为n S ,首项为1a ,且12nn S a a n-=. (1)证明:{}n a 为等差数列;(2)若{}n a 的首项和公差均为1,求数列()()122121n n n a aa +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T .【例13】已知n S 是数列{}n a 的前n 项和,满足21322n S n n =+. (1) 求{}n a 的通项公式;(2)求数列1312n n n n a a +⎧⎫+⋅⎨⎬⎩⎭的前n 项和n T .【例14】已知数列{}n a 的前n 项和为n S ,满足1n n S a +=. (1)求数列{}n a 的通项公式; (2)记()()111nn n n a b a a +=++,求数列{}n b 的前n 项和n T .【例15】已知等差数列{}n a 的前n 项和为*3221,21,23,n n n S S S a a n +=+=+∈N .(1)求{}n a 的通项公式;(2)设数列{}n b 满足()*123(21)n b b n b n n +++-=∈N ,记数列14(1)n n n n b a +⎧⎫⋅-⎨⎬⎩⎭的前n 项和n T ,求n T .【例16】已知等差数列{}n a 满足253,25a S ==. (1)求数列{}n a 的通项公式; (2)设n n b T =为数列{}n b 的前n 项和,求n T .【例17】正项数列{}n a 的前n 项和n S 满足:()()22210n n S n n S n n -+--+=.(1)求数列{}n a 的通项公式n a ; (2)令221(2)n n n b n a +=+,数列{}n b 的前n 项和为n T ,证明:对于*n ∀∈N ,都有564n T <.【例18】已知等比数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意的*n ∈N ,满足关系式233n n S a =-.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的通项公式是()2331log log 1n n n b a a =+,求证对一切的正整数n 都有:12b b +++23n b <.【例19】已知数列{},n n a b 满足:1121,1,41n n n n nb a a b b a +=+==-. (1)求1234,,,b b b b ;(2)求数列{}n b 的通项公式; (3)设12231n n n S a a a a a a +=⋅+⋅++⋅,若4n n a S b ⋅>对*n ∈N 恒成立,求实数a 的取值范围.【例20】数列{}n a 的前n 项和n S 满足:()()()222*10,n n S n n S n n n -+--+=∈N ,{}n a 为正项数列;数列{}n b 是首项为14,公比为14的等比数列. (I)求数列{}{},n n a b 的通项公式; (II)令221(2)n n n n c a b n a+=++,数列{}n c 的前n 项和n T ,求n T . {}n a 为正项数列;数列{}n b 是首项为14,公比为14的等比数列.(I)求数列{}{},n n a b 的通项公式; (II)令221(2)n n n nn c a b n a +=++,数列{}n c 的前n 项和n T ,求n T .【例21】在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列, 将这2n +个数的乘积记作n T ,再令lg ,1n n a T n =. (I)求数列{}n a 的通项公式; (II)求证:*tan(1)tan tan(1)tan 1,tan1k kk k k +-+⋅=-∈N .(III)设1tan tan n n n b a a +=⋅,求数列{}n b 的前n 项和n S .。

2020年全国新高考Ⅰ卷数学试卷(解析版)

2020年全国新高考Ⅰ卷数学试卷一、选择题1. 设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2. 2−i1+2i=( )A.1B.−1C.iD.−i3. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去一个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A.120种B.90种C.60种D.30种4. 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A 且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40∘,则晷针与点A处的水平面所成角为()A.20∘B.40∘C.50∘D.90∘5. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%6. 基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT,有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天7. 已知P是边长为2的正六边形ABCDEF内的一点,则AP→⋅AB→的取值范围是( )A.(−2,6)B.(−6,2)C.(−2,4)D.(−4,6)8. 若定义在R上的奇函数f(x)在(−∞,0)上单调递减,且f(2)=0,则满足xf(x−1)≥0的x的取值范围是()A.[−1,1]∪[3,+∞)B.[−3,−1]∪[0,1]C.[−1,0]∪[1,+∞)D.[−1,0]∪[1,3]二、多选题9. 已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为√nC.若mn<0,则C是双曲线,其渐近线方程为y=±√−mnxD.若m=0,n>0,则C是两条直线10. 如图是函数y=sin(ωx+φ),则sin(ωx+φ)=( )A.sin(x+π3) B.sin(π3−2x) C.cos(2x+π6) D.cos(5π6−2x)11. 已知a>0,b>0,且a+b=1,则( )A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤212. 信息熵是信息论中的一个重要概念,设随机变量X所有可能的取值为1,2,⋯,n,且P(X=i)=p i> 0(i=1,2,⋯,n),∑p ini=1=1,定义X的信息熵H(X)=−∑p ini=1log2p i,则( )A.若n=1,则H(X)=0B.若n=2,则H(X)随着p i的增大而增大C.若p i =1n (i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m),则H (X )≤H (Y ) 三、填空题13. 斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB|=________.14. 将数列{2n −1}与{3n −2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.15. 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形, BC ⊥DG ,垂足为C ,tan ∠ODC=35, BH//DG ,EF =12cm ,DE =2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1,则图中阴影部分的面积为________cm 2.16. 已知直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,∠BAD =60∘,以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________. 四、解答题17. 在①ac =√3,②c sin A =3,③c =√3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =√3sin B ,C =π6, ________?18. 已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m](m ∈N ∗)中的项的个数,求数列{b m }的前100项和S 100 .19. 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),20. 如图,四棱锥P −ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.21. 已知函数f (x )=ae x−1−ln x +ln a .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足. 证明:存在定点Q,使得|DQ|为定值.参考答案与试题解析2020年全国新高考Ⅰ卷数学试卷一、选择题1.【答案】C【考点】并集及其运算【解析】根据集合并集的运算法则求解.【解答】解:集合A={x|1≤x≤3},B={x|2<x<4},则A∪B={x|1≤x<4}.故选C.2.【答案】D【考点】复数代数形式的混合运算【解析】根据复数的除法运算法则求解.【解答】解:2−i1+2i =(2−i)(1−2i) (1+2i)(1−2i)=2−4i−i−21+4=−5i5=−i.故选D.3.【答案】C【考点】排列、组合及简单计数问题【解析】先让甲场馆选1人,再让乙场馆选2,剩下的去丙场馆即可得解. 【解答】解:由题意可得,不同的安排方法共有C61⋅C52=60(种).故选C.4.【答案】B【考点】直线与平面所成的角空间点、线、面的位置【解析】根据纬度的定义和线面角的定义,结合直角三角形的性质,可得晷针与点A处的水平面所成角. 【解答】解:如图所示,AB为日晷晷针,∠AOC=40∘,由题意知,∠AOC+∠OAB=90∘,∠DAB+∠OAB=90∘,∴ ∠DAB=∠AOC=40∘,即晷针与点A处的水平面所成角为40∘.故选B.5.【答案】C【考点】概率的应用【解析】利用互斥事件的概率公式代入求解.【解答】解:设''该中学学生喜欢足球''为事件A,''该中学学生喜欢游泳''为事件B,则''该中学学生喜欢足球或游泳''为事件A∪B,''该中学学生既喜欢足球又喜欢游泳''为事件A∩B. 由题意知,P(A)=60%,P(B)=82%,P(A∪B)=96%,所以P(A∩B)=P(A)+P(B)−P(A∪B)=60%+82%−96%=46%.故选C.6.【答案】B【考点】函数模型的选择与应用指数式与对数式的互化【解析】先根据所给模型求得r,然后求得初始病例数I,最后求得感染病例数增加1倍所需的时间.【解答】解:3.28=1+r ⋅6得r =0.38,I(t)=e 0.38t , e 0.38(t+x)=2⋅e 0.38t 得x =ln 20.38≈1.8. 故选B . 7.【答案】 A【考点】平面向量数量积求线性目标函数的最值 【解析】先画出图形,并用坐标表示AP →⋅AB →,然后向量问题转化为求线性目标函数的最值,最终得AP →⋅AB →的取值范围.【解答】 解:如图:设A(−1,√3),P (x,y ),B (−2,0), AP →=(x +1,y −√3),AB →=(−1,−√3), 则AP →⋅AB →=−x −√3y +2.令z =−x −√3y +2,该问题可转化为求该目标函数在可行域中的最值问题,由图可知,z =−x −√3y +2经过点C 时,z 取得最大值;经过点F 时,z 取得最小值, 故最优解为C(−1,−√3)和F(1,√3), 代入得z max =6或z min =−2, 故AP →⋅AB →的取值范围是(−2,6). 故选A . 8.【答案】 D【考点】函数单调性的性质 函数奇偶性的性质【解析】先根据函数的奇偶性确定函数的大致图像,然后判断函数的单调性,最后利用分类讨论思想讨论不等式成立时x 的取值范围. 【解答】解:根据题意,函数图象大致如图:①当x =0时,xf(x −1)=0成立; ②当x >0时,要使xf(x −1)≥0, 即f(x −1)≥0,可得0≤x −1≤2或x −1≤−2, 解得1≤x ≤3;③当x <0时,要使xf(x −1)≥0, 即f(x −1)≤0,可得x −1≥2或−2≤x −1≤0, 解得−1≤x <0.综上,x 的取值范围为[−1,0]∪[1,3]. 故选D .二、多选题 9.【答案】 A,C,D 【考点】双曲线的渐近线 椭圆的标准方程 圆的标准方程 直线的一般式方程【解析】根据所给条件,逐一分析对应的方程形式,结合椭圆、圆、双曲线方程的定义进行判断即可. 【解答】解:A ,mx 2+ny 2=1,即x 21m+y 21n=1.∵ m >n >0, ∴ 1m <1n ,∴ 此时C 是椭圆,且其焦点在y 轴上, A 选项正确;B ,m =n >0时,x 2+y 2=1n , ∴ r =√n n, B 选项错误;C,mn<0时,可推断出C是双曲线,且其渐近线方程为y=±√−1n1mx=±√−mnx,C选项正确;D,m=0时,C:ny2=1,∴ y=±√1n代表两条直线,D选项正确.故选ACD.10.【答案】B,C【考点】诱导公式由y=Asin(ωx+φ)的部分图象确定其解析式正弦函数的图象【解析】先用图像上两零点间的距离求出函数的周期,从而求得ω,而后利用五点对应法求得φ,进而求得图像的解析式.【解答】解:由函数y=sin(ωx+φ)的部分图像,可知,T2=2π3−π6=π2,∴ T=π,∴ ω=2ππ=2,∴ y=sin(2x+φ).将点(π6,0)代入得,0=sin(π3+φ),∴π3+φ=(k+1)π(k∈Z).A,当x=π6时,sin(x+π3)=sinπ2=1,不符合题意,故A选项错误;B,当k=0时,φ=2π3,y=sin(2x+2π3 )=sin(2x−π3+π3+2π3)=sin(2x−π3+π)=−sin(2x−π3)=sin(π3−2x),故B选项正确;C,sin(2x+2π3)=sin(2x+π6+π2)=cos(2x+π6),故C选项正确;D,cos(5π6−2x)=cos(2x−5π6)=cos(2x−π2−π3)=sin(2x−π3)=−sin(2x+2π3),故D选项错误.故选BC.11.【答案】A,B,D【考点】不等式性质的应用基本不等式在最值问题中的应用【解析】选项A左边是代数式形式,右边是数字形式,且已知a+b=1,故可考虑通过基本不等式和重要不等式建立a2+b2与a+b的关系;选项B先利用指数函数的增减性将原不等式简化为二元一次不等式,然后利用不等式的性质及已知条件判断;选项C需要利用对数的运算和对数函数的增减性将不等式转化为关于a, b的关系式,然后利用基本不等式建立与已知条件a+b的关系;选项D基本不等式的变形应用.【解答】解:A,∵ a+b=1,则a2+b2+2ab=1,2ab≤a2+b2,当且仅当a=b时取等号,∴ 1=a2+b2+2ab≤2(a2+b2),可得a2+b2≥12,故A正确;B,∵ a−b=a−(1−a)=2a−1>−1,∴2a−b>2−1=12,故B正确;C,∵ ab≤(a+b2)2=14,当且仅当a=b时取等号,∴log2a+log2b=log2ab≤log214=−2,故C错误;D ,∵ a +b ≥2√ab ,当且仅当a =b 时取等号, ∴ (√a +√b)2=a +b +2√ab =1+2√ab ≤2, 即√a +√b ≤√2,则√a +√b ≤2,故D 正确. 故选ABD . 12. 【答案】 A,C【考点】 概率的应用概率与函数的综合 利用导数研究函数的单调性【解析】选项A 根据题目给出信息熵的定义可直接判断;选项B 根据题意先得到p 1,p 2的关系,然后构造关于p 1的函数,最后利用导数判断新函数的增减性; 选项C 根据题目给定信息化简H(x)后可判断;选项D 分别求出H(x),H(y),利用作差法结合对数的运算即可判断. 【解答】解:A ,若n =1,则p 1=1,H (X )=−1×log 21=0,故A 正确; B ,若n =2,则p 1+p 2=1,则H (X )=−[p 1log 2p 1+(1−p 1)log 2(1−p 1)]. 设f (p )=−[p log 2p +(1−p )log 2(1−p )],则f ′(p )=−[log 2p +p ⋅1p ln 2−log 2(1−p )+(1−p )−1(1−p )ln 2] =−log 2p1−p =log 21−p p,当0<p <12时,f ′(p )>0; 当12<p <1时,f ′(p )<0,∴ f (p )在(0,12)上单调递增,在(12,1)上单调递减, 当p 1=12时,H(X)取最大值,故B 错误;C ,若p i =1n (i =1,2,⋯,n ),则H (X )=−∑p i n i=1log 2p i =−n ⋅1n log 21n =log 2n ,所以H(x)随着n 的增大而增大,故C 正确;D ,若n =2m ,随机变量Y 所有可能的取值为1,2,⋯,m , 由P (Y =j )=p j +p 2m+1−j (j =1,2,⋯,m )知: P (Y =1)=p 1+p 2m ; P (Y =2)=p 2+p 2m−1 ;P (Y =3)=p 3+p 2m−2 ; ⋯⋯P (Y =m )=p m +p m+1 ;H (Y )=−[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m−1)log 2(p 2+p 2m−1)+⋯+(p m +p m+1)log 2(p m +p m+1)], H (X )=−[p 1log 2p 1+p 2log 2p 2+⋯+p 2m log 2p 2m ]=−[(p 1log 2p 1+p 2m log 2p 2m )+(p 2log 2p 2+p 2m−1log 2p 2m−1)+⋯ +(p m log 2p m +p m+1log 2p m+1)],∵ (p 1+p 2m )log 2(p 1+p 2m )−p 1log 2p 1−p 2m log 2p 2m >0, ⋯⋯(p m +p m+1)log 2(p m +p m+1)−p m log 2p m −p m+1log 2p m+1>0, 所以H (X )>H (Y ),故D 错误. 故选AC . 三、填空题 13.【答案】163【考点】 抛物线的性质 【解析】先根据题目给定信息求出直线方程,联立直线和抛物线方程,再利用韦达定理和抛物线的性质转化求出弦长|AB|. 【解答】解:设A(x 1,y 1),B(x 2,y 2), 抛物线的焦点为(1,0),则直线方程为y =√3(x −1),代入抛物线方程得3x 2−10x +3=0, ∴ x 1+x 2=103,根据抛物线方程的定义可知|AB|=x 1+1+x 2+1=163.故答案为:163.14.【答案】 3n 2−2n 【考点】等差数列的前n 项和 等差关系的确定【解析】先判断出{2n −1}与{3n −2}公共项所组成的新数列{a n }的公差、首项,再利用等差数列的前n 项和的公式得出结论. 【解答】解:数列{2n −1}各项为:1,3,5,7,9,⋯数列{3n −2}各项为:1,4,7,10,13,⋯观察可知,{a n }是首项为1,公差为6的等差数列, 所以数列{a n }的前n 项和为3n 2−2n . 故答案为:3n 2−2n . 15. 【答案】5π2+4 【考点】同角三角函数基本关系的运用 扇形面积公式【解析】先利用解三角形和直线的位置关系求出圆的半径,然后求出阴影部分的面积,运用了数形结合的方法. 【解答】解:由已知得A 到DG 的距离与A 到FG 的距离相等,均为5. 作AM ⊥GF 延长线于M ,AN ⊥DG 于N ,则∠NGA =45∘. ∵ BH//DG , ∴ ∠BHA =45∘. ∵ ∠OAH =90∘, ∴ ∠AOH =45∘.设O 到DG 的距离为3t ,由tan ∠ODC =35,可知O 到DE 的距离为5t , ∴ {OA ⋅cos 45∘+5t =7,OA ⋅sin 45∘+3t =5,解得{t =1,OA =2√2.半圆之外阴影部分面积为:S 1=2√2×2√2×12−45×π×(2√2)2360=4−π,阴影部分面积为:S =12[π⋅(2√2)2−π⋅12]+S 1=5π2+4.故答案为:5π2+4.16. 【答案】√2π2【考点】 弧长公式空间直角坐标系 圆的标准方程 两点间的距离公式【解析】根据题意画出直观图,建立合适的坐标系,求出交线上的点的轨迹方程,进而确定点的轨迹在平面BCC 1B 1上是以√2为半径的90∘的弧,最后根据弧长公式求解. 【解答】解:以C 1为原点,C 1B 1→,C 1C →所在直线分别为x 轴、z 轴建立如图1所示的空间直角坐标系O −xyz ,y 轴是平面A 1B 1C 1D 1内与C 1B 1互相垂直的直线, 即D 1(1,−√3,0),设交线上的点的坐标是(x,0,z ),根据题意可得(x −1)2+3+z 2=5, 化简得(x −1)2+z 2=2,所以球面与侧面BCC 1B 1的交线平面如图2所示,即交线长l =14⋅2√2π=√2π2. 故答案为:√2π2. 四、解答题 17.【答案】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3. ∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.【考点】两角和与差的正弦公式余弦定理正弦定理【解析】条件①先根据题意,结合正弦定理用一边去表示另外两条边,然后用余弦定理求出三角形的三边的长;条件②先用正弦定理结合已知求出a,b的长,然后用余弦定理求出c的长;条件③先利用正弦定理结合已知用b表示a,c,然后利用余弦定理求得∠C与给定值不同,从而判定三角形不存在.【解答】解:选①:∵sin A=√3sin B,C=π6,ac=√3,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.由正弦定理可得:a=√3b,又ab=√3,解得a=√3,b=1,∴c=1,故存在△ABC满足条件;选②:sin A=√3sin B,C=π6,c sin A=3.∵c sin A=3,∴a sin C=3,∴a=6.由正弦定理可得:a=√3b,∴b=2√3,∴c2=a2+b2−2ab cos C=36+12−24√3×√32=12,∴c=2√3,∴B=π6,A=23π,故存在△ABC满足条件;选③:c=√3b,sin A=√3sin B,C=π6,∴sin(56π−B)=√3sin B,∴12cos B+√32sin B=√3sin B,∴sin(π6−B)=0,∴B=π6.∵C=π6,∴b=c.又c=√3b,矛盾.故不存在△ABC满足条件.18.【答案】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.【考点】数列的求和等比数列的通项公式【解析】(1)先根据已知列式求出公比,求出首项,最后求得等比数列的通项公式;(2)由题意求得0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,⋯,可知b63=5,b64= b65=⋯=b100=6.则数列{b m}的前100项和S100可求.【解答】解:(1)由题意可知{a n}为等比数列,a2+a4=20,a3=8,可得a3q+a3q=20,得2q2−5q+2=0,∴ (2q−1)(q−2)=0 .∵ q>1,∴ q=2,∵a1q2=a3,可得a1=2,∴{a n}的通项公式为:a n=2×2n−1=2n.(2)∵b m为{a n}在(0,m](m∈N∗)中的项的个数,当m=2k时,b m=k,当m∈[2k−1,2k)时,b m=k−1,其中k∈N+.可知S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b8+b9+⋯+b15)+(b16+b17+⋯+b31)+(b32+b33+⋯+b63)+(b64+b65+⋯+b100)=0+1×2+2×4+3×8+4×16+5×32+6×37=480.19.【答案】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得K2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关. 【考点】独立性检验概率的意义【解析】(1)根据题目已知信息利用频率估计概率;(2)根据题目给定信息画出2×2列联表;(3)根据列联表计算K的观测值K2,得出统计结论.【解答】解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为:32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)根据抽查数据,可得2×2列联表:(3)根据(2)的列联表得 K 2=100×(64×10−16×10)280×20×74×26≈7.484,由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO 2浓度有关. 20.【答案】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD . 以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ,则sin θ=|cos <n →,PB →>| =√3×√1+a 2=1√3×√(1+a)21+a 2=√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a+a ≥2×√1a⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 【考点】用空间向量求直线与平面的夹角 基本不等式在最值问题中的应用直线与平面垂直的判定【解析】(1)先求l 的平行线BC 与面PCD 垂直,再利用线面垂直的判定即可得证;(2)选取合适的点建立空间直角坐标系,然后运用向量法结合基本不等式即可求得线面夹角的最大值. 【解答】(1)证明:因为四边形ABCD 为正方形, 故BC ⊥CD .因为PD ⊥底面ABCD ,故PD ⊥BC .又由于PD ∩DC =D ,因此BC ⊥平面PDC .因为在正方形ABCD 中BC//AD ,且AD ⊂平面PAD , BC ⊄平面PAD , 故BC//平面PAD .又BC ⊂平面PBC ,且平面PAD 与平面PBC 的交线为l , 故BC//l .因此l ⊥平面PDC .(2)解:由已知条件,四棱锥P −ABCD 底面为正方形,PD ⊥底面ABCD .以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DP 所在直线为z 轴, 建立空间直角坐标系D −xyz ,如图所示.因为PD =AD =1,Q 在直线l 上, 设Q (a,0,1),其中a ∈R .由题意得,D (0,0,0),C (0,1,0),B (1,1,0),P (0,0,1), 则PB →=(1,1,−1),DC →=(0,1,0),DQ →=(a,0,1). 设平面QCD 的一个法向量为n →=(x,y,z), 则{n →⋅DC →=0,n →⋅DQ =0,得{y =0,ax +z =0,令z =−a ,则平面QCD 的一个法向量为n →=(1,0,−a ). 设PB 与平面QCD 成角为θ, 则sin θ=|cos <n →,PB →>| =|1+a|√3×√1+a 2=1√3×√(1+a)21+a 2 =√33×√1+2a 1+a 2.①若a =0,则sin θ=√33, ②若a ≠0,则sin θ=√33×√1+21a+a.当a >0时,∵ 1a +a ≥2×√1a ⋅a =2,当且仅当1a =a ,即a =1时,$`` = "$成立, ∴ sin θ≤√33×√1+22=√63. 当a <0时,sin θ<√33, ∴ 当a =1时,sin θ=√63为最大值. 综上所述,PB 与平面QCD 成角的正弦值的最大值为√63. 21.【答案】解:(1)当a =e 时, f (x )=e x −ln x +1,f ′(x )=e x −1x,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1.(2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 【考点】利用导数研究不等式恒成立问题 利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程,可得三角形的面积;(2)不等式等价于e x−1+ln a +ln a +x −1≥ln x +x =e ln x +ln x ,令g(t)=e t +t ,根据函数单调性可得ln a >ln x −x +1,再构造函数ℎ(x)=ln x −x +1,利用导数求出函数的最值,即可求出a 的范围. 【解答】解:(1)当a =e 时, f (x )=e x −ln x +1, f ′(x )=e x −1x ,∴ f ′(1)=e −1,f (1)=e +1, ∴ y −(e +1)=(e −1)(x −1), 即y =(e −1)x +2,∴ 该切线在y 轴上的截距为2,在x 轴上的截距为21−e,∴ S =12×2×|21−e|=2e−1. (2)①当0<a <1时,f (1)=a +ln a <1; ②当a =1时,f(x)=e x−1−ln x , f ′(x)=e x−1−1x ,当x ∈(0,1)时,f ′(x )<0, 当x ∈(1,+∞)时,f ′(x )>0,所以当x =1时,f (x )取得最小值, 最小值为f (1)=1,从而f (x )≥1; ③当a >1时,f (x )=ae x−1−ln x +ln a >e x−1−ln x ≥1. 综上,a 的取值范围是[1,+∞). 22. 【答案】 (1)解:由题设得4a2+1b2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ① 由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13).令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值. 【考点】圆锥曲线中的定点与定值问题 椭圆的标准方程 【解析】(1)根据椭圆方程的离心率、a ,b ,c 的关系及椭圆上一点列出关系式,解得a 2,b 2即可得椭圆方程; (2)①当直线斜率存在时,设直线方程并与椭圆方程联立,写出韦达定理,结合AM →⋅AN →=0可得 m =1−2k 或m =−2k +13,由点A 不在直线MN 上可判断m ≠1−2k ,进而根据m =−2k+13可求解直线MN 的方程,从而判断直线MN 过定点P ;②若直线MN 与x 轴垂直,结合和椭圆方程,求得点M 的横坐标x 1 ,由此可知直线MN 过点P ;由上述分类讨论可知|AP|为定值,根据直角三角形中线的性质确定定点Q ,最后分两小类讨论D 与P 重合或者不重合最终确定|DQ|为定值. 【解答】(1)解:由题设得4a 2+1b 2=1,a 2−b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明:设M(x 1,y 1),N(x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m , 代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2−6=0.于是x 1+x 2=−4km1+2k 2,x 1x 2=2m 2−61+2k 2. ①由AM ⊥AN 知AM →⋅AN →=0,故(x 1−2)(x 2−2)+(y 1−1)(y 2−1)=0,可得(k 2+1)x 1x 2+(km −k −2)(x 1+x 2)+(m −1)2+4=0,将①代入上式可得(k 2+1)2m 2−61+2k 2−(km −k −2)4km1+2k 2+(m −1)2+4=0, 整理得(2k +3m +1)(2k +m −1)=0. 因为A(2,1)不在直线MN 上, 所以2k +m −1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k(x −23)−13(k ≠1),所以直线MN 过点P(23,−13).若直线MN 与x 轴垂直,可得N(x 1,−y 1).由AM →⋅AN →=0得(x 1−2)(x 1−2)+(y 1−1)(−y 1−1)=0. 又x 126+y 123=1,可得3x 12−8x 1+4=0,解得x 1=2(舍去),x 1=23,此时直线MN 过点P(23,−13). 令Q 为AP 的中点,即Q(43,13).若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ|=12|AP|=2√23. 若D 与P 重合,则|DQ|=12|AP|. 综上,存在点Q(43,13),使得|DQ|为定值.。

2023届高考数学一轮复习考点训练——求数列的通项公式

2023考点专题复习——数列的通项公式考法一:累加法——适用于)(1n f a a n n +=+()(n f 可以求和)例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

例2、已知数列}{n a 中, 0>n a 且)(21nn n a na S +=,求数列}{n a 的通项公式.例3、已知数列{}n a 满足112313n n n a a a ,,求数列{}n a 的通项公式。

练习1、已知数列{}n a 的首项为1,且*12()n n a a n nN 写出数列{}n a 的通项公式.练习2、已知数列}{n a 满足13a ,11(2)(1)n n a a n n n -=+≥-求此数列的通项公式.练习3、已知数列{}n a 满足11211nn a a n a ,,求数列{}n a 的通项公式。

练习4、已知在数列{}n a 中,13a =,112(2)n n n a a n --=+. (1)求数列{}n a 的通项公式; (2)设21log (1)n n b a +=-,求11{}n n b b +的前n 项和n T .练习5、在数列{}n a 中,12a =,122n n n a a +=++. (1)求数列{2}n n a -的通项公式;(2)设数列{}n b 满足2(22)n n b a n =+-,求{}n b 的前n 项和n S .练习6、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

练习7、已知数列{}n a 满足11a =,1n n n a a +-=,则数列{}n a 的通项公式练习8、在数列{}n a 中,12a =,11ln 11n n a a n n n +⎛⎫⎪⎝+++⎭=,则数列{}n a 的通项公式练习9、已知数列{a n }满足11a =-,111+1n n a a n n +=-+,n ∈N *,求数列的通项公式a n .练习10、设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式练习11、已知数列{}n a 满足112a =,121n n a a n n+=++,则数列{}n a 的通项公式考法二:累乘法例1、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点13 数列及等差数列
1.(2020·安徽高考文科·T5)设数列{}n a 的前n 项和2
n S n =,则8a 的值为( )
(A ) 15 (B ) 16 (C) 49 (D )64
【命题立意】本题主要考查数列中前n 项和n S 与通项n a 的关系,考查考生的分析推理能力。

【思路点拨】直接根据1(2)n n n a S S n -=-≥即可得出结论。

【规范解答】选A ,887644915a S S =-=-=.,故A 正确。

2.(2020·福建高考理科·T3)设等差数列{}n a 的前n 项和为n S 。

若111a =-,466a a +=-,则当n
S 取最小值时,n 等于( )
A.6
B.7
C.8
D.9
【命题立意】本题考查学生对等差数列公式、求和公式的掌握程度,以及一元二次方程最值问题的求解。

【思路点拨】 d n n na S d n a a n n 2
)
1(,)1(11-+
=-+=。

【规范解答】选A ,由61199164-=+-=+=+a a a a a ,得到59=a ,从而2=d ,所以
n n n n n S n 12)1(112-=-+-=,因此当n S 取得最小值时,6=n .=
3332
<,又a b >,故A B >,从而00
(0,60)B ∈,6
cos 3
B =
. 3.(2020·广东高考理科·T4)已知{}n a 为等比数列,S n 是它的前n 项和。

若2312a a a ⋅=, 且4a 与27a 的等差中项为
5
4
,则5S =( ) A .35 B.33 C.31 D.29
【命题立意】本题考察等比数列的性质、等差数列的性质以及等比数列的前n 项和公式 【思路点拨】由等比数列的性质及已知条件2312a a a ⋅= 得出
4
a ,由等差数列的性质及已知条件得出
7
a ,
从而求出q

1
a 。

【规范解答】选 C
由2311414222a a a a a a a ⋅=⇒⋅=⇒=,又475224a a +=⨯
得 714
a = 所以,37411428a q a =
==,∴ 12q =,41321618a a q ===, 5
5116[1()]231112
S -==-
4.(2010·辽宁高考文科·T14)设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6 =24,则a 9= . 【命题立意】本题考查了等差数列的通项公式,考查了等差数列的前n 项和公式
【思路点拨】根据等差数列前n 项和公式,列出关于首项a 1和公差d 的方程组,求出a 1和d ,再求出9a
【规范解答】记首项a 1公差d,则有111
32332
1,2656242
a d a d a d ⨯⎧+=⎪⎪⇒=-=⎨
⨯⎪+=⎪⎩。

91(91)18215a a d =+-=-+⨯=。

【答案】15
5.(2020·浙江高考理科·T15)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ .
【命题立意】本题考查数列的相关知识,考查等差数列的通项,前n 项和公式。

【思路点拨】利用等差数列的前n 项和公式,列出1,a d 的关系式,再利用一元二次方程的判别式 求d 的范围。

【规范解答】d ≤22-或d ≥22。

5611(510)(615)150S S a d a d =+++=,
即22
116273030a da d +++=,把它看成是关于1a 的一元二次方程,因为有根,
所以22
(27)24(303)0d d ∆=-+≥,即2
80d -≥,解得d ≤22-或d ≥22。

【答案】d ≤22-或d ≥22
6.(2020·辽宁高考理科·T16)已知数列{}n a 满足1133,2,n n a a a n +=-=则n
a n
的最小值为________. 【命题立意】考查了数列的通项公式,考查数列数列与函数的关系 【思路点拨】先求出n
n a a n
再求出,然后利用单调性求最小值。

【规范解答】
(][)11221156()()) 22(1)2133 (1)33
33331133
()6563321
515523321
1662212n n n n n n n n a a a a a a a a n n n n a n n n n n
f x x x
a
n n n
a a a n ---=-++++-+=+-++⨯+=-+∴
=-+=+-=++∞∴==+-+-Q ……(……函数在0,5上单调减少,在,上单调增加。

在或时最小,当n=5时==
当n=6时=6=
所以的最小值是。

【方法技巧】
1、形如1n n a a pn --=,求n a 常用迭加法。

2、函数()(0)0a
f x x a a a x
=+
>+∞在(,)上单调减少,在(,)上单调增加。

7.(2020·浙江高考文科·T14)在如下数表中,已知每行、每列中的数都成等差数列,那么,位于下表中的第n 行第n+1列的数是 。

【命题立意】本题主要考察了等差数列的概念和通项公式,以及运用等差关系解决问题的能力,属中档题。

【思路点拨】解决本题要先观察表格,找出表中各等差数列的特点。

【规范解答】第n 行第一列的数为n ,观察得,第n 行的公差为n ,所以第n 0行的通项公式为
()001n n n a n -+=,又因为为第n+1列,故可得答案为n n +2。

【答案】n n +2
8.(2020·湖南高考理科·T4)若数列{}n a 满足:对任意的n N *
∈,只有有限个正整数m 使得m a n

成立,记这样的m 的个数为()n a *
,则得到一个新数列{
}()n a *
.例如,若数列{}n
a 是1,2,3,n …,…,
则数列{
}()
n a *
是0,1,2,1,n -…,….已知对任意的N n *
∈,2n
a
n =,则5()a *= ,
123… 246… 369… …



第1列 第2列 第3列 ……
第1行 第2行 第3行
(())n a **= .
【命题立意】以数列为依托,产生新定义考查学生的接受能力,信息迁移能力,归纳能力. 【思路点拨】罗列数列,归纳总结.
【规范解答】由2
n a n
=得到数列是:1,4,9,16,25,…,则满足
m a n
<的m 是1和2,因此是2个.

*)(n a =
n
b ,则
n
b 是:0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,…,∴目标数列是:1,4,9,…,∴
(())n a **=2
n .
【方法技巧】对于新定义题,常常利用特殊代替一般对定义进行充分理解,只有在完全理解问题的基础 上才能解题.
9.(2020·浙江高考文科·T19)设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足56S S +15=0。

(Ⅰ)若5S =5,求6S 及a 1; (Ⅱ)求d 的取值范围。

【命题立意】本题主要考查等差数列概念、求和公式等基础知识,同时考查运算求解能力及分析问题解决问题的能力。

【思路点拨】本题直接利用等差数列的通项公式和前n 项和求解即可。

【规范解答】(Ⅰ)由题意知S 6=5-15
S =-3, 6a =S 6-S 5=-8。

所以115105,58.
a d a d +=⎧⎨+=-⎩ 解得a 1=7,所以S 6= -3,a 1=7
(Ⅱ)方法一:因为S 5S 6+15=0, 所以(5a 1+10d )(6a 1+15d )+15=0,即2a 12
+9da 1+10d 2
+1=0. 故(4a 1+9d )2
=d 2
-8. 所以d 2
≥8.[ 故d 的取值范围为d ≤-22或d ≥22.
方法二:因为S 5S 6+15=0, 所以(5a 1+10d )(6a 1+15d )+15=0,即2a 12+9da 1+10d 2
+1=0. 看成关于1a 的一元二次方程,因为有根,所以2
2
2
818(101)80d d d ∆=-+=-≥, 解得22d ≤-或22d ≥。

相关文档
最新文档