苯氧化生产顺丁烯二酸酐PPT课件

合集下载

顺丁烯二酸酐工艺

顺丁烯二酸酐工艺

为1:25~30,采用空气过量。这主要是为了
防止形成爆炸混合物,保证安全生产。但过量太
多则会导致反应器生产能力下降;产物浓度低,
分离困难,造成损失增加、般控制在2000~4000h-1 由于在反应过程中不仅原料苯可直接氧化生成
大量CO和CO2,而且产物顺酐也能进一步氧 化生成CO和CO2,因此,Sv增加,接触时间 缩短,可减少深度氧化副反应的发生,提高反 应选择性;同时可增加反应的生产能力,并有 利于反应热的移出和床层温度的控制。
第二节 顺丁烯二酸酐的生产
顺丁烯二酸酐又称马来酸酐和失水苹果酸酐,简称顺酐。为无色针 状或粒状结晶,易升华;是重要的有机化工原料之一,主要用于生产 聚酯树脂、醇酸树脂及涂料。此外还用于增塑剂、绝缘漆、医药、试 剂、表面活性剂等方面。 顺丁烯二酸酐的主要生产方法有以下几种: 苯氧化法:是以苯为原料在氧化钒和氧化钼为催化剂下反应而得。生 产历史悠久、工艺技术成熟、产物收率高,因此至今仍有60~70% 的顺丁烯二酸酐是采用此法来生产的。 C4馏分氧化法:以C4馏分为原料与空气在V-P-O系催化剂作用下 反应而得。原料价廉易得、催化剂寿命长、产品成本较低;但因反应 产物复杂,目的产物收率和选择性较低,其推广应用受到限制。
三、工艺流程:
苯经蒸发器蒸发后与空气混合,进入热交换器,预热后的原 料气进入列管式固定床反应器在催化剂作用下发生氧化反应 生成顺丁烯二酸酐;反应热借助反应器管间的循环熔融盐导 出。
反应产物气体经三级冷却而得熔融态的顺酐进入顺酐贮槽, 未凝气体经水洗塔吸收未冷凝的顺酐后放空,吸收的顺酐经 脱水后进入顺酐贮槽。
顺酐贮槽的熔融态的粗顺酐经蒸馏处理精制后即可得到熔融 态的顺酐产品。
工艺流程
作业:无
正丁烷氧化法:以正丁烷为原料,经催化氧化生产顺丁烯二酸酐的 方法。原料来源丰富、环境污染少、经济效益好,大有逐步取代苯法 生产顺丁烯二酸酐的趋势。 本节将主要介绍苯氧化法生产顺丁烯二酸酐。

苯氧化生产顺丁烯二酸酐PPT学习教案

苯氧化生产顺丁烯二酸酐PPT学习教案
第2页/共53页
工艺流程流程图
第3页/共53页
第4页/共53页
概述
苯经蒸发器蒸发后与空气(由500KW空气压缩机压缩至 0.4~0.5MPa)混合,进入热交换器。预热后的原料气进入列管式固定 床反应器,在催化剂作用下发生氧化反应,生成顺丁烯二酸酐。控 制反应温度623~723K,接触时间0.1~0.2s。借助反应器管间循环熔 盐导出反应热,并利用废热锅炉回收余热,副产高压蒸汽。
苯氧化生产顺丁烯二酸酐
会计学
1
苯氧化制顺酐
1 供水系统 2 供热系统 3 供电系统 4 供风系统
第1页/共53页
苯氧化制顺酐工艺条件
1.反应温度 工业生产上一般控制在623~723K。由于反应强烈放热,因此温度控制非常 重要。
2.进料配比 进反应器原料气配比中苯和空气的质量比为1:(25~30),空气比理论量过 量。这主要是为了防止形成爆炸性混合物,保证安全生产。但空气不宜过量 太多,否则将导致反应器生产能力下降。 3.压力 反应常数很大,反应压力对反应速率影响不大,只要考虑物料克服床层阻力 所需的压力,工业上一般在控制0.3-0.4Mpa。 4.空速 一般情况下,空速增加(即接触时间缩短),可减少深度氧化副反应发生,提 高反应选择性;同时,由于单位时间通过床层的气量增加,在一定范围内可 使顺酐生产能力增加;并有利于反应热的移出和床层温度控制。
第25页/共53页
熔盐产生高压水蒸气的综合利用
水蒸气的综合利用: 中高压:1、作为推动压缩
机的动力之源;2、余的迪亚可 以作为热源,供其它设备只须。
低 压:可用于发电厂,尤 其是中压到高压适用于常压式 发电机。
第26页/共53页
第27页/共53页
熔盐槽及其管路配件

正丁烷氧化法制顺酐

正丁烷氧化法制顺酐

实验名称:正丁烷氧化制顺丁烯二酸酐二、实验原理1、苯氧化法:通常采用V-P-Ti-O催化剂,在固定床或流化床反应器于380~450℃下反应。

该方法工艺路线成熟,原料易得,是国内应用比较普遍的方法,但是由于在苯的六个碳中有两个变成CO2,对原料浪费较大,在国际上开始被正丁烷氧化代替。

C6H6 + 4.5O2→C4H2O3 +CO2 +H2O2、碳四馏分氧化法CH3-CH2-CH2-CH3 +2O2→C4H2O3 +H2O丁烷是碳四馏分中最廉价又容易获得的原料,它与空气混合氧化生产成本较低,采用V -O-P催化剂,由于能充分利用原料,且原料的重量收率较高,近年来该法发展迅速,工业上已有替代苯氧化法的趋势,本实验采用此方法。

但是,由于近年国际市场石油价格变动较大,丁烷气的价格也变化较大,使该工艺在原料材料价格上不占优势。

同时,由于丁烷气在空气中的爆炸极限只有1.8%,在用固定床进行生产时,反应放热剧烈,反应器体积和操作空速要求较高,生产的工艺要求和技术比苯直接氧化法高,现在国际上使用流化床反应器,可以使原料气浓度在丁烷的爆炸上限范围,即40%以上,但该反应器对催化剂强度和活性要求较高,在我国尚未投入生产。

三、实验流程及仪器设备本实验由原料气配气系统,反应器控温系统,催化反应器,产物吸收及气相色谱分析系统组成。

具体介绍如下:1、原料气配气系统由液化丁烷气罐、空气压缩机、空气储罐、丁烷气体及空气质量流量计、原料气混合罐组成。

空气首先由压缩机压缩到空气储气罐里,然后经过减压阀到空气流量计,流量计的读数由显示仪控制,一般为1000ml/min左右,注意流量计的读数是指气体在标准状态下的体积,不是实际测定状态下的体积或质量流量,流量计的读数和气体温度、压力没有太大关系。

可以换算摩尔或质量。

丁烷经过减压阀也到质量流量计,并根据实验的条件,一般控制和空气的体积比为1.6%以下,以免发生爆炸危险。

丁烷气体质量流量计的读数需乘以0.29,才是丁烷的标准体积。

顺酐

顺酐

顺酐的生产原料
• 由苯或碳四(C4)馏分中的正丁烷或丁烯氧化而制得 ,用C4烃为原 料的比例虽有增长,但目前以苯为原料的装置的生产能力仍占60%以 上。它是生产不饱和聚酯及有机合成的原料。 • 除以苯为原料和C4烃为原料两条路线外,用萘或二甲苯生产邻苯二 甲酸酐时也副产顺酐,生产每吨邻苯二甲酸酐大约可回收50kg的纯 顺酐。 • 苯氧化法应用最为广泛,但由于苯资源有限,C4烯烃和正丁烷为原 料生产顺酐的技术应运而生,尤其是富产天然气和油田伴生气的国家, 拥有大量的正丁烷资源,因此近年来正丁烷氧化法生产顺酐的技术发 展迅速,已经在顺酐生产中占主导地位,其生产能力约占世界顺酐总 生产能力的80%。
(三)恒沸脱水
浓酸用浓酸泵打到酸水蒸发器中提浓,通过气液分离装置,分离出来 的带有少量顺酸的水蒸气,利用淡酸冷凝器冷凝回收后,可以送回吸收塔 进行提浓。分离出来的浓酸直接进入板式精馏塔,和二甲苯进行恒沸脱水, 此时阀门1和阀门3打开,阀门2和阀门4关闭。二甲苯和水的恒沸物在塔顶 排出,通过塔顶冷凝器冷凝,送入苯水分离器,水由底部排到淡酸箱。二 甲苯送回塔顶回流。顺酐由塔底排到精馏釜中,待釜中的顺酐浓度达到饱 和,就可以进行间歇精馏了。
顺酐的生产原理
(二)吸收
产物由反应器底部排出,在预热器内加热原料后,通到部分冷凝器中 用温水进行部分冷凝。在顺酐冷却到露点时变为液体,通过酐气分离,流 到粗酐槽中待精馏。剩下的产物还含有较多的顺酐,此时,可以将物料通 到吸收塔中进行水吸收。当吸收塔中的顺酸浓度达到饱和(30%)就可以 出料。顺酸打到浓酸箱中进行后续工序。这时尾气中只含二氧化碳、水和 氮气,所以可以直接排放到空气中。
顺酐的生产原理
(四)间歇精馏
此时,停止进料,关闭阀门1和阀门3,打开阀门2和阀门4。由 于二甲苯的沸点比顺酐低,所以二甲苯先蒸出来,通过塔顶冷凝器和 二甲苯冷凝器冷凝,二甲苯回收到二甲苯锅以循环利用。当二甲苯蒸 得差不多时,顺酐也开始蒸出,此时的顺酐浓度还达不到要求,可以 回收到割头锅里。待蒸出的顺酐浓度达到要求,就可以回收产品了。 在精馏后期,所须的温度太高,可以采取减压精馏,这个工作由蒸汽 喷射泵和真空冷凝器完成。到最后剩下的是顺酐与二甲苯恒沸物,回 收到割尾锅。二甲苯锅、割头锅和割尾锅的料液供下一次恒沸脱水过 程使用,这样可以节省成本。顺酐则送到切片车间进行切片包装。 至此,整个生产工序完成。

苯氧化生产顺丁烯二酸酐

苯氧化生产顺丁烯二酸酐

冷却循环水系统
循环水系统是由冷却构筑物,泵房, 循环水系统是由冷却构筑物,泵房,冷却水处理设施 构成的,它是生产中不可缺少的一部分, 构成的,它是生产中不可缺少的一部分,简而言之它就 是使水反复循环,冷热交换,维持整个系统能正常运行。 是使水反复循环,冷热交换,维持整个系统能正常运行。
为 了使循环冷却水系统正常运行,换热设备长期使用,防 止冷却水在循环使用后所产生的腐蚀、结垢及微生物污垢的危 害,提高热交换设备的冷却效率,就必须对循环冷却水进行水 质稳定化学处理.
熔盐加热系统运行
通过槽内的蒸汽加热伴管或电加热伴管等方式将熔盐加热到 熔点以上,使其粘度达到可以用熔盐循环泵进行循环的值。与此 同时,需对熔盐炉内空管进行预热,以防止熔盐在流经冷盘管时 发生冷凝固化。盘管预热到一定程度之后,开启熔盐循环泵,将 熔盐送入熔盐炉中加热,加热到特定温度的熔盐被输送到用热设 备供热。 统运行停止时,全部熔盐将流回熔盐槽中。 熔盐加热系统将熔融状态的熔盐通过循环泵输送给加热炉之 前在系统中需对加热管进行预热,以防止熔盐在加热管中固化。 加热管的加热是利用燃烧所生成的热风,此时加热管是空烧,必 须对其管壁温度进行控制。
熔盐产生高压水蒸气的综合利用 水蒸气的综合利用: 中高压:1、作为推动压缩机的动力之源; 中高压 2、余的迪亚可以作为热源,供其它设备只 须。 低 压:可用于发电厂,尤其是中压到 高压适用于常压式发电机。
熔盐槽及其管路配件
熔盐槽必须位于熔盐系统的最低位置 最低位置,其容积是熔盐 最低位置 受热膨胀后的体积与停止运行时高温熔盐排放量的总和。 熔盐槽上设置加热与保温装置 加热与保温装置。在熔盐槽内充装惰性 加热与保温装置 气体,以防止熔盐与空气接触,且处于正压状态,当检修 孔打开时,高温熔盐如和有机物质接触,则能引起着火、 爆炸。熔盐与水接触也容易出现蒸汽爆炸,因此,打开检 修孔时必须十分注意。 熔盐系统的管道必须保持合理的弯曲度和适宜的斜度, 以保证系统停止运行时能将系统内熔盐全部放回到熔盐槽, 不允许有熔盐在管道内滞留。

编号:No31课题:顺丁烯二酸酐的生产

编号:No31课题:顺丁烯二酸酐的生产

编号:No.31课题:顺丁烯二酸酐的生产授课内容:●顺丁烯二酸酐的生产反应原理●顺丁烯二酸酐的生产工艺流程知识目标:●了解碳4烃主要来源及用途●了解顺丁烯二酸酐物理及化学性质、生产方法及用途●掌握生产顺丁烯二酸酐反应原理●掌握生产顺丁烯二酸酐工艺流程能力目标:●分析和判断影响反应过程的主要因素●分析和判断主副反应程度对反应产物分布的影响思考与练习:●生产顺丁烯二酸酐各反应催化剂组成和特点●影响生产顺丁烯二酸酐反应过程的主要因素●生产顺丁烯二酸酐各工艺流程的构成授课班级:授课时间:年月日第八章 碳四系产品的随着石油化工的迅速发展,C 4烃的用途越来越广,因此如何利用C 4馏分,已经成为化工厂和炼油厂经济效益的一个重要因素。

第一节 概 述一、碳四烃的来源及组成 工业C 4烃主要来自以下四个方面: 1、来自炼油厂的炼厂气其中以催化裂化所得液态烃中的C 4烃为主,约占液态烃的60%。

这部分C 4烃组成的特点是丁烷、尤其是异丁烷含量高,不含丁二烯(或者含量甚微),2-丁烯的含量高于1-丁烯。

C 4烃的组成和产率随原料来源、装置生产方案、操作条件、催化剂等的变化而不同。

通常催化裂化C 4烃的收率为装置进料量的6~8%,具体数据如表8-l 所示。

表8-1 催化裂化C 4烃的典型组成2、烃类裂解制乙烯联产C 4烃其特点是烯烃(丁二烯、异丁烯,正丁烯),尤其是丁二烯含量高、烷烃的含量很低,1-丁烯的含量大于2-丁烯。

如以石脑油为裂解原料时,C 4烃的产量约为乙烯产量的40%左右。

不同裂解原料C 4烃的产率和组成如表8-2所示。

表8-2 不同裂解原料(乙烷不循环)C 4馏分产率(质%)3、油田气中的碳四烃组成基本为饱和烃,其中C4烷烃约占l~7%。

4、其它来源如乙烯齐聚制a-烯烃时可得到1-丁烯,产量约占a-烯烃产量的6~20%。

二、C4烃的综合利用途径C4烃来源不同,需求不同,利用途径也各异。

总的说来,工业C4烃利用不外乎燃料和化工利用两大方面。

项目十六顺丁烯二酸酐的生产

项目十六顺丁烯二酸酐的生产
项目十六
一、概述
顺丁烯二酸酐的生产
二、反应 原理
三、操 作条件
四、工 艺流程
一、概述
1、顺丁烯二酸酐的性质和用途 顺丁烯二酸酐 又名马来酸酐,简称顺 酐。
为无色针状或粒状晶体,熔点为53.1℃,易升 华,有强烈刺激气味。 顺酐可溶于乙醇、乙醚和丙酮,在苯、甲苯和 氯仿中有一定溶解度,难溶于石油醚和四氯化碳。 顺酐与热水作用会水解成顺丁烯二酸。
三、操作条件
1.反应温度
反应温度对正丁烷氧化生产顺酐的转化 率和选择性影响如图所示。 温度升高,则转化率随之增大,但选择 性却下降,这是因为温度升高,对生成一氧 化碳和二氧化碳的副反应更加有利,所以选 择操作温度时,应权衡转化率和选择性两方 面来考虑,一般选择在400℃左右。

反应温度对正丁烷氧化
二、正丁烷氧化法的生产原理
1、主、副反应 主反应:
主要副反应是原料丁烷和产物顺酐的深度氧化生成一氧化碳和二氧化碳:
正丁烷氧化法的主、副反应都是强放热反应
2.催化剂


正丁烷氧化生产顺酐的催化剂是V-P-O系 催化剂,主要活性组分是在V2O5-P2O5,助催 化剂组分有:Fe、Co、Ni、W、Cd、Zn、Bi、 Cu、Zr、Cr、Mn、Mo、B、Si、Sn、U、Ba 及稀土元素等的氧化物。加入助催化剂的作用 主要是增加催化剂的活性、选择性或调节催化 剂表面酸碱度。 我国也在研制自己的催化剂,在正丁烷氧化 法固定床生产顺酐催化剂的研制方面,北京化 工研究院和天津大学也开展了一些工作,并取 得了一定的进展。
四、工艺流程有两大类, 一是采用固定床工艺,另一种是采用流化床工艺。 在固定床工艺中,由于正丁烷氧化选择性和反应 速率均比苯法低,正丁烷-空气混合物中正丁烷 浓度可高达1.6%~1.8%(摩尔分数),顺酐收 率按正丁烷计约为50%,故对于同样规模的生 产装置需要较大的反应器和压缩机; 采用流化床反应器可使正丁烷在空气中的浓度提 高到3% ~ 4%(摩尔分数)。流化床反应器 传热效果好,且投资较少,但流化床用的催化剂 磨损较多,对大型顺酐生产装置(20k吨/年 以上),如能获得价廉且供应有保障的正丁烷原 料,宜选用流化床反应器。

顺丁烯二酸酐生产技术PPT课件

顺丁烯二酸酐生产技术PPT课件

3.空速
由于在反应过程中不仅原料苯可直接氧化成大量一氧化碳和二 氧化碳,而且产物顺酐也能进一步氧化生成一氧化碳和二氧化 碳,因此,空速的合理控制显得尤为重要。—般情况下,空速 增加(即停留时间缩短),可减少深度氧化副反应的发生,提高 反应的选择件;由于单位时间通过床层的气量增加,在一定范 围内可使顺酐生产能力增加;有利于反应热的移出和床层温度 控制。但是,过高的空速将导致停留时间过短,收率下降。适 宜空速的选择必须通过技术经济分析,综合考虑多方面因素来 确定。工业生产上一般控制在2000~4000h-1 。
氧化物等,有利于提高催化剂性能。催化剂载体主要有α-Al2O3、SiC、
SiO2、和TiO2等。
二、工艺条件和控制
反应温度
苯是最稳定的碳氢化合物之一,因此苯氧化除了需要活性较高的 催化剂外,还需要比较高的反应温度,但温度过高容易发生深度 氧化反应,工业生产上一般控制在623~723K。氧化反应是强烈 放热,如果反应热不及时移走,难于得到目的产物。通常是在列 管式固定床反应器管间填充熔盐(亚硝酸盐和硝酸盐的混合物) 作热载体,利用熔盐强制循环,一方面为反应器预热提供热量, 另一方面移出反应时所放出的热量,以维持稳定的反应温度。
2.进料配比
进反应器原料气配比中苯和空气的质量比为1:(25~30),空气比理论量过量。 这主要是为了防止形成爆炸性混合物,以确保安全生产。因为苯蒸气与空气 能形成爆炸性混合物,爆炸极限(体积分数)为1.5%~8.0%。但空气不宜过量 太多,否则将导致反应器生产能力下降,产物收率下降,而且增加分离难度, 增大损失。
(4)反应物料与空气的混合物存在爆炸极限问题,因此, 在工艺条件的选择和控制方面,以及在生产操作上必须特 别关注生产安全。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

熔盐产生高压水蒸气的综合利用
水蒸气的综合利用: 中高压:1、作为推动压缩机的动力之源;
2、根据企业所处环境及外部配套情况,提出供 水系统
3、说明软水处理系统 4、提出冷却循环水系统方案 5、提出熔盐冷却系统方案
企业所处环境
常州亚邦化学有限公司采用苯氧 化法生产顺酐,公司年生产能力12万吨。常 州亚邦化学有限公司地处长江边常州化工园 区。采用长江水为原始用水、需原水净化。
外部配套情况
顺酐冷却要求分析: 反应热移出; 反应温度623~723K; 精馏塔温度623~723K(顺酐沸点); 顺酐冷却系统选择: 反应热移出系统(熔盐系统---产生水蒸气); 反应后产物的冷却(预热原料---产生低压水气);
外部配套情况
精馏塔冷凝、冷却系统; 产品冷却系统;
冷却循环水系统----用于冷却精馏塔、产 品
脱水顺酐和冷凝顺酐由粗顺酐贮槽送入蒸馏塔5进行精制,即可 得到熔融态顺丁烯二酸酐产品。
主要设备
关键设备有:焦化装置 焦炉设备 仪
器仪表,检测设备 风机 消防设备 水处理系统 吸收塔 压缩机 精馏塔 换热器 混合器 贮槽 冷却装置 顺酐装置 真空泵等。
供水系统
1、根据苯氧化制顺酐工艺条件、流程图,概述 生产中所需公用工程内容
高压蒸汽加热管或电加热管进行加热融化,直加热到糟内的熔盐的粘 度可以用循环泵打循环,使整个系统成为流动可循环状态后,泵送到 反应器吸收反应热后回至熔融槽,在其中被低压水蒸气冷却至温度较 低状态,再循环。形成的高压水蒸气综合利用。
注意事项:1、管子要斜布置,位差要高(常温下熔盐是
固体)。2、管道法兰处不能带有油脂(熔盐遇油脂易产生火苗)。3、 在使用该设备是要通氮气,以免融槽收缩时吸进苯遇熔盐发生爆炸
根据换热器的结构型式和材质、工况条件、用水方式、对污垢热阻值 和腐蚀率的要求及水质污染等情况综合考虑确定。 4.循环冷却水中的菌藻控制指标 5.冷却水处理方案选择
根据工艺对阻垢、缓蚀和菌藻等控制效果的要求,结合下列因素通过 技术经济比较后确定。
加药设备
熔盐换热系统
400℃以上时,熔盐较导热油在传热介质的价 格及使用寿命方面具有绝对优势,但系统操 作复杂。
冷却循环水系统
循环水系统是由冷却构筑物,泵房,冷却水处 理设施构成的,它是生产中不可缺少的一部分,简而言 之它就是使水反复循环,冷热交换,维持整个系统能正 常运行。
为 了使循环冷却水系统正常运行,换热设备长期使 用,防止冷却水在循环使用后所产生的腐蚀、结垢及微生物污 垢的危害,提高热交换设备的冷却效率,就必须对循环冷却水 进行水质稳定化学处理.
熔盐类不爆炸、不燃烧、耐热稳定性能好, 蒸汽无毒,传热系数是其他有机热载体的2倍。
组成:40%NaN02、7%NaN03、53% KN03或 45%NaNO2、55%KNO3;常压下的熔点为142℃, 沸点为680℃
熔盐换热【综合利用及注意事项】
综合利用:将粉状的熔盐放入熔融糟,通过糟内安装的
供热系统
1、顺酐生产对供热的要求 2、顺酐生产中反应热综合利用方案-熔盐产生
高压水蒸气的综合利用 3、水蒸气供热管道(材质、布置)、管件、仪
表、设备 4、水蒸气管道开车
顺酐生产对供热的要求
反应温度 工业生产上一般控制在623~723K。由于反应强烈 放热,因此温度控制非常重要。
主反应式、主要副反应均为强放热反应,因此,在反 应过程中及时移出反应热是一个十分突出的问题。如果工 艺条件控制不当,反应最终都会生成一氧化碳和二氧化碳。
苯氧化制顺酐生产公 用工程方案
第一组组员:王学文、张 淑梅、刘玮、连雯雯
苯氧化制顺酐
1 供水系统统
苯氧化制顺酐工艺条件
1.反应温度 工业生产上一般控制在623~723K。由于反应强烈放热,因此温度控制非常 重要。 2.进料配比 进反应器原料气配比中苯和空气的质量比为1:(25~30),空气比理论量过量。 这主要是为了防止形成爆炸性混合物,保证安全生产。但空气不宜过量太多, 否则将导致反应器生产能力下降。 3.压力 反应常数很大,反应压力对反应速率影响不大,只要考虑物料克服床层阻力 所需的压力,工业上一般在控制0.3-0.4Mpa。 4.空速 一般情况下,空速增加(即接触时间缩短),可减少深度氧化副反应发生,提 高反应选择性;同时,由于单位时间通过床层的气量增加,在一定范围内可 使顺酐生产能力增加;并有利于反应热的移出和床层温度控制。
循环水平衡
循环冷却水处理
1.循环冷却水水质的变化 不断循环加热、冷却的过程中,受到外界的污染或因自身的蒸发浓缩
使水质发生变化。 2.循环冷却水处理的任务
采取适当措施,控制循环冷却水由水质引起的结垢和腐蚀,保证设备 的换热效率并延长设备的使用寿命,使生产安全正常运行。 3.循环冷却水系统的水质标准
自反应器出来的反应气体经三级冷却。第一级为废热锅炉产生蒸 汽;第二级为热换热器预热原料气;第三级为反应产物在冷却器中用 温水冷却冷凝,以防止顺酐冷凝成固体堵塞冷却器。被冷凝的顺酐 (约占总量的60%)在分离器2分出后进入粗顺酐贮槽6,气体送入水 洗塔3,用水或顺丁烯二酸水溶液吸收未冷凝顺酐。水吸收后尾气送 燃烧,吸收液送入脱水塔4。经脱水后的粗顺酐入粗顺酐槽6。
熔盐系统-----移出反应热 低压蒸汽(或水)冷却系统-----回收熔 盐系 统热
原水处理:软水制备工艺
离子交换: 自来水通常都含有钙盐、镁盐,它们是结
垢和沉淀物的主要物质。为了去除或降低水的硬度, 必须将水中的这些物质除去,一般采用离子交换方法 利用阳离子交换剂中的阳离子(Na+、H+、NH4+)把水 中的造硬离子(Ca2+、Mg2+)交换出来,从而使水得 到软化。
工艺流程流程图
概述
苯经蒸发器蒸发后与空气(由500KW空气压缩机压缩至 0.4~0.5MPa)混合,进入热交换器。预热后的原料气进入列管式固定 床反应器,在催化剂作用下发生氧化反应,生成顺丁烯二酸酐。控制 反应温度623~723K,接触时间0.1~0.2s。借助反应器管间循环熔盐导 出反应热,并利用废热锅炉回收余热,副产高压蒸汽。
相关文档
最新文档