平面的基本性质3

合集下载

立体几何平面的基本性质

立体几何平面的基本性质

一、知识点:1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性2.平面的画法及其表示方法:①常用平行四边形表示平面通常把平行四边形的锐角画成45,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画(面实背虚)②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面AC 等3.空间图形是由点、线、面组成的点、线、面的基本位置关系如下表所示:图形 符号语言 文字语言(读法) 图形 符号语言 文字语言(读法)A a A a ∈点A 在直线a 上 a αa α⊂ 直线a 在平面α内 A a A a ∉点A 不在直线a 上 a αa α=∅直线a 与平面α无公共点A α∈点A 在平面α内a A α= 直线a 与平面α交于点A A αA α∉点A 不在平面α内a b A = 直线a 、b 交于A点 l αβ=平面α、β相交于直线lα⊄a (平面α外的直线a )表示a α=∅(a α)或a A α=4公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 应用:是判定直线是否在平面内的依据,也可用于验证一个面是否是平面.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示:应用:①确定两相交平面的交线位置;②判定点在直线上公理2揭示了两个平面相交的主要特征,是判定两平面相交的依据,提供了确定两个平面交线的方法.公理3 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, A B C 不共线⇒存在唯一的平面α,使得,,A B C α∈应用:①确定平面;②证明两个平面重合“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 平面图形与空间图形的概念:如果一个图形的所有点都在同一个平面内,则称这个图形为平面图形,否则称为空间图形6公理的推论:推论1 经过一条直线和直线外的一点有且只有一个平面.推理模式:A a ∉⇒存在唯一的平面α,使得A α∈,l α⊂推论2 经过两条相交直线有且只有一个平面推理模式:P b a = ⇒存在唯一的平面α,使得,a b α⊂推论3 经过两条平行直线有且只有一个平面推理模式://a b ⇒存在唯一的平面α,使得,a b α⊂二、基本题型:1 下面是一些命题的叙述语,其中命题和叙述方法都正确的是( )A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα .C .∵α⊂∈a a A ,,∴A α∈.D .∵α⊂∉a a A ,,∴α∉A .2.下列推断中,错误的是( )A .αα⊂⇒∈∈∈∈lB l B A l A ,,,C .βα∈∈C B A C B A ,,,,,,且A,B,C 不共线βα,⇒重合B .B B A A =⇒∈∈∈∈βαβαβα ,,, D .α∉⇒∈⊄A l A l ,3.两个平面把空间最多分成___ 部分,三个平面把空间最多分成__部分.4.判断下列命题的真假,真的打“√”,假的打“×”(1)空间三点可以确定一个平面 ( )(2)两个平面若有不同的三个公共点,则两个平面重合( )(3)两条直线可以确定一个平面( )(4)若四点不共面,那么每三个点一定不共线( )(5)两条相交直线可以确定一个平面( )(6)三条平行直线可以确定三个平面( ) (7)一条直线和一个点可以确定一个平面( )(8)两两相交的三条直线确定一个平面( )5.看图填空 (1)AC ∩BD = (4)平面A 1C 1CA ∩平面D 1B 1BD =(2)平面AB 1∩平面A 1C 1= (5)平面A 1C 1∩平面AB 1∩平面B 1C =(3)平面A 1C 1CA ∩平面AC = (6)A 1B 1∩B 1B ∩B 1C 1= 6 6.选择题(1)下列图形中不一定是平面图形的是 ( )A 三角形B 菱形 C 梯形 D 四边相等的四边形(2)空间四条直线每两条都相交,最多可以确定平面的个数是( )A 1个 B 4个C 6个 D 8个(3)空间四点中,无三点共线是四点共面的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件(D )既不充分也不必要7.已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面.1答案:1. C 2. D 3. 2,4,8 4. ⑴×⑵×⑶×⑷√⑸√⑹×⑺×⑻×5.⑴O ⑵A 1B 1⑶O ⑷OO 1⑸B 1⑹B 16. 答案:⑴ D ⑵ C ⑶ D7. 证明:因为a //b ,由推论3,存在平面α,使得,a b αα⊂⊂ 又因为直线d 与a 、b 、c 分别相交于A 、B 、C ,由公理1,d α⊂ 下面用反证法证明直线c α⊂:假设c α⊄,则c C α=,在平面α内过点C 作c b ',因为b //c ,则c c ',此与cc C '=矛盾.故直线c α⊂. 综上述,a 、b 、c 、d 四线共面.。

平面的基本性质

平面的基本性质

1.平面 立体几何中的平面的特点:
1.平的 2.四周无限延展 3.不计大小 4.不计厚薄 (不是凹凸不平) (没有边界) (无所谓面积) (没有体积)
(1)平面可以看成是一条直线沿着某一方向平移 得到的.
(2)直线可以看成是点的集合,所以平面可视为 直线的集合,也可视为点的集合.
(3)和点、直线一样,平面也是从现实世界中抽 象出来的几何概念,它没有厚薄,是无限延展的.
符号 语言
图形 语言
说明平面 是“平的”
α
A
B
空间中的点、直线、平面的位置关系,可 以借用集合中的符号来表示. 例如:在长方体 ABCD—A1B1C1D1中
位置关系 点P在直线AB上 点c不在直线AB上 点M在平面AC内 点A1不在平面AC内 直线AB与直线BC交于点B 符号表示
D1 C1 B1
P ∈ AB C ∈ AB M ∈ 平面AC A1∈平面AC AB∩BC = B AB ∩ 平面AC
A1 D A
· · P
M


直线AB在平面AC内
直线AA1不在平面AC内
AA1 ∩ 平面AC
A B
文 字 语 言

直线 AB
符号 语言 图形 语言
公理1:如果一条直 线上的两个点在一 个平面内,那么这条 直线上所有的点都 在这个平面内.
α
B
A
数学实验2:
(1)一个三角形的顶点在桌面上,
α B
A
C
公理3的推论 推论1:
经过一条直线和直线外一点有且只有一个平面
A l
A

l
公理3的推论 推论2:
经过 a
公理3的推论 推论3:

一、平面的基本性质

一、平面的基本性质

平面的基本性质教学目标:1,并能运用它解决点、线共面问题2,并能运用它找出两个平面的交线及“三线共点”和“三点共线”问题教学重点:平面基本性质的三条公理及其作用.教学难点:(1)对“有且只有一个”语句的理解.(2)确定两相交平面的交线.1.平面的概念:平面是没有厚薄的,可以无限延伸,这是平面最基本的属性常见的桌面,黑板面,平静的水面等都是平面的局部形象一个平面把空间分成两部分,一条直线把平面分成两部分2.平面的画法及其表示方法:①在立体几何中,常用平行四边形表示平面锐角画成45,横边画成邻边的两倍画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画②一般用一个希腊字母α、β、γ……来表示,还可用平行四边形的对角顶点的字母来表示如平面α,平面AC等3.空间图形是由点、线、面组成的=b A⊂aαα=∅α=Al β= 集合中“∈”的符号只能用于点与直线,点与平面的关系,用于直线与直线、直线与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言. a α=∅或a A α=平面的基本性质公理1 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内图1 图2 图3图4公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线公理3 经过不在同一条直线上的三点,有且只有一个平面 推论1 经过一条直线和直线外的一点有且只有一个平面. 已知:直线l ,点A 是直线l 外一点.推论2 经过两条相交直线有且只有一个平面推论3 经过两条平行直线有且只有一个平面例1 求证:三角形是平面图形已知:三角形ABC求证:三角形ABC 是平面图形例2 两两相交且不过同一个点的三条直线必在同一平面内已知:直线,,AB BC CA 两两相交,交点分别为,,A B求证:直线,,AB BC CA 共面例3 在正方体1111ABCD A B C D -中,①1AA 与1CC 是否在同一平面内?②点1,,B C D 是否在同一平面内?③画出平面1AC 与平面1BC D 的交线,平面1ACD 与平面1BDC 的交线例4 若l αβ=,,A B α∈,c β∈,试画出平面ABC 与平面,αβ的交线课堂练习1:1 下面是一些命题的叙述语(A 、B 表示点,a 表示直线,α、β表示平面) A .∵αα∈∈B A ,,∴α∈AB . B .∵βα∈∈a a ,,∴a =βα . C .∵α⊂∈a a A ,,∴A α∈. D .∵α⊂∉a a A ,,∴α∉A . 其中命题和叙述方法都正确的是( )1C2.下列推断中,错误的是( ) A .αα⊂⇒∈∈∈∈l B l B A l A ,,,B .B B A A =⇒∈∈∈∈βαβαβα ,,,C .αα∉⇒∈⊄A l A l ,D .βα∈∈C B A C B A ,,,,,,且A 、B 、C 不共线βα,⇒重合3.一个平面把空间分成____部分,两个平面把空间最多分成____部分,三个平面把空间最多分成____部分.4.判断下列命题的真假,真的打“√”,假的打“×”(1)空间三点可以确定一个平面 ( ) (2)两条直线可以确定一个平面 ( ) (3)两条相交直线可以确定一个平面 ( ) (4)一条直线和一个点可以确定一个平面 ( ) (5)三条平行直线可以确定三个平面 ( ) (6)两两相交的三条直线确定一个平面 ( ) (7)两个平面若有不同的三个公共点,则两个平面重合 ( ) (8)若四点不共面,那么每三个点一定不共线 ( )课堂练习2: 1.选择题(1)下列图形中不一定是平面图形的是 ( ) (A )三角形 (B )菱形 (C )梯形 (D )四边相等的四边形(2)空间四条直线,其中每两条都相交,最多可以确定平面的个数是( ) (A )一个 (B )四个 (C )六个 (D )八个(3)空间四点中,无三点共线是四点共面的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要(4)若a ⊂ α,b ⊂ β,α∩β=c ,a ∩b =M ,则 ( ) (A )M ∈c (B )M ∉c (C )M ∈α (D )M ∈β2.已知直线a //b //c ,直线d 与a 、b 、c 分别相交于A 、B 、C ,求证:a 、b 、c 、d 四线共面.课后练习:11、给定四个命题:(1)一平面的面积可以等于100cm3;(2)平面是矩形或平行四边形形状;(3)铺得很平的一张白纸是一个平面;(4)20个平面重合在一起比一个平面厚20倍,其正确的有 ( )A.0B.2C.3D.42、满足下列条件,平面α∩平面β=AB,直线a⊂α,直线b⊂β且a∥AB,b∥AB的图形是 ( )3、两个平面能把空间分成几个部分 ( )A.2或3B.3或4C.3D. 2或44、三个平面把空间分成最多或最少几个部分 ( )A.8;4B.7;4C.8;6D.6;45、三条直线两两相交,经过这3条直线的平面有 ( )A.0个B.1个C.0或1个D.3个6、空间有四个点,如果其中任意三点都不在同一直线上,那么经过其中三个点的平面 ( )A.可能有3个,也可能有2个B.可能有3个,也可能有1个C.可能有4个,也可能有3个D.可能有4个,也可能有1个7、确定一个平面的条件是()A、空间三点B、空间两条件直线C、一条直线和一点D、不过同一点且两两相交的三条直线8、下列命题中正确的是()A、空间四点中有三点共线,则此四点必共面B、三个平面两两相交的三条交线必共点C、空间两组对边分别相等的四边形是平行四边形D、平面a和平面b只有一个交点9、M、N、P、Q是空间不同的四点,下列命题中,错误的是()A、若MP与NQ共面,则MQ与NP异面B、若MP与NQ共面,则MQ与NP异面C、若MP=NQ,MN=PQ,则MQ=NPD、若MP^NQ,MN^PQ,则MQ^NP10、水平放置的DABC有一边在水平线上,它的斜二测直观图是正DA1B1C1,则 DABC是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形11、a、b为异面直线,a上有5个点,b上有8个点,从这些点中选三个点确定一个平面,共能确定不同的平面数为_________(任意3点不共线)12、正方体的六个面把空间分成_______个部分二、填空题:7.(1)如果把图形比作一本打开的书,那么书内是向里还是向外 ;(2)αβ= ,AB α= ,AB与PQ .8.两两平行的三条直线最多可以确定个平面.9.直线AB、AD⊂α,直线CB、CD⊂β,点E∈AB,点F∈BC,点G∈CD,点H∈DA,若直线EH∩直线FG=M,则点M 在上.三、解答题:10.画一个正方体ABCD—A1B1C1D1,再画出平面ACD1与平BDC1的交线,并且说明理由.11.求证:三条两两相交且不共点的直线必共面.12、在正方体ABCD—A1B1C1D1中,设A1C与平面ABC1D1交于点O,求证:B、O、D1三点共线。

平面基本性质

平面基本性质

【学教后记】:第 1 页 共 5 页【课题】立体几何——平面基本性质●教材导引(1)公理1:如果一条直线上的 在一个平面内,那么这条直线上所有的点都在平面内. (2)公理2:如果两个平面(不重合的两个平面)有 ,那么它们还有其他公共点,且所有这些公共点的集合是 .(3)公理3:经过 的三点,有且只有一个平面. 推论1:经过 ,有且只有一个平面. 推论2:经过 ,有且只有一个平面. 推论3:经过 ,有且只有一个平面.【思考】 试试看,你能说出公理2的作用有哪些?答案:它的作用有五个:①判定两个平面相交;②证明点在直线上;③证明三点共线; ④证明三线共点;⑤画两个相交平面的交线.(4)公理4:平行于 的两条直线互相平行.●基础训练1.A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是 ③①ααα⊂⇒∈∈∈∈l B l B A l A ,,,②βα∈∈A A ,,AB B B =⇒∈∈βαβα ,直线 ③αα∉⇒∈⊄A l A l ,④α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α⇒与β重合 ⑤C B A A l a l a BC ,,,,,⇒=⊂⊂=⋂ βαβα共线2.一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底边均为1的等腰梯形,则这个平面图形的面积是22+3.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.第 2 页 共 5 页其中,使三条直线共面的充分条件有 ①④4.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成 7 部分 5.空间内五个点中的任意三点都不共线,由这五个点为顶点只构造出四个三棱锥,则这五个点最多可以确定 7 个平面 .●典例精析【题型一】三点共线与三线共点问题1、证明点共线时,一般都是将点看成是两个相交平面的公共点,根据公理2就可以证明了.2、证明线共点,基本方法是先确定两条直线的交点,再证交点在第三条直线上,也可将直线归结为两平面的交线,交点归结为两平面的公共点,由公理2证明点在直线上.例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线.解:∵AB ∥CD ,∴AB ,CD 确定一个平面β. 又∵AB α=E ,AB ⊂β,∴E ∈α,E ∈β,即E 为平面α与β的一个公共点.同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴E ,F ,G ,H 四点必定共线. 【题型二】点线共面问题证明点线共面的常用方法1.纳入平面法:先确定一个平面,再证明有关点、线在此平面内.2.辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定 平面β,最后证明平面α、β重合.3.反证法:可以假设这些点和直线不在同一个平面内,然后通过推理, 找出矛盾,从而否定假设,肯定结论.例2.已知:d c b a ,,,是不共点且两两相交的四条直线,求证:d c b a ,,,共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , 但A ∉d ,如图1.∴直线d 和A 确定一个平面α. 又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则A ,E ,F ,G ∈α. ∵A ,E ∈α,A ,E ∈a ,∴a ⊂α.同理可证b ⊂α,c ⊂α.∴a ,b ,c ,d 在同一平面α内.αD CB A E F Hα b a dc G F E A图1第 3 页 共 5 页2o 当四条直线中任何三条都不共点时,如图2. ∵这四条直线两两相交,则设相交直线a ,b 确定一个平面α.设直线c 与a ,b 分别交于点H ,K ,则H ,K ∈α.又 H ,K ∈c ,∴c ⊂α. 同理可证d ⊂α.∴a ,b ,c ,d 四条直线在同一平面α内.说明:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义. 【题型三】公理2的灵活运用例3.如图,点A ,B ,C 确定的平面与点D ,E ,F 确定的平面相交于直线l ,且直线AB 与l 相交于点G ,直线EF 与l 相交于点H ,试作出平面ABD 与平面CEF的交线. 解:如图3,在平面ABC 内,连结AB ,与l 相交于点G ,则G ∈平面DEF ;在平面DEF 内,连结DG ,与EF 相交于点M ,则M ∈平面ABD ,且M ∈平面CEF .所以,M 在平面ABD 与平面CEF 的交线上.同理,可作出点N ,N 在平面ABD 与平面CEF 的交线上.连结MN ,直线MN 即为所求.例4.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ⊂α,CD ⊂β,求证:AB ,CD ,l 共点(相交于一点).证明 ∵梯形ABCD 中,AD ∥BC ,∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点,设AB CD =M .又∵AB ⊂α,CD ⊂β,∴M ∈α,且M ∈β.∴M ∈α β.E · B AD · FC · · ·· E· B Al例3 G H D ·FC M ·· · αD C B Al 例4βa b c d α H K图2又∵α β=l,∴M∈l,即AB,CD,l共点.说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的.●自我检测1.在空间四边形ABCD的边AB、BC、CD、DA上分别取点HGFE,,,,如果EF 与HG相交于一点M,那么下列说法正确的是①M一定在直线AC上;②M一定在直线BD上;③M可能在直线AC上,也可能在直线BD上;④M既不在直线AC上,也不在直线BD上2.有下列命题:①空间四点中有三点共线,则这四点必共面;②空间四点中,其中任何三点不共线,则这四点不共面;③用斜二测画法可得梯形的直观图仍为梯形;④垂直于同一直线的两直线平行⑤两组对边相等的四边形是平行四边形.其中正确的命题是①③.3.一个平面把空间分成__2__部分,两个平面把空间最多分成_ 4___部分,三个平面把空间最多分成__8__部分.4.四边形ABCD中,1=====BDDACDBCAB,则成为空间四面体时,AC的取值范围是)3,0(.5.如图,P、Q、R分别是四面体ABCD的棱AB,AC,AD上的点,若直线PQ与直线BC的交点为M,直线RQ与直线DC的交点为N,直线PR与直线DB的交点为L,试证明M,N,L共线.证明:易证M,N,L∈平面PQR,且M,N,L∈平面BCD,所以M,N,L∈平面PQR 平面BCD,即M,N,L共线.6.如图,P、Q、R分别是正方体ABCD-A1B1C1D1的棱AA1,BB1,DD1上的三点,试作出过P,Q,R三点的截面图.作法⑴连接PQ,并延长之交A1B1的延长线于T;⑵连接PR,并延长之交A1D1的延长线于S;⑶连接ST交C1D1、B1C1分别于M,N,则线段MN 为平面PQR与面A1B1C1D1的交线.⑷连接RM,QN,则线段RM,QN分别是平面PQR 与面DCC1D1,面BCC1B1的交线.得到的五边形PQNMR即为所求的截面图(如图4).A1A BB1DD1CC1QP···ABCMNLPQRA1A BB1DD1CC1STQP图4NM第 2 页共5 页第 3 页 共 5 页说明 求作二平面的交线问题,主要运用公理1.解题关键是直接或间接找出二平面的两个确定的公共点. 有时同时还要运用公理2、3及公理的推论等知识.7.如图,在平行六面体ABCD -A 1B 1C 1D 1的中,A 1C 1 B 1D 1=O 1,B 1D 平面A 1BC 1=P .求证:P ∈BO 1.证明 在平行六面体ABCD -A 1B 1C 1D 1中, ∵B 1D 平面A 1BC 1=P ,∴P ∈平面A 1BC 1,P ∈B 1D . ∵B 1D ⊂平面BB 1D 1D .∴P ∈平面A 1BC 1,且P ∈平面BB 1D 1D . ∴P ∈平面A 1BC 1 平面BB 1D 1D ,∵A 1C 1 B 1D 1=O 1,A 1C 1⊂平面A 1BC 1,B 1D 1⊂平面BB 1D 1D , ∴O 1∈平面A 1BC 1,且O 1∈平面BB 1D 1D . 又B ∈平面A 1BC 1,且B ∈平面BB 1D 1D , ∴平面A 1BC 1 平面BB 1D 1D =BO 1.∴P ∈BO 1.8.如图所示,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面; (2)CE ,D 1F ,DA 三线共点.证明:(1)如图所示,连接CD 1,EF ,A 1B ,∵E 、F 分别是AB 和A A 1的中点,∴EF ∥A 1B 且EF=0.5A 1B ,又∵A 1D 1//BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥CD 1,∴EF ∥CD 1, ∴EF 与CD 1确定一个平面α,∴E ,F ,C ,D 1∈α,即E ,C ,D 1,F 四点共面. (2)由(1)知EF ∥CD 1,且EF =12CD 1,∴四边形CD 1FE 是梯形,∴CE 与D 1F 必相交,设交点为P ,则P ∈CE ⊂平面ABCD ,且P ∈D 1F ⊂平面A 1ADD 1, ∴P ∈平面ABCD 且P ∈平面A 1ADD 1.又平面ABCD ∩平面A 1ADD 1=AD ,∴P ∈AD , ∴CE ,D 1F ,DA 三线共点.A 1ABB 1DD 1CC 1O 1P。

平面图形的基本概念与性质

平面图形的基本概念与性质

定义:直角三角形是有一个角为直角的三角形,等腰直角三角形是两边相等且有一个角为直角的三角形。
性质:直角三角形具有斜边最长的特点,等腰直角三角形除了具有直角三角形的性质外,还具有两边相等的特点。
面积计算:直角三角形的面积可以通过底和高来计算,等腰直角三角形的面积可以通过直角边来计算。
特殊性质:等腰直角三角形是一种特殊的直角三角形,它具有一些特殊的性质,如两个锐角相等,两条直角边相等,斜边最长且等于直角边的平方和的平方根。
根据轴对称性分类:轴对称图形、中心对称图形等
根据是否封闭分类:封闭图形、开放图形等
02
平面图形的性质
形状与大小
添加标题
添加标题
添加标题
添加标题
平面图形的大小由其面积和周长衡量,表示平面图形所占据的区域大小。
平面图形的形状由其边界决定,可以是圆形、椭圆形、多边形等。
平面图形的形状和大小是描述平面图形的基本属性,对于确定图形的位置、关系和性质具有重要意义。
平面图形可以是封闭的,即由线段围成的区域,也可以是开放的,即由线段组成但没有形成封闭区域。
平面图形具有多种分类方式,如按照形状、边数、对称性等进行分类。
平面图形只存在于二维平面中,不具有三维空间中的深度和高度。
平面图形的分类
根据边数分类:三角形、四边形、五边形等
根据角数分类:锐角三角形、钝角三角形、直角三角形等
形状与大小是平面图形的基本性质之一,对于几何学、图形学等领域的研究和应用具有基础性作用。
边与角
边长:连接两个顶点的线段的长度
角度:两条射线之间的夹角大小
平行线:不相交的两条直线
对角线:连接一个角的顶点与其对边上一点的线段
对称性
定义:平面图形关于某一直线或点对称

数学立体几何——10.1平面的基本性质

数学立体几何——10.1平面的基本性质
⑥平面与平面交于直线l,记作=l,平面与平面不相交,记作=.
在以后的学习中,我们将经常用到这些记号.
课内练习1
1.能不能说一个平面长2米,宽1米,为什么?
2.画一个平行四边形表示平面,并分别用希腊字母和大写英文字母表示这个平面.
3.分别用大写字母表示图示长方体的六个面所在的平面.
4.用符号表示下列点、线、面间的关系:
1.判断题
(1)如图,我们能说平面与平面只有一个交点A吗?
(2)如图,我们能说平面与平面相交于线段AB吗?
(3)如图,我们能说线段AB在平面内,但直线AB不全在平面内吗?
2.三角形一定是平面图形吗?为什么?
3.一扇门可以自由转动,如果锁住,就固定了,如何解释?
4.怎样检查一张桌子的四条腿的下端是否在同一平面内?
济宁技师学院教案
教师姓名
郑理
授课班级
18计算机
授课形式
新授
授课日期
2019年10月日第周
授课时数
2
授课章节
名称
§9.1平面的基本性质
教学目的
了解平面的表示方法和基本性质
教学重点
平面的基本性质
教学难点
用集合符号表示空间点、直线和平面的关系
更新、补充、删节内容
使用教具
课外作业
课后体会
教案授课教师:郑理
章节内容
基本性质:
(1)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.
如图5-29,直线l上两点A,B在平面内,那么 l上所有的点都在平面内,这时我们可以说,直线l在平面内或平面经过直线l.
这个性质常用来判断一条直线是否在一个平面内.
因为平面是可以无限延展的,因此两个平面如果有公共的点,那么延展的结果,它们必定相交于一条直线.由此得平面的第二个基本性质:

高中数学《平面的基本性质》教案

高中数学《平面的基本性质》教案一、教学目标1. 让学生理解并掌握平面的基本性质,包括平面的定义、平面的表示方法、平面的性质等。

2. 培养学生运用平面几何知识解决实际问题的能力。

3. 提高学生的逻辑思维能力和空间想象力。

二、教学内容1. 平面的定义:平面是无限延展、无厚度的二维空间。

2. 平面的表示方法:用字母“α”、“β”等表示平面。

3. 平面的性质:(1)平面上的点与直线的关系:任意一点在平面内,都可以用平面内的直线表示。

(2)平面上的直线与直线的关系:平面内的任意两条直线,要么相交于一点,要么平行。

(3)平面上的直线与点的关系:平面内的任意一点,要么在给定直线上,要么不在给定直线上。

三、教学重点与难点1. 教学重点:平面的定义、表示方法和平面的性质。

2. 教学难点:平面的性质中直线与直线、直线与点的关系的理解和应用。

四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论,自主探究平面的基本性质。

2. 利用几何画板或实物模型,直观展示平面的性质,帮助学生建立空间想象。

3. 设计适量练习题,让学生在实践中巩固知识。

五、教学过程1. 导入:通过生活中的实例,如平面地图、桌面等,引出平面的概念。

2. 新课导入:介绍平面的表示方法,讲解平面的性质。

3. 课堂讲解:详细讲解平面的性质,引导学生理解直线与直线、直线与点的关系。

4. 例题讲解:分析并解决典型例题,让学生掌握平面几何的应用。

5. 课堂练习:学生自主完成练习题,巩固所学知识。

6. 总结与拓展:对本节课内容进行总结,提出更高层次的问题,激发学生兴趣。

7. 课后作业:布置适量作业,让学生进一步巩固平面几何知识。

六、教学评估1. 课堂提问:通过提问了解学生对平面基本性质的理解程度。

2. 练习题解答:检查学生课后练习题的完成情况,评估其对知识的掌握程度。

3. 小组讨论:观察学生在小组讨论中的表现,了解其合作能力和解决问题的能力。

七、教学反思1. 反思教学内容:根据学生的反馈,调整教案内容,使之更符合学生的认知水平。

1.2.1 平面的基本性质与推论

张喜林制1.2.1 平面的基本性质与推论教材知识检索考点知识清单1.点与直线的基本性质连接两点的线中, 最短;过两点有 ,并且只有 . 2.平面的基本性质公理1:如果一条直线上的 在一个平面内,那么这条直线上的 ,这时我们就说:直线在 或 .公理2:经过 的三点,有且只有一个 即 的三点确定 .公理3:如果不重合的两个平面有一个公共点,那么它们有 条过 的公共直线. 3.平面基本性质的推论推论1:经过一条直线和____,有且只有____推论 2:经过两条____,有且只有____ . 推论3:经过两条____,有且只有____.要点核心解读1.平面的基本性质 (1)公理l①三种语言表述文字语言:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内, 图形语言:如图1-2 -1-1. 符号语言:⇒∈∈∈∈ααB A l B l A ,,,.α⊂l②公理1的条件是“线上有两点在平面内”,结论是“线上的所有点都在平面内”,这个结论阐述两个观点,一是整条直线在平面内,二是直线上的所有点在平面内. ③作用:判定直线是否在平面内,判定点是否在平面内. (2)公理2①三种语言表述文字语言:经过不在同一条直线上的三点,有且只有一个平面.图形语言:如图1-2 -1-2.符号语言:A ,B ,C 三点不共线等有且仅有一个平面α,使.,,ααα∈∈∈C B A②公理2的条件是“过不在同一直线上的三点”,结论是“有且仅有一个平面”,要注意“不在同一条直线上”这一附加条件,舍之则结论不成立.结论中“有且仅有”即“存在且唯一”,又可称之为“确定”平面.③公理2的三个推论推论1:经过一条直线和直线外的一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.④公理2及三个推论的作用:其一是确定平面,其二可用来证明点、线共面的问题,其三是用来作为计算平面个数的依据. (3)公理3①三种语言表述文字语言:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线. 图形语言:如图1-2 -1-3.符号语言:.l P l P ∈=⇒∈且βαβα②公理3的条件是“两面共一点”,结论是“两面共一线,且过这一点,线唯一”.③作用:其一是判定两个平面是否相交,其二是判定点在直线上,可用来证明多点共线或多线共点问题2.平面基本性质的理解及应用 平面基本性质的三条公理及推论,是我们学习和研究立体几何问题的重要基础,根据平面的基本性质,常将空间图形转化为平面图形解决,这是解答立体几何问题的重要思想方法.(1)公理1是判定直线是否在平面内的依据,运用公理1可判定直线是否在某一平面内.(2)公理2以及推论是确定平面的依据,确定一个平面,包括两层意思:①存在一个平面;②只有一个平面.公理2及其三个推论是四个等价命题.(3)公理3是确定两个平面相交于一条直线的依据,运用公理3可判定多点共线或点在线上.(4)证明空间三点共线的问题.通常证明这些点都在两个平面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三点既在第一个平面内又在第二个平面内,当然必在两个平面的交线上.(5)证明空间三线共点的问题可把其中一条作为分别过其余两条的两个平面的交线,然后存证另两条直线的交点在此直线上.(6)证明空间几点共面的问题,可先取三点(不共线的三点)确定一个平面,再证其他各点都在这个平面内.(7)证明空间几条直线共面的问题,可先取两条(相交或平行)直线确定一个平面,再证其余直线在这个平面内,或者从这些直线中取任意两条确定若干个平面,再一一确定这些平面重合.典例分类剖析考点1 判断命题的正误 命题规律判断对给出的公理及推论的理解或不同表述是否正确. [例1] (1)下列命题中不正确的是( ).A.若一条直线上有一点在平面外,则直线上有无穷多个点在平面外B .若,,,ABC B A ∈∈∈αα则α∈C C .若,,,,B b l A a lb a ==⊂⊂ αα则α⊂lD .若一条直线上有两点在已知平面外,则直线上的所有点都在平面外(2)直线⊂a 平面α,直线⊂b 平面b N a M ∈∈,,α且,l M ∈,l N ∈则( ).α⊂l A . α⊂/l B . M l C =α. N l D =α . [试解] .(做后再看答案,发挥母题功能)[解析] (1)根据公理l ,直线在平面内的条件是直线上有两个点在平面内即可,因此选D .,,,,,,)2(ααα∈∴⊂⊂∈∈N M b a b N a M 而M .N 确定直线L .根据公理1可知,α⊂l 故选A .[答案](1)D(2)A母题迁移 1.下列命题:(1)空间不同的3点确定一个平面; (2)有3个公共点的两个平面必重合;(3)空间两两相交的三条直线确定一个平面; (4)三角形是平面图形;(5)平行四边形、梯形、四边形都是平面图形; (6)垂直于同一直线的两直线平行;(7)-条直线和两平行线中的一条相交,也必和另一条相交; (8)两组对边相等的四边形是平行四边形, 其中正确的命题是 . 考点2 平面个数的确定 命题规律由给定的条件,借助公理确定平面的个数. [例2] (1)不共面的四点可以确定几个平面?(2)三条直线两两平行但不共面,它们可以确定几个平面? (3)共点的三条直线可以确定几个平面? (4)空间三点可以确定几个平面?[答案] (1)不共面的四点可以确定四个平面.(2)三条直线两两平行但不共面,它们可以确定三个平面. (3)共点的三条直线可以确定一个或三个平面.(4)若空间三点不共线,由公理2,则可以确定一个平面;若空间三点共线,则过三点的平面有无数多个,但这三点都不能确定其中的任何一个平面,此时有0个平面.故空间三点可以确定一个或0个平面. [点拨] (1)判定平面的个数问题关键是要紧紧地抓住已知条件,做到不重不漏.平面的个数问题主要是根据已知条件和公理2及其三个推论来判定.(2)题中“确定”即“有且只有”.“有”是说平面存在,“只有”是说平面的唯一性.(3)解此类问题要注意理解“确定”的含义,否则(4)中就会错答为“可确定一个或无数个平面”. 母题迁移 2.四条直线两两平行,任意三条不共面,过其中的任意两条作一个平面,共可以作平面____个.考点3 线共点问题命题规律 证明满足某些条件的几条直线交于一点.[例3] 如图1-2 -1-5所示,空间四边形ABCD 中,E 、F 、G 分别在AB 、BC 、CD 上,且满足===GD CG FB CF EB AE :,1:2::,1:3过E 、F 、G 的平面交AD 于H(1)求AH :HD ;(2)求证:EH 、FC 、BD 三线共点.[答案] (1) ,//,2AC EF FBCFEB AE ∴== //EF ∴平面ACD .而⊂EF 平面EFCR ,平面 EFGH平面,GH ACD =.3.//,//,//==∴∴∴GDCGHD AH GH AC AC nEF GH EF,//)2(GH EF 且,41,31==AC GH AC EF ∴=/∴,GH EF 四边形EFGH 为梯形.令,P FG EH= 则⊂∈∈EH FG P EH P 又,,平面ABD ,⊂FG 平面BCD ,平面 ABD 平面,BD BCD =BD FG EH BD P 、、∴∈∴⋅三线共点.[点拨] 证明线共点的问题实质上是证明点在线上的问题,其基本理论是把直线看作两平面的交线,点看作是两平面的公共点,由公理3得证.母题迁移 3.三个平面两两相交得到三条交线,如果其中有两条相交于一点,那么第三条也经过这个点.考点4 点共线问题命题规律 证明满足某些条件的几个点在一条直线上.[例4] 正方体1111D C B A ABCD -中,对角线C A 1与平面1BDC 交于点O ,AC 、BD 交于点M ,求证:点M O C 、、1共线.[解析] 要证若干点共线的问题,只需证这些点同在两个相交平面内即可.[答案] 如图1-2-1-6所示,C C A A C C A A 1111//、⇒确定平面,1C A的交线上与平面在平面平面直线平面平面平面D BC C A O D BC D BC C A O C A 111111111⇒⎪⎪⎭⎪⎪⎬⎫∈⇒=∈⇒⎭⎬⎫∈⊂O O C A O C A C A ,D BC C A 111111M C O M C C A D BC O ∈⇒⎭⎬⎫=平面平面的交线上与平面在平面即M C O 、、1三点共线.[点拨] 证明点共线的问题,一般转化为证明这些点是某两个平面的公共点.这样就可根据公理3证明这些点都在这两个平面的公共直线上, 母题迁移 4.已知△ABC 在平面α外,直线,P AB =α 直线,R AC =α 直线,Q BC =α 如图1 -2-1 -7.求证:P 、Q 、R 三点共线. 考点5点、线共面问置命题规律证明满足某些条件的若干个点或直线在题同一平面内.[例5] 如图1-2 -1-8所示,M 、N 、P 、Q 分别是正方体////D C B A ABCD -中棱///CC D C BC AB 、、、的中点.求证:M 、N 、P 、Q 四点共面.[解析] 要证这四点共面,方法较多,但注意到本题中点P 、Q 、N 、M 的特殊性及对正方体的理解和认识,可证直线PQ 和MN 相交或M P// NQ.[答案] 证法一:如图l-2-1-8所示,连接MN 并延长交DC 的延长线于O ,则≅∆MBN ,OCN ∆.BM CO =∴连接PQ 并延长交DC 的延长线于,/O 则,//CQ O Q PC ∆≅∆/////,,.O O CO CO PC MB PC CO 、又∴=∴==∴ 重合,∴ PQ 、MN 相交且确定一个平面,故M 、N 、P 、Q 四点共面.证法二:∴,///PC MB 四边形P MBC /为平行四边形.⋅∴∴NQ MP BC NQ BC MP //,//.////∴ MP 与NQ 确定一个平面, 故M 、N 、P 、Q 四点共面.[点拨] 一般地,证明若干个点共面,可证明这些点所在的直线相交,或先证明其中的三点共面,再证明其他的点也在这个平面内,这往往就要用到有关的定理或推论, 母题迁移 5.求证:两两相交且不共点的四条直线共面.学业水平测试1.下列叙述中正确的是( ).A .因为,,αα∈∈Q P 所以α∈PQB .因为,,βα∈∈Q P 所以PQ =βαC .因为,,,ABD AB C AB ∈∈⊂α所以α∈CD D .因为,,βα⊂⊂AB AB 所以)()(βαβα∈-∈∏B A2.下列命题中是真命题的是( ). A .空间不同的三点确定一个平面B .有三个内角是直角的空间四边形是矩形C .三条直线中任意两条均相交,则这三条直线确定一个平面D .顺次连接空间四边形各边的中点所得的四边形其对角线必共面3.在空间,若四点中的任意三点不共线,则此四点不共面.此结论( ). A .正确 B .不正确 C .无法判断 D .缺少条件 4.已知点A ,直线a ,平面α;,αα∉⇒⊂/∈A a a A ①;,αα∈⇒∈∈A a a A ②⊂∉a a A ,③;αα∉⇒A .,αα⊂⇒⊂∈A a a A ④以上命题正确的个数为 .5.下列命题:①空间3点确定一个平面;②有3个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形,其中正确的命题是 . 6.有空间不同的五个点.(1)若有某四点共面,则这五点最多可确定多少个平面?(2)若任意四点都在同一平面内,则这五点共能确定多少个平面?并证明你的结论,高考能力测试(测试时间:45分钟测试满分:100分) 一、选择题(6分x 7 = 42分)1.空间四点A 、B 、C 、D 共面而不共线,那么四点中( ). A .必有三点共线 B .必有三点不共线 C .至少有三点共线 D .不可能有三点共线 2.如图1-2-1-11所示,平面,l =βα 点、A ,α∈B 点β∈C 且,,R l AB l C =∉ 设过A 、B 、C 三点的平面为γ,则γβ是( ).A .直线ACB .直线BC C .直线CRD .以上均不正确3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( ). A.5部分 B.6部分 C.7部分 D.8部分 4.在空间内,可以确定一个平面的条件是( ).A .两两相交的三条直线B .三条直线,其中的一条与另外两条直线分别相交C .三个点D .三条直线,它们两两相交,但不交于同一点5.如图1-2 -1-12所示,正方体-ABCD 1111D C B A 中,P 、Q 、R 分别是11C B AD AB 、、的中点.那么,正方体过P 、Q 、R 的截面图形是( ).A .三角形B .四边形C .五边形D .六边形6.不共面的四个定点到平面α的距离都相等,这样的平面a 共有( ). A .3个 B .4个 C .6个 D .7个7.三条直线两两相交,由这三条直线所确定的平面个数是( ). A .1 B .2 C .3 D .1或3二、填空题(5分x4 =20分)8.如果一条直线与一个平面有一个公共点,则这条直线可能有 个点在这个平面内. 9.有下面几个命题:①如果一条线段的中点在一个平面内,那么它的两个端点也在这个平面内;②两组对边分别相等的四边形是平行四边形;③两组对边分别平行的四边形是平行四边形;④四边形有三条边在同一个平面内,则第四条边也在这个平面内;⑤点A 在平面α外,点A 和平面a 内的任何一条直线都不共面. 其中正确命题的序号是 .(把你认为正确的序号都填上) 10.如图1-2 -1 -13所示,正方体-ABCD 1111D C B A 中,E 、F 分别为1CC 和1AA 的中点,画出平面F BED 1与平面ABCD 的交线的作法为11.如图1-2 -1-14所示,E 、F 分别是正方体的面11A ADD 和面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的投影可能是 (要求:把图1-2 -1 -15中可能的图的序号都填上)三、解答题(共38分)12.(8分)如图1-2-1-16所示,在正方体1111D C B A ABCD -中,E 为AB 的中点,F 为1AA 的中点.求证:DA F D CE 、、1A 三线交于一点.13.(10分)如图1-2-1 -17所示,在棱长为1的正方体1111D C B A ABCD -中,M 为AB 的中点,N 为1BB的中点,D 为平面11B BCC 的中心.(1)过O 作一直线与AN 交于P ,与CM 交于Q (只写作法,不必证明);(2)求PQ 的长.14.(10分)如图1-2-1-18所示,正方体1111D C B A ABCD -中,E 、F 分别是1111.B C C D 的中点。

平面的基本性质

平面的基本性质【知识要点】一、平面的概念及点、线、面的表示方法二、熟悉点线面的基本公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内公理2:过不在一条直线上的三点,有且只有一个平面推论1:经过直线和直线外的一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线三、点共线,线共点的证明四、点线共面的证明【基础练习】1.点A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是( )A .ααα⊂⇒∈∈∈∈lB l B A l A ,,,B .βα∈∈A A ,,,B B AB αβαβ∈∈⇒=I 直线C .αα∉⇒∈⊄A l A l ,D .α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α⇒与β重合2. .判断下列命题的真假,真的打“√”,假的打“×”(1)空间三点可以确定一个平面 ( )(2)两条直线可以确定一个平面 ( )(3)两条相交直线可以确定一个平面 ( )(4)一条直线和一个点可以确定一个平面 ( )(5)三条平行直线可以确定三个平面 ( )(6)两两相交的三条直线确定一个平面 ( )(7)两个平面若有不同的三个公共点,则两个平面重合 ( )(8)若四点不共面,那么每三个点一定不共线 ( )【典型例题】题型一点、线共面问题例1.已知a//b, A∈a, B∈b, C∈b. 求证:a,b及直线AB,AC共面。

例2.如果三条互相平行的直线和同一条直线相交,求证:这四条直线共面。

题型二线共点问题例3. 已知如图,α∩β=l, aα, bβ, a∩b=A. 求证:A∈l(或者a,b,l共点)题型三点共线问题例4 . 如图,已知延长ΔABC三边,AB∩α=D,BC∩α=E,AC∩α=F。

平面的基本性质和作用

生活中的一些物体通常呈平面形,课桌面、 湖面、海面都给我们以平面的形象.
几何里的平面没有大小、厚薄和宽窄,平面在空间是无 限延伸的.
二.平面的画法:
我们常常把水平的平面画成一个平行四边形,用 平行四边形表示平面.
平行四边形的锐角通常画成45°,且横边长等于 其邻边长的2倍.
(1)水平放置的平面:(2)垂直放置的平面:
∩ l, AB, CD, AB//l, CD//l.
解: 画图如下:
C
D
l
A
B
P53 B 组 2. 如图, △ABC 在平面 外, AB∩ P, BC∩ Q, AC∩ R, 求证: P, Q, R 三点共线.
证明: ∵AB∩ P, AC∩ R,
则 P、R 就是平面ABC
A
与平面 的公共点, 即
A∉l
A∈α
A∉α
文字语言 l在α内
符号语言
l⊂α
l在α外
l⊄α
l,m 相交于 A l∩m=A
l,α 相交于 A l∩α=A
α,β 相交于 l α∩β=l
图形语言
五.用数学符号来表示点、线、面之间的位置关系:
a B
A
A∈a
B∈a
B
α
A
A∈α B∈α
b
a
aA
α
α
a α
b∩α=A
a∩α=φ 或 a∥α
典型例题
例1 如图,用符号表示下列图形中点、直线、平面 之间的位置关系.
a
B A
l
(1)
al
P
b
(2)
解:在(1)中, l,a A,a B.
在(2)中, l,a ,b ,a l P,b l P.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档