几何图形(基础)知识讲解
新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)

这些计算公式是怎样推导出来的?它们之间有什么联系?
长方形和正方形是用面积单 位量出来的。
平行四边形转化成长方形。
两个完全相同的三角形或梯形 都可以拼成平行四边形。
利用割补、转化的方 法来推导图形的面积 公式。
长方形的面积是研究其它图形面积的基础。
9.三角形三边的关系
4cm
7cm
13cm
三角形其中两条线段的和大于第三条线段时,这样的三条 线段才能组成一个三角形。
30cm
上升的水的体积就是马铃薯的体积。
在方格纸上分别画出从不同方向看到左边立体图形 的形状图。
正面
左面
上面
连一连。
一个蓄水池(如下图),长10米,宽4米,深2米。 (1)蓄水池占地面积有多大?
10×4 = 40(平方米) 答:占地面积是40平方米。 (2)在蓄水池的底面和四周抹上水泥,抹水泥的面积有多大? 10×4 +(4×2+2×10)×2= 96(平方米)
三角形
锐角三角形 直角三角形
等腰三角形
(三个角都是 (有一个角是直角) 不等边三角形 (两条边相等)
锐角) 钝角三角形
(三条边都 等边三角形 不相等) (三条边都相等)
(有一个角是钝角)
1.平面图形的分类
四边形的分类
平行四边形 长方形
正方形
四边形 梯形
等腰梯形 直角梯形
2.直线、射线和线段
名称
相同点
比例尺 1∶20000
2.辨认方向
在平面图中确定方位,通常是上北、下南、左西、右东。
北
西北
东北
西
东
西南
南
东南
3.根据方向和距离,确定物体位置的一般步骤。
(完整)小学几何图形必考知识点汇总,

小学几何图形必考知识点汇总小学阶段常考的几何易错知识点1线、角1.直线没有端点,没有长度,可以无限延伸。
2.射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。
3.在一条直线上的一个点可以引出两条射线。
4.线段有两个端点,可以测量长度。
圆的半径、直径都是线段。
5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。
6.几个易错的角边关系:(1 〕平角的两边是射线,平角不是直线。
(2 〕三角形、四边形中的角的两边是线段。
(3 〕圆心角的两边是线段。
7.两条直线相交成直角时,这两条直线叫做互相垂直。
其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
8.从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距离。
9.在同一个平面上不相交的两条直线叫做平行线。
2三角形1.任何三角形内角和都是 18 0 度。
2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。
3.任何三角形都有三条高。
4.直角三角形两个锐角的和是 90 度。
5.两个三角形等底等高,那么它们面积相等。
6.面积相等的两个三角形,形状不一定相同。
3正方形面积1.正方形面积:边长×边长2.正方形面积:两条对角线长度的积÷24三角形、四边形的关系1.两个完全一样的三角形能组成一个平行四边形。
2.两个完全一样的直角三角形能组成一个长方形。
3.两个完全一样的等腰直角三角形能组成一个正方形。
4.两个完全一样的梯形能组成一个平行四边形。
5圆1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
那么长方形的面积等于圆的面积,长方形的周长比圆的周长增加 r ×2。
2.半圆的周长等于圆的周长的一半加直径。
3.半圆的周长公式:C= pd?2+ d 或C= pr +2 r4.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
形状的分类及以此为基础的几何知识

形状的分类及以此为基础的几何知识一、形状的分类1.平面形状a.点、线、面b.矩形、正方形、平行四边形、梯形、三角形、圆形c.椭圆形、 hearts 形、stars 形等特殊形状2.立体形状a.柱体、球体、立方体、锥体、圆柱体、圆锥体b.椭球体、长方体、扁圆体等特殊立体形状二、几何知识1.点、线、面的基本性质a.点的特性:无长度、宽度和高度,只有位置b.线的特性:有长度和方向,无宽度和高度c.面的特性:有长度、宽度和高度,无方向2.平面几何a.相交线、平行线、垂直线、斜线b.三角形、四边形、五边形等多边形的性质和计算c.圆的性质和计算,包括圆的周长、直径、半径、弧长等3.立体几何a.立体图形的面积和体积计算b.立体图形的对角线、表面积、内部空间等性质c.立体图形的相互转换,如将柱体转换为球体、将立方体转换为圆柱体等4.几何图形的相似和全等a.相似图形的定义和性质,包括对应角度相等、对应边长成比例等b.全等图形的定义和性质,包括所有对应角度和边长相等5.几何图形的坐标表示a.笛卡尔坐标系中点的表示方法b.直线、圆等图形的坐标方程表示方法6.几何图形的证明a.几何证明的方法和技巧,如构造辅助线、使用几何定理等b.几何证明的步骤和注意事项,如明确证明目标、严谨推理等7.几何图形的应用a.几何图形的实际应用场景,如建筑设计、工程测量等b.几何图形的解题策略和技巧,如分情况讨论、画图辅助等习题及方法:1.习题:判断下列图形中,哪些是平面图形,哪些是立体图形。
答案:矩形、正方形、平行四边形、梯形、三角形、圆形是平面图形;柱体、球体、立方体、锥体、圆柱体、圆锥体是立体图形。
2.习题:计算下列图形的面积和体积。
a.面积:一个边长为5厘米的正方形答案:面积 = 5厘米 * 5厘米 = 25平方厘米b.体积:一个底面半径为3厘米、高为4厘米的圆柱体答案:体积= π * 3厘米 * 3厘米 * 4厘米≈ 113.1立方厘米3.习题:证明下列三角形全等。
七年级数学几何知识点总结

七年级数学几何知识点总结数学作为一门必修科目,是每个学生学习生涯中必须经历的科目之一。
数学的学习也是一种锻炼思维能力的过程。
而在数学中,几何学是其一个重要的分支。
几何学是数学中关于空间图形的研究,通常被描述为“形状、大小、相对位置和空间关系的研究”。
接下来,我们将针对七年级的数学几何知识点进行总结,希望能够对同学们的学习有所帮助。
一、几何基础知识几何学是一门极其注重基础知识的学科,因此,了解基本概念和定理是十分重要的。
以下是一些与七年级的数学几何学相关的重要概念和定理:1. 平面几何和立体几何:几何学可以分为平面几何和立体几何两个部分。
平面几何是研究平面上各种图形和空间内各个点之间的关系,而立体几何则是研究立体图形和空间内的各个点之间的关系。
2. 基本图形:基本图形是平面几何中最基本的图形,通常包括线段、射线、直线、角、三角形、四边形、圆和椭圆。
3. 立体图形:立体图形是由平面上的图形围成的空间图形。
常见的立体图形有正六面体、立方体、圆柱体和圆锥体。
4. 平移:平移是指在平面或者空间中,将一个图形沿着一个方向移动一定长度的过程。
平移不改变图形的大小和形状。
5. 旋转:旋转是指将一个图形绕着一个点或者一条线旋转一定角度的过程。
在旋转中,图形的大小和形状都会发生变化。
二、三角形的相关知识三角形是平面几何中最基本、最重要的图形之一。
在学习三角形时,需要对一些基本概念如“等边三角形”、“等腰三角形”、“直角三角形”等有所了解。
下面是几个与三角形相关的重要知识点:6. 外角性质:三角形外角是一个三角形以外的角,它等于与它不相邻的两个内角的和。
即 A + B = C7. 内角性质:三角形的三个内角之和为180°(π弧度)。
即 A + B + C = 180°(π弧度)8. 直角三角形定理:若一个三角形的一个角为90度,则此三角形为直角三角形。
在直角三角形中,斜边的长度等于两条直角边长度的平方和的算术平方根。
初中几何图形知识点整理

初中几何图形知识点整理几何学是数学的一个重要分支,主要研究平面和立体图形的形状、大小、位置等性质。
初中几何图形是初中数学的一个重要组成部分,包括平面图形和立体图形,学习初中几何图形是建立数学思维能力并掌握数学基础知识的必要环节。
本文将从初中几何图形知识点的整理入手,着重讲解平面图形和立体图形的相关知识,以帮助学生加深对初中几何图形的理解和掌握。
一、平面图形1、点、线、面、角的基本概念(1)点:指的是没有长度、面积和体积的基本图形,是几何图形的最基本单位。
(2)线:是由无数个点在同一直线上连接而成的图形,具有长度但没有宽度和厚度。
(3)面:指的是由多个线段连接起来形成的平面图形,具有长度和宽度但没有厚度。
(4)角:是由两条射线在同一平面内公共端点所形成的图形,通常用角度来衡量,度数为0°-360°。
2、几何中心的基本概念(1)重心:是平面图形的重心,表示平面图形所有点的质量中心或物理中心,在任一方向上都可看作是平衡点。
(2)外心:是平面图形的外接圆心,指的是可以包含几何图形任意一点的圆心。
(3)内心:是平面图形的内切圆心,指的是几何图形内部可以切割几何图形的圆心。
(4)垂心:是平面图形上某一点到直线的垂线的交点,称为垂足。
3、平面图形的性质:(1)正方形的性质:正方形的各个边长相等,对角线相等,四个角为直角,对角线互相平分。
(2)三角形的性质:三角形的内角和为180°,等边三角形的三边相等,等腰三角形的两边相等,直角三角形的两直角边的平方和等于斜边的平方。
(3)矩形的性质:矩形的对边相等,对角线相等,四个角均为直角。
(4)菱形的性质:菱形的对角线互相垂直,对角线相等,对边平行且相等,具有轴对称性。
(5)梯形的性质:梯形的上下底的长度不同,但平行。
对角线互相垂直,斜边中点连线与上下底中点连线相等。
二、立体图形1、长方体的性质(1)长方体是由六个矩形构成的立体图形,其面积为底面积×高。
人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
几何图形初步讲解
初中精品数学精选精讲学科:数学任课教师:授课时间: 年月日4。
直线、射线、线段区别:直线没有距离.射线也没有距离。
因为直线没有端点,射线只有一个端点,可以无限延长.5。
尺规作图;几何里把限定用直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称基本作图6.线段的中点:把一条线段分成两条相等的线段的点,叫做线段的中点。
3、角1。
定义:由两条有公共端点的射线组成的几何对象。
这两条射线叫做角的边,它们的公共端点叫做角的顶点。
注意:角的两条边是射线,所以角的大小与边的长短无关。
2。
角的表示::(1)用三个大写字母表示,这种表示方法表示角时顶点字母必须写在中间;(2)用一个大写字母表示,这种表示方法表示角时必须分清楚表示的是哪个角;(3)用数字或希腊字母表示。
3。
角的度量:度量仪器:量角器度量单位:度、分、秒1°=60′1′=60〃1周角等于360度。
1平角等于180度。
4。
角的比较与运算:(1)角的比较:量角器直接量出,比较大小;把它们叠合在一起比较大小。
(2)角的平分线:静态:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
动态:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
5.角平分线的定理:在角平分线上的点到这个角的两边的距离相等。
角平分线的逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上。
6。
余角,补角(1)余角概念:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
(2)补角概念:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角(3)余角的性质:同角的余角相等.比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
小学数学精讲(9)几何(三) 立体图形
小学数学精讲(9)几何(三) 立体图形一、知识地图⎧⇒⎧⎪⎪⎧⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎩⎪⎪⎪⇒⎩⎪⎪⇒⎨⎪⎧⎪⎨⎪⎩⎪⎪⎪⎪⎪⎩3“一个思想”不规则化为规则阳光照面求图形体积表面积“三个方法”看变化规律整体切片“一个模式”整体思考最短路线与展开图形状以点定线,以线定面n 边小正方形染色规律染色问题欧拉公式 二、基础知识万丈高楼平地起。
我们可以这样说:把平面图形从平面拎到空间,让平面图形在空间上产生高度就形成了这一讲我们要研究的立体图形。
在现阶段,我们主要研究的立体图形有以下几种:立体图形 表面积体积26S a =正方体 3V a =正方体2S ab bc ac =++长方体() V abc =长方体2222S rh r ππ=+=+圆柱侧面积个底面积 2V r h π=圆柱22S l r ππ=++圆锥n侧面积底面积=360 注:l 是母线,即从顶点到底面圆上的线段长。
213V r h π=圆锥体24S r π=球体343V r π=球体特别的:关于球体还有这样一个结论:如果一个球体的直径与一个圆柱的直径与高都相等,那么:球体的体积等于以球大圆为底球的直径为高的圆柱体积的三分之二; 球体的表面积等于以球大圆为底球的直径为高的圆柱的侧面积;球体的体积还等于以球大圆为底,球的半径为高的圆锥的体积的4倍。
这个图就是有名的阿基米德圆柱容球。
二、求立体图形的表面积和体积规则立体图形的表面积和体积我们可以直接应用公式进行计算。
不规则的立体图形的表面积和体积,一方面,我们可以应用和平面图形相同思考的方法来考虑把它转化为规则的立体图形进行计算;而另一方面,我们更注重的是观察图形从规则变为不规则的变化过程,通常这个过程我们需要以图形整体考虑为出发点。
这也就是我们求解此类问题常用方法的思想基础:、 方法一:阳光照面阳光照面法从图形整体考虑出发,观察图形表面积特点。
方法二:与时俱进图形的变化,是从整体的变到不变的过程,找到变化的规律,注意图形的变化过程,观察求解,与时俱进,就是解决问题的秘籍宝典。
初中数学几何知识点总结7篇
初中数学几何知识点总结7篇初中数学几何知识点总结7篇良好的知识积累和传承是推动文明延续和发展的重要保障。
教育公平和机会平等是实现知识人才培养和利用的重要前提。
下面就让小编给大家带来初中数学几何知识点总结,希望大家喜欢!初中数学几何知识点总结1一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。
心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。
连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角则两个钝角之和180°与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
小学数学几何图形概念、公式大全-思维导图
上次和孩子一起做了小学数学几何图形的思维导图,今天把这个导图彻底完善了下,把所有的计算公式都加进去了,整个导图画下来,等于把这些几何图形知识全部复习了一遍,同时找到不同几何图形之间的关联,加深了孩子的记忆。
里面还有些图形孩子目前还没学到,我在填充的时候,着重给孩子讲解了公式的由来,实在讲不出来的,就直接写上公式了,等于给孩子预习,也方便孩子以后的复习。
下面直接上图。
一、基本图形在认识线和角的基础上,主要回顾了计量单位以及换算。
线段的长度单位:千米:km、米:m、分米:dm、厘米:cm、毫米:mm换算:1千米=1000米、1米=10分米、1分米=10厘米、1厘米=10毫米、1米=100厘米、1米=1000毫米角的计量单位:(°)二、平面图形平面图形在认识三角形、四边形、圆的基础上,主要是回顾计量单位、周长、面积计算公式,还有些图形对应的性质。
面积的计量单位:1、周长:围成一个图形的所有边长的总和就是这个图形的周长周长的计量单位和换算和线段一样2、面积:物体的表面或围成的平面图形的大小,叫做它们的面积面积的计量单位:平方千米、公顷、平方米、平方分米、平方厘米单位换算:1平方千米=100公顷、1公顷=10000平方米、1平方米=100平方分米、1平方分米=100平方厘米长方形:周长:长方形周长=(长+宽)× 2面积:长方形面积=长×宽正方形:正方形周长= 边长× 4正方形面积= 边长×边长长方形和正方形的周长和面积公式,孩子都记得比较熟悉,所以直接列出来。
平行四边形:平行四边形的周长是四条边相加,但对边相等,所以只要是两条边相加×2就可以了。
面积:平行四边形的面积是通过剪切和平移,转化成一个长方形来计算,最后演变结果是:平行四边形面积=底×高。
即:S=ah梯形:周长比较好计算,四边相加即可。
梯形的面积演变过程,因为两个一样的梯形可以拼成一个平行四边形,所以梯形的面积就是:梯形面积=(上底+下底)×高÷2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何图形(基础)知识讲解
责编:杜少波
【学习目标】
1.理解几何图形的概念,并能对具体图形进行识别或判断;
2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;
3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.
【要点梳理】
要点一、几何图形
1.定义:把从实物中抽象出的各种图形统称为几何图形.
要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.
2.分类:几何图形包括立体图形和平面图形
(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.
(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.
【高清课堂:多姿多彩的图形397362空间图形的分类】
要点诠释:
(1)常见的立体图形有两种分类方法:
(2) 常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.
(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.
要点二、从不同方向看
从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.
要点三、简单立体图形的展开图
有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.
要点诠释:
(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.
(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.
要点四、点、线、面、体
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.
【典型例题】
类型一、几何图形
1.如图所示,请写出下列立体图形的名称.
【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】
解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.
【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).
举一反三:
【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?
【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).
类型二、从不同方向看
2.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.
【思路点拨】注意观察的角度和方向.
【答案与解析】
解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.
【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.
举一反三:
【高清课堂:多姿多彩的图形397362三视图例3】
【变式1】画出下列几何体的主视图、左视图与俯视图.
【答案】
主视图左视图俯视图
【变式2】如图所示的工件的主视图是()
A.B.C.D.【答案】B
【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.
3.已知一个几何体的三视图如图所示,则该几何体是( )
A.棱柱 B.圆柱 C.圆锥 D.球
【答案】B
【解析】此题可采用排除法.棱柱的三视图中不存在圆,故A不对;圆锥的主视图、左视图是三角形,故C不对;球的三视图都是圆,故D不对,因此应选B.
【总结升华】平面展开图中,含有三角形,一般考虑棱锥或棱柱;如果只有两个三角形,必是三棱柱;如果含长方形,一般考虑棱柱;如果含有圆和长方形,一般考虑圆柱;如果含有扇形和圆,一般考虑圆锥.
举一反三:
【变式】右图是某个几何体的三视图,该几何体是()
A.长方体 B.正方体 C.圆柱 D.三棱柱
【答案】D
类型三、展开图
4.(2016•徐州)下列图形中,不可以作为一个正方体的展开
图的是()
A.B. C.D.
【思路点拨】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.
【答案】C
【解析】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:
故选:C.
【总结升华】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.
举一反三:
【变式】(2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是()
A.B.C.D.
【答案】 A .
类型四、点、线、面、体
5.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.
【答案与解析】
解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3) 9个面,16条线,9个顶点.
【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).
6.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.
【答案与解析】
连线如下:
【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.
举一反三:
【变式】将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体从正面看到的图形是( ).
【答案】A。