2019年高考理科数学模拟试题
山东省威海市2019届高三二模考试理科数学试题(解析版)

2019年山东省威海市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知复数z满足z(1+i)=(3+i)2,则|z|=()A. B. C. D. 82.已知集合,,,则A∩B=()A. B. C. D.3.如图所示茎叶图中数据的平均数为89,则x的值为()A. 6B. 7C. 8D. 94.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,M,为其终边上一点,则cos2α=()A. B. C. D.5.若x,y满足约束条件,,,则z=3x-y的最大值为()A. 2B. 1C. 0D.6.函数的图象可由y=2cos2x的图象如何变换得到()A. 向左平移个单位B. 向右平移个单位C. 向左平移个单位D. 向右平移个单位7.若P为△ABC所在的平面内一点,且,则△ABC的形状为()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形8.已知函数f(x)=ln x+ln(a-x)的图象关于直线x=1对称,则函数f(x)的值域为()A. B. C. D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为()A. 6B. 8C.D.10.在△ABC中,AC=3,向量在向量的投影的数量为-2,S△ABC=3,则BC=()A. 5B.C.D.11.已知函数f(x)的定义域为R,,对任意的x∈R满足f'(x)>4x,当α∈[0,2π]时,不等式f(sinα)+cos2α>0的解集为()A. B. C. D.12.设F1,F2为双曲线>,>的左右焦点,点P(x0,2a)为双曲线上的一点,若△PF1F2的重心和内心的连线与x轴垂直,则双曲线的离心率为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.在的展开式中,x4的系数是______.14.已知抛物线y2=2px(p>0)上的一点M到x轴的距离为4,到焦点的距离为5,则p=______.15.在直三棱柱ABC-A1B1C1中,∠ABC=90°,AA1=2,设其外接球的球心为O,已知三棱锥O-ABC的体积为1,则球O表面积的最小值为______.16.“克拉茨猜想”又称“3n+1猜想”,是德国数学家洛萨•克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.已知正整数m经过6次运算后得到1.则m的值为______.三、解答题(本大题共7小题,共82.0分)17.已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.18.如图,四棱锥P-ABCD中,已知PA⊥平面ABCD,△ABC为等边三角形,PA=2AB=2,AC⊥CD,PD与平面PAC所成角的正切值为C2.(Ⅰ)证明:BC∥平面PAD;(Ⅱ)若M是BP的中点,求二面角P-CD-M的余弦值.19.某蔬菜批发商分别在甲、乙两市场销售某种蔬菜(两个市场的销售互不影响),已知该蔬菜每售出1吨获利500元,未售出的蔬菜低价处理,每吨亏损100元.现统计甲、乙两市场以往100个销售周期该蔬菜的市场需求量的频数分布,如表:甲市场以市场需求量的频率代替需求量的概率.设批发商在下个销售周期购进吨该蔬菜,在甲、乙两市场同时销售,以X(单位:吨)表示下个销售周期两市场的需求量,T(单位:元)表示下个销售周期两市场的销售总利润.(Ⅰ)当n=19时,求T与X的函数解析式,并估计销售利润不少于8900元的概率;(Ⅱ)以销售利润的期望为决策依据,判断n=17与n=18应选用哪一个.20.在直角坐标系xOy中,设椭圆:>>的左焦点为F1,短轴的两个端点分别为A,B,且∠AF1B=60°,点,在C上.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:y=kx+m(k>0)与椭圆C和圆O分别相切于P,Q两点,当△OPQ 面积取得最大值时,求直线l的方程.21.已知函数>.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:当m∈[0,1)时,函数>有最大值.设g(x)的最大值为h(m),求函数h(m)的值域.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为,且曲线C1与C2恰有一个公共点.(Ⅰ)求曲线C1的极坐标方程;(Ⅱ)已知曲C1上两点,A,B满足,求△AOB面积的最大值.23.已知正实数a,b满足a+b=2.(Ⅰ)求证:;(Ⅱ)若对任意正实数a,b,不等式|x+1|-|x-3|≥ab恒成立,求实数x的取值范围.答案和解析1.【答案】C【解析】解:由z(1+i)=(3+i)2,得z=,∴|z|=||=.故选:C.把已知等式变形,再由商的模等于模的商求解.本题考查复数模的求法,考查数学转化思想方法,是基础题.2.【答案】B【解析】解:∵集合,∴A={y|-1≤y≤2},B={x|0≤x≤4},∴A∩B={x|0≤x≤2}=[0,2].故选:B.先分别求出集合A和B,由此能求出A∩B.本题考查集合的运算及关系,考查交集定义、不等式性质等基础知识,考查运算求解能力,属于基础题.3.【答案】B【解析】解:根据茎叶图中数据,计算平均数为×(86+80+x+90+91+91)=89,解得x=7.故选:B.根据茎叶图中数据计算平均数即可.本题考查了利用茎叶图中数据计算平均数的应用问题,是基础题.4.【答案】D【解析】解:∵M,∴OM==.∴sinα==.∴cos2α=1-2sin2α=1-2×()2=.故选:D.易得OM的长度,利用二倍角的三角函数,任意角的三角函数的定义即可求解.本题主要考查了二倍角的三角函数,任意角的三角函数的定义,考查了转化思想,属于基础题.5.【答案】A【解析】解:作出x,y满足约束条件对应的平面区域如图:z=3x-y,得y=3x-z,平移直线y=3x-z,由图象可知当直线y=3x-z经过点B(1,1)时,直线y=3x-z的截距最大,此时z最大,z max=3×1-1=2.即z的最大值是2.故选:A.作出不等式组对应的平面区域,通过目标函数的几何意义,利用数形结合即可的得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.6.【答案】B【解析】解:函数=2,把函数的图象向左平移个单位,得到:y=2sin(2x+)=2cos2x的图象,故:要得到y=2sin()的图象,只需将y=2cos2x的图象向右平移个单位即可.故选:B.直接利用三角函数关系式的平移变换和伸缩变换的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,函数图象的平移变换和伸缩变换的应用,主要考查学生的运算能力和转换能力,属于基础题型.7.【答案】C【解析】,解:∵,∴||=||∴y根据向量加法及减法的平行四边形法则可知,以为邻边所作的平行四边形的对角线相等即ABCD为矩形,C=则△ABC的形状为直角三角形故选:C.由已知可得||=||,根据向量加法及减法的平行四边形法则可知,以为邻边所作的平行四边形的对角线相等,可判断本题主要考查了向量加法及减法的平行四边形法则的简单应用,属于基础试题8.【答案】D【解析】解:根据题意,对于函数f(x)=lnx+ln(a-x),有f(a-x)=ln(a-x)+ln[a-(a-x)]=lnx+ln(a-x)=f(x),则函数f(x)的图象关于直线x=对称,若函数f (x )=lnx+ln (a-x )的图象关于直线x=1对称,则有=1,则a=2, 则f (x )=lnx+ln (2-x )=ln (2x-x 2),其定义域为(0,2), 设t=2x-x 2,则y=lnt ,又由t=-(x-1)2+1,0<x <2,则有0<t≤1,则y=lnt≤0,即函数f (x )的值域为(-∞,0]; 故选:D .根据题意,分析可得f (a-x )=f (x ),即可得函数f (x )的图象关于直线x=对称,据此可得a 的值,进而可得f (x )=lnx+ln (2-x )=ln (2x-x 2),设t=2x-x 2,则y=lnt ,由换元法分析可得答案.本题考查函数的对称性,涉及换元法求函数的值域,关键是求出a 的值,属于基础题. 9.【答案】B【解析】解:根据三视图知,该几何体是镶嵌在长方体中的四棱锥P-ABCD , 且长方体的长、宽、高分别为4、2、3,如图所示;结合图中数据,计算该四棱锥的体积为:V 四棱锥P-ABCD =V 三棱锥C-BDP +V 三棱锥D-ABP =××4×2×3+××4×3×2=8. 故选:B .根据三视图知该几何体是镶嵌在长方体中的四棱锥,结合图中数据求出该四棱锥的体积.本题考查了利用三视图求几何体体积的应用问题,是基础题.10.【答案】C【解析】解:AC=3,向量在向量的投影的数量为-2,S△ABC=3,可得|AB|cosA=-2,|AB|•|AC|•sinA=3,即|AB|sinA=2,即tanA==-1,内角A=135°,|AB|==2,|BC|2=|AB|2+|AC|2-2|AB|•|AC|•cosA=8+9-2•2•3•(-)=29,即|BC|=,故选:C.由向量的投影和三角形的面积公式,可得A,|AB|,再由余弦定理可得所求值.本题考查三角形的余弦定理和面积公式的运用,考查向量的投影的定义,以及化简运算能力,属于基础题.11.【答案】A【解析】解:令g(x)=f(x)+1-2x2,则g′(x)=f′(x)-4x>0,故g(x)在R上单调递增,又g()=f()+1-2×=-+1-=0,∴g(x)>0的解集为x>,∵cos2α=1-2sin2α,故不等式f(sinα)+cos2α>0等价于f(sinα)+1-2sin2α>0,即g(sinα)>0,∴sinα>,又α∈[0,2π],∴<α<.故选:A.令g(x)=f(x)+1-2x2,求导可得g(x)单调递增,且g()=0,故不等式f(sinα)+cos2α>0的解集为g(sinα)>0的解集.本题考查了导数与函数单调性的关系,考查函数单调性的应用,根据所求不等式构造函数是解题关键,属于中档题.12.【答案】A【解析】解:如图设P在第一象限,内切圆的圆心为I,内切圆与PF1,PF2,F1F2分别切与点E,F,G,根据圆的切线的性质得:PE=PF,F1E=F1G,F2F=F2G,根据双曲线的定义知:PF1-PF2=2a,即(PE+F1E)-(PF-F2F)=2a,∴F1G-F2G=2a,①又F1G+F2G=2c,②,联立①②解得F1G=a+c,F2G=c-a,∴G(a,0),∴内心I的横坐标为a,∵△PF1F2的重心和内心的连线与x轴垂直,∴△PF1F2的重心的横坐标为a,由三角形的重心坐标公式可得a=,解得x0=3a,∴P(3a.2a),将P的坐标代入双曲线可得:-=1,即9-=1,化简得3a2=2c2,所以离心率e==.故选:A.根据双曲线的定义和切线长定理可得内心的横坐标,从而可得重心的横坐标,再根据重心的坐标公式可得x0=3a,再将P的坐标代入双曲线可得.本题考查了双曲线的性质,属难题.13.【答案】80【解析】解:在的展开式的通项公式为T r+1=•25-r•,令5-=4,可得r=2,可得x4的系数是•23=80,故答案为:80.在二项展开式的通项公式中,令x的幂指数等于4,求出r的值,即可求得x4的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】2或8【解析】解:抛物线y2=2px(p>0)上的一点M到x轴的距离为4,到焦点的距离为5,如图:可得|FQ|=3,所以p=5±|FQ|,所以P=2或8.故答案为:2或8.画出图形,利用抛物线的性质转化求解即可.本题考查抛物线的简单性质的应用,是基本知识的考查.15.【答案】16π【解析】解:如图,因为三棱柱ABC-A1B1C1是直三棱柱,且∠ABC=90°,设AB=a,BC=b,球的半径为r.连接AC1∩A1C=O,取AC的中点D,连接BD,则O到三棱柱六个顶点的距离相等,即O为三棱柱外接球的球心.OD=,又因为三棱锥O-ABC的体积为1,即,即,所以r==≥=2,当且仅当a=b时等号成立,所以球O表面积的最小值为S=4πr2=16π.故填:16π.设AB=a,BC=b,球的半径为r.连接AC1∩A1C=O,取AC的中点D,连接BD,则O到三棱柱六个顶点的距离相等,即O为三棱柱外接球的球心.OD=,三棱锥O-ABC的体积为1,即,即,表示出r,根据基本不等式可得r的最小值,从而得到球的表面积的最小值.本题借助直三棱柱的外接球,考查了基本不等式、球的表面积等.属于中档题.16.【答案】64、10、1、8.【解析】解:根据题意,正整数m经过6次运算后得到1,则正整数m经过5次运算后得到2,经过4次运算后得到4,经过3次运算后得到8或者1,分2种情况讨论:①,当经过3次运算后得到8时,经过2次运算后得到16,则经过1次运算后得到32或5,则m的值为64或10,②,当经过3次运算后得到1时,经过2次运算后得到2,则经过1次运算后得到4,则m的值为1或8;综合可得:m的值可能为64、10、1、8.故答案为:64、10、1、8.根据题意,利用正整数m经过6次运算后得到1,结合变化的规则,进行逐项逆推即可得答案.本题考查数列的应用,涉及归纳推理的应用,利用变换规则,进行逆向验证是解决本题的关键.17.【答案】解:(Ⅰ)设首项为a1,公比为q的递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.故:,解得:q=2或1(舍去),整理得:a1=3,所以:,(Ⅱ)数列{b n}满足b1=a2,b n+1=b n+a n,所以:b1=6.则:b n=(b n-b n-1)+(b n-1-b n-2)+…+(b2-b1)+b1,=a n-1+a n-2+…+a2+a1+b1,=,=3•2n-1+3所以:S n=b1+b2+…+b n=.【解析】(Ⅰ)利用已知条件求出数列的通项公式.(Ⅱ)利用叠加法求出数列的通项公式,进一步求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列通项公式的求法中的应用,数列的求和的应用,主要考察学生的运算能力和转换能力,属于基础题型.18.【答案】证明:(Ⅰ)∵PA⊥平面ABCVD,∴PA⊥CD,又AC⊥CD,CA∩PA=A,∴CD⊥平面PAC,∴∠DPC为PD与平面PAC所成角,在Rt△PAC中,tan∠DPC==,在Rt△PAC中,PC=,∴CD=,在Rt△ACD中,AD=2,∠CAD=60°,∵∠BCA=60°,∴在底面ABCD中,BC∥AD,AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.解:(Ⅱ)设BC的中点为N,连结AN,则AN⊥BC,由(Ⅰ)知BC∥AD,∴AN⊥AD,分别以AN,AD,AP为x,y,z轴,建立空间直角坐标系,则P(0,0,2),C(,,0),D(0,2,0),M(,-,1),则=(-,,0),=(0,2,-2),=(,,),设平面PCD的法向量为=(x,y,z),则,令y=1,=(,,),设平面CDM的法向量为=(x,y,z),则,令y=1,得=(,,),设二面角P-CD-M的平面角为θ,则cosθ===.故二面角P-CD-M的余弦值为.【解析】(Ⅰ)推导出PA⊥CD,CD⊥平面PAC,∠DPC为PD与平面PAC所成角,由此能证明BC∥平面PAD.(Ⅱ)设BC的中点为N,连结AN,则AN⊥BC,分别以AN,AD,AP为x,y,z 轴,建立空间直角坐标系,利用向时法能求出二面角P-CD-M的余弦值.本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,意在考查学生的转化能力和计算求解能力,是中档题.19.【答案】解:(Ⅰ)由题意可知,当X≥19,T=500×19=9500;当X<19,T=500×X-(19-X)×100=600X-1900,所以T与X的函数解析式为T=,,<,由题意可知,一个销售周期内甲市场需求量为8,9,10的概率分别为0.3,0.4,0.3;乙市场需求量为8,9,10的概率分别为0.2,0.5,0.3,设销售的利润不少于8900元的事件记为A,当X≥19,T=500×19=9500>8900,当X<19,600X-1900≥8900,解得X≥18,由题意可知,P(X=16)=0.3×0.2=0.06;P(X=17)=0.3×0.5+0.4×0.2=0.23;所以P(A)=P(X≥18)=1-0.06-0.23=0.71.(Ⅱ)当n=17时,E(T)=(500×16-1×100)×0.06+500×17×0.94=8464;当n=18时,E(T)=(500×16-2×100)×0.06+(500×17-1×100)×0.23+18×500×0.71=8790;因为8464<8790,所以应选n=18.【解析】(Ⅰ)先分2段求出T与X的函数关系式,再利用函数的解析式求得概率;(Ⅱ)计算两个期望比较大小,作出决策.本题考查了离散型随机变量的期望与方差,属中档题.20.【答案】解:(Ⅰ)由∠AF1B=60°,可得a=2b,由点,在C上,可得+=1,∴b2=1,a2=4,∴椭圆C的方程为+y2=1,(Ⅱ)联立,可得(1+4k2)x2+8kmx+4m2-4=0,∵直线l与椭圆相切,∴△=16(4k2+1-m2)=0,即4k2+1=m2,设P(x1,y1),可得x1==-,则y1==,∴|OP|2=+===4-又直线l与圆O相切,可得|OQ|=,则|OQ|2===4-∴|PQ|===,∴S△OPQ=|PQ|•|OP|=•=•=•≤,当且仅当k=1时取等号,此时m2=1+4=5,则m=±,故直线l的方程为y=x+或y=x-.【解析】(Ⅰ)由∠AF1B=60°,可得a=2b,由点在C上,可得+=1,解得b2=1,a2=4,即可求出椭圆方程,(Ⅱ)联立,根据判别式求出4k2+1=m2,即可求出点P的坐标,可得|OP|,再求出|OQ|,表示出三角形的面积,根据基本不等式即可求出.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,三角形面积公式与基本不等式的综合应用,考查计算能力,属于中档题.21.【答案】解:(Ⅰ)f′(x)=e2x+2×e2x=e2x,x>-1,令h(x)=-2x2+(2a-2)x+a-1,△=4(a2-1),当-1≤a≤1时,△≤0,则h(x)≤0,即f′(x)≤0,∴f(x)在(-1,+∞)上单调递增,当a<-1或a>1时,此时△>0,设h(x)=0的两根为x1,x2,且x1<x2,则x1=,x2=,若a<-1,可知x1<-1<x2,则x∈(x2,+∞),f′(x)<0,x∈(-1,x2),f′(x)>0,若a>1,可知-1<x1<x2,则x∈(-1,x1),(x2,+∞),f′(x)<0,x∈(x1,x2),f′(x)>0,综上所述,当a<-1时,f(x)在(,+∞)上单调递减,在(-1,)上单调递增,(,+∞)上单调递减,在(,)当a>1时,f(x)在(-1,),上单调递增,证明:(Ⅱ)>,∴g′(x)====,由(Ⅰ)可知当a=1时,f(x)=e2x在(0,+∞)单调递减,且f(0)=1,f(1)=0,∴对任意m∈[0,1),存在唯一x m∈(0,1],使f(x m)=m,(反之对任意x m(0,1]存在唯一m∈[0,1),f(x m)=m),∴当x∈(0,x m)时,f(x)>m,此时g′(x)>0,函数g(x)在(0,x m)上单调递增,当x∈(x m,+∞)时,f(x)<m,此时g′(x)<0,函数g(x)在(x m,+∞)上单调递减,∴当x=x m时,g(x)取得最大值,即最大值h(m)=g(x m)====令p(x)=e2x,p′(x)=-e2x≤0,(0<x≤1),∴p(x)在(0,1]上单调递减,∴p(1)≤h(m)<p(0),即-e2≤h(m)<-2,∴h(m)的值域为[-e2,-2).【解析】(Ⅰ)先求导,再分类讨论,根据导数和函数单调的关系即可求出,(Ⅱ)先求导,g′(x)=,由(Ⅰ)可知当a=1时,构造函数,再根据导数和函数最值的关系即可证明.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.22.【答案】解:(Ⅰ)曲线C2的极坐标方程为ρsin(θ+)=3,可得C2的直角坐标方程为:x+-6=0,即曲线C2为直线.曲线C1是圆心为(2,0),半径为|r|的圆.因为圆C1与直线C2恰有一个公共点,可得|r|==2,圆C1的普通方程为x2+y2-4x=0,所以C1的极坐标方程为ρ=4cosθ.(Ⅱ)由题意可设A(ρ1,θ),B(ρ2,θ+),(ρ1>0,ρ2>0),S△AOB=|OA||OB|sin=ρ1ρ2=4cosθcos(θ+)=4(cos2θ-sinθcosθ)=4(-)=2+2cos(2θ+),所以△AOB面积的最大值为2+2.【解析】(Ⅰ)消参可得C1的普通方程,再根据互化公式可得C1的极坐标方程.(Ⅱ)根据极径的几何意义和三角形面积公式可得面积,再根据三角函数的性质可得最大值.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】(Ⅰ)证明:正实数a,b满足a+b=2,则=2(a+b)+2+2•≤6+2(a+b)+2=12,∴;(Ⅱ)解:对任意正实数a,b,有a+b≥2,所以2≤2,即ab≤1,当且仅当a=b 时取“=”;所以对任意a、b∈R+,不等式|x+1|-|x-3|≥ab恒成立,即|x+1|-|x-3|≥1恒成立;若x≤-1,则不等式化为-x-1-(3-x)≥1,即-4≥1,不等式无解;若-1<x<3,则不等式化为x+1-(3-x)≥1,解得≤x≤3;若x≥3,则不等式化为x+1-(x-3)≥1,即4≥1,不等式恒成立;综上,实数x的取值范围是[,+∞).【解析】(Ⅰ)根据题意,利用完全平方公式和基本不等式,即可证明;(Ⅱ)利用基本不等式得出ab≤1,把问题转化为|x+1|-|x-3|≥1恒成立,再利用分段讨论法求出不等式的解集.本题考查了基本不等式应用问题,也考查了不等式恒成立应用问题,是中档题.。
2019年最新(统考)江西省百所重点高中高考数学模拟试卷(理科)及答案解析

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
19.如图,在三棱锥ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,△A1AC为等边三角形,AC⊥A1B.
(1)求证:AB=BC;
(2)若∠ABC=90°,求A1B与
6.函数f(x)=sin(πx+θ)(|θ|< )的部分图象如图,且f(0)=﹣ ,则图中m的值为( )
A.1B. C.2D. 或2
7.在公差大于0的等差数列{an}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1an}的前21项和为( )
A.21B.﹣21C.441D.﹣441
A. B. C. D.
【考点】A5:复数代数形式的乘除运算.
【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.
【解答】解:复数z=a+bi(a,b∈R,b>0),且 ,
8.中国古代数学名著《九章算术》卷第五“商功”共收录28个题目,其中一个题目如下:今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺,问积几何?其译文可用三视图来解释:某几何体的三视图如图所示(其中侧视图为等腰梯形,长度单位为尺),则该几何体的体积为( )
A.3795000立方尺B.2024000立方尺
(1)求不等式f( )<6的解集;
(2)若k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,求k的取值范围.
江西省百所重点高中高考数学模拟试卷(理科)
参考答案与试题解析
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
2019年全国2卷省份高考模拟理科数学分类--数列

2019年全国2卷省份高考模拟理科数学分类----数列1.(2019重庆市理科模拟)已知等差数列{a n}的前n项和为S n,若S11=22,则a3+a5+a10=()A.2B.3C.6D.12【分析】由等差数列{a n}的前n项和为S n,S11=22,求出a6=2,再由a3+a5+a10=3a6,能求出结果.【解答】解:∵等差数列{a n}的前n项和为S n,S11=22,∴=11a6,=22,解得a6=2,∴a3+a5+a10=3a6=6.故选:C.【点评】本题考查等差数列的三项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2.(2019青海西宁四中理科模拟)已知正项数列是公差为2的等差数列,且,9,成等比数列.求数列的通项公式;求数列的前n项和.【答案】解:因为数列是公差为2的等差数列,所以,则,又,9,成等比数列,所以,解得或,因为数列为正项数列,所以.所以,故.由得,所以,所以,,故.【解析】利用已知条件求出数列的首项,然后求解数列的通项公式.利用错位相减法求解数列的和即可.本题考查数列的通项公式以及数列求和,错位相减法的应用,考查计算能力.3.(2019大连重点校协作体理科模拟)已知数列{a n}的前n项和为S n,且a n>0,,若不等式.对任意的n∈N*恒成立,则k的取值范围是.【分析】先用两式相减的方法消去S n,求出a n,再代入已知求出S n.然后将恒成立问题转化为最值问题,最后利用数列的单调性求出最值即可.【解答】解:依题意得当n=1时,2a1=a12+a1,由于a n2>0,解得a1=1;当n≥2时,2S n﹣1=a n﹣12+a n﹣1,因此有:2a n=a n2﹣a n﹣12+a n﹣a n﹣1;整理得:a n﹣a n﹣1=1,所以数列{a n}是以a1=1为首项,公差d=1的等差数列,因此a n=n,S n=,由2S n+9≥(﹣1)n ka n(n∈N*)得:n2+n+9≥(﹣1)n kn(n∈N*),则有n++1≥(﹣1)n k(n∈N*),令c n=n++1,则c n﹣c n﹣1=1+﹣=,易得当n≤3时,c n<c n﹣1,当n≥4时,c n>c n﹣1;所以有c1>c2>c3=7<c4=7.25<c5<…(1)当n为偶数时,n++1≥k,∴k≤7.25,(2)当n为奇数时,n++1≥﹣k,∴k≥﹣7,综上所述,k的取值范围是[﹣7,7.25].故答案为:[﹣7,7.25].【点评】本题是数列与不等式的综合,考查了等差数列、数列的单调性,属难题.4.(2019吉林省四平一中理科模拟)若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为,故选:D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.5.(2019吉林省四平一中理科模拟)设为等差数列的前项和,若,则的最小值为()A. B. C. D.【答案】A【分析】将用表示,解方程组求得,再设函数求导求得的最小值即可.【详解】∵解得∴设当0<x<7时,当x>7时,,故的最小值为f(7)=-343.故选:A.【点睛】本题考查等差数列通项及求和,考查函数的思想,准确记忆公式,熟练转化为导数求最值是关键,是中档题.6(2019吉林长春市理科模拟).设是各项均不为0的等差数列的前项和,且,则等于()A. 1 B. 3 C. 7 D. 13【答案】C【分析】先由题意可得,进而可求出结果.【详解】因为是各项均不为0等差数列的前项和,且,所以,即,所以.故选C【点睛】本题主要考查等差数列前项和的相关计算,熟记前项和公式以及性质即可,属于基础题型.7.(2019吉林长春市理科模拟)已知数列满足:,点在直线上. (Ⅰ)求,,的值,并猜想数列的通项公式;(Ⅱ)用数学归纳法证明(Ⅰ)中你的猜想.【答案】(Ⅰ);.(Ⅱ)见解析.【分析】(Ⅰ)点在直线上得出与的递推关系,从而得出,,的值,再由特殊到一般,猜想出一般性结果;(Ⅱ)根据数学归纳法原理证明(Ⅰ)的猜想。
2019 年高考新课标卷理科数学仿真模拟试题(二)

理科数学试题 第 3 页(共 8 页)
18. (本小题 12 分) 设数列 {an } 满足 3a1 32 a2
3n an n (n N * ) .
(1 )求数列 {an } 的通项公式; (2 )设 anbn n ,求数列化 {bn } 的前 n 项和.
理科数学试题 第 4 页(共 8 页)
sin B sin A 2a c , 若 将 函数 sin C ab
k >a
f ( x) 2sin(2 x B) 的图像向右平移
8
个单位长度,得到函数 g ( x) 的图 )
输出 S
像,则 g ( x) 的解析式为(
k =k +1
开始
2 A. 2sin 2 x 3
6 4
15. 等腰三角形 ABC 边长为腰长 3,底边 BC 长为 4,将它沿高 AD 翻折,使点 B 与点 C 间的 距离为 2,此时四面体 ABCD 外接球表面积为____________. 16. 已知函数 f ( x) x 2 e x a , g ( x) ln( x 2) 9e x a ,其中 e 为自然对数的底数,若存在实 数 x0 ,使 f ( x0 ) g ( x0 ) 7 成立,则实数 a 的值为____________ . 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。 17. (本小题 10 分) 已知函数 f ( x) 2 3 sin x cos x 2sin 2 x 2 .
(1 )当 x 0, 时,求函数 f ( x) 的值域; 2
( 2 ) 若 三 角 形 ABC 的 内 角 A , B , C 的 对 边 分 别 为 a , b , c , 且 满足
2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。
2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。
1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。
2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。
已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。
6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。
设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。
若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。
e)。
11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。
现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。
2019年普通高等学校招生全国统一考试高考模拟调研卷—理科数学(二)附参考答案

2019年普通高等学校招生全国统一考试高考模拟调研卷理科数学(二)理科数学测试卷共4页。
满分150分。
考试时间120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.(1) 集合{1012}M =-, , , ,集合{0246}N =, , , ,则=N M I(A ){11}-,(B ){1012}-, , , (C ){0246}, , , (D ){02},(2) 设1i +是方程20()x ax b a b R ++=∈,的一个根,则 (A )11a b ==,(B )22a b ==-,(C )22a b =-=, (D )21a b =-=-,(3) 已知A B , 两组数据如茎叶图所示,它们的平均数相同且2x y =,若将A B , 两组数据合在一起,得到的这组新数据的中位数是 (A )23 (B )24 (C )23.5 (D )24.5(4) 设x 、y 满足约束条件2022030x y x y x -+⎧⎪+-⎨⎪-⎩≥≥≤,则2z x y =-的最大值为(A )1 (B )2(C )10(D )12(5) 若向量a b r r , 满足(2)a b a +⊥r r r ,()a b b +⊥r r r,则a r 与b r 的夹角为(A )45︒(B )60︒(C )120︒(D )135︒(6) 在ΔABC中,sincos 225C C =,10AB =,AC =BC = (A )5(B )8(C )11(D )5或11(7)命题:0p x ∀>;命题2:e 5x x q x R ∃∈=, (e 为自然对数的底数),则下列命题为真命题的是 (A )p q ∧(B )p q ⌝∨(C )p q ⌝∧ (D )p q ∨A 组B 组x1 46 4 2y9(8) 给图中的A B C D , , , 四块区域涂色,且相邻(有公共边的)区域不同色,现有四种不同颜色可供选用,则所有不同的涂色方法种数是 (A )36 (B )54 (C )84 (D )120(9) 执行如图所示的程序框图,若输入28=A ,6=B ,则输出的结果是 (A )2 (B )4 (C )6(D )28(10)已知椭圆22221(0)x y a b a b +=>>的右顶点、上顶点、右焦点分别为A B F , , ,22(1)BF BA a b ⋅=+-u u u r u u u r,则该椭圆的离心率为(A )2 (B )2 (C )12(D )4(11)已知0ab >,22a b ab +=,则21a b a b+++的最小值为 (A )34 (B )1 (C )54(D )32(12)已知()3sin 2cos f x x x x =++,当1a b +=时,不等式()(0)()(1)f a f f b f +>+恒成立,则实数a 的取值范围是 (A )(0)-∞,(B )1(0)2,(C )1(1)2,(D )(1)+∞,第Ⅱ卷本卷包括必考题和选考题两部分。
2019年陕西省高考数学全真模拟理科试卷(三)
2019年陕西省高考数学全真模拟理科试卷(三)第Ⅰ卷 选择题(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.设集合{}22265A x x x x =--≥-,{}2B x x =>-,则A B =U ( ) A .()2,1-- B .(]2,1-- C .()5,-+∞ D .[)5,-+∞ 2.若复数15i32iz +=+,则z =( ) A .1 B.23.已知R 上的奇函数()f x 满足:当0x <时,()()2log 1f x x =-,则()()7f f =( ) A .1 B .-1 C .2 D .-24.某中学有高中生3000人,初中生2000人,男、女生所占的比例如下图所示.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取女生21人,则从初中生中抽取的男生人数是( )A .12B .15C .20D .215.已知0,2πα⎛⎫∈ ⎪⎝⎭,sin 10α=,则tan 24πα⎛⎫+= ⎪⎝⎭( )A .17 B .17- C .7 D .-7 6.已知实数,x y 满足42047020x y x y x y ++≥⎧⎪+-≤⎨⎪-+≥⎩,则5z x y =-+的最大值与最小值之和为( )A .-21B .-2C .-1D .17.将函数()1cos 22f x x =-的图象向右平移6π个单位长度后,再将图象上各点的纵坐标伸长到原来的2倍,得到函数()y g x =的图象,则34g π⎛⎫=⎪⎝⎭( )A .2 B .2-.12- D .128.已知三棱锥P ABC -中,AB ⊥平面APC ,AB =PA PC ==2AC =,则三棱锥P ABC -外接球的表面积为( )A .28πB .36πC .48πD .72π9.下图的程序框图的算法思路源于我国古代数学名著《数书九章》中的“中国剩余定理”.已知正整数n 被3除余2,被7除余4,被8除余5,求n 的最小值.执行该程序框图,则输出的n =( )A .50B .53C .59D .6210.某几何体的三视图如图所示,其中圆的半径均为1,则该几何体的体积为( )A .42083π+B .42163π+C .322083π+D .322163π+ 11.已知双曲线()2222:10,0x y C a b a b -=>>的离心率e =对称中心为O ,右焦点为F ,点A 是双曲线C 的一条渐近线上位于第一象限内的点,AOF OAF ∠=∠,OAF ∆的面积为C 的方程为( )A .2213612x y -= B .2213x y -= C .22193x y -= D .221124x y -= 12.设实数0m >,若对任意的e x ≥,不等式2ln e 0m xx x m -≥恒成立,则m 的最大值是( )A .1eB .e3 C .2e D .e第Ⅱ卷 非选择题(共90分)二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分)13.已知,函数在上单调递减,则的取值范围是 ;14.如右图,输入正整数,m n ,满足n m ≥,则输出的p = ;15.若直线l :1y kx =+被圆C :22x y 2x 30+--=截得的弦最短,则k= ;0ω>()sin()4f x x πω=+(,)2ππω16.将全体正整数排成如图的一个三角形数阵,按照此排列规律,第10行从左向右的第5个数为 .三.解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分)17.(本小题共12分)从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(Ⅰ)求从该批产品中任取1件是二等品的概率p ;(Ⅱ)若该批产品共20件,从中任意抽取2件,X 表示取出的2件产品中二等品的件数,求X 的分布列与期望.18.(本小题共12分)已知数列{n a }中,n S 为其前n 项和,且12a a ≠,当n N +∈时,恒有n n S pna =(p 为常数).(Ⅰ)求常数p 的值;(Ⅱ)当22a =时,求数列{n a }的通项公式;(Ⅲ)设14(2)n n n b a a +=+,数列{}n b 的前n 项和为n T ,求证:74n T <.19.(本小题共12分)四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知∠ABC =45°,AB =2,BC =22,SA =SB =3.(Ⅰ)求证:SA ⊥BC ;(Ⅱ)求直线SD 与平面SAB 所成角的正弦值.20.(本小题共12分)已知定点(1,0)C -及椭圆2235x y +=,过点C 的动直线与该椭圆相交于,A B 两点.(Ⅰ)若线段AB 中点的横坐标是12-,求直线AB 的方程; (Ⅱ)在x 轴上是否存在点M ,使MA MB ⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由.21.(本小题共12分)(Ⅰ)已知正数1a 、2a 满足121a a +=,求证:121222l o g l o g 1a a a a +≥-;(Ⅱ)若正数1a 、2a 、3a 、4a 满足12341a a a a +++=, 求证:121222323424log log log log 2a a a a a a a a +++≥-.请考生从第22、23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程已知椭圆C :1162422=+y x ,直线l :1128x y +=, (I )以原点O 为极点,x 轴正半轴为极轴建立极坐标系,求椭圆C 与直线l 的极坐标方程;(II )已知P 是l 上一动点,射线OP 交椭圆C 于点R ,又点Q 在OP 上且满足2OR OP OQ =⋅.当点P 在l 上移动时,求点Q 在直角坐标系下的轨迹方程.23.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2||5|f x x x =---. (I )证明:3()3f x -≤≤;(II )求不等式:2()814f x x x ≥-+的解集.2019年陕西省高考数学全真模拟理科试卷(三)参考答案一.选择题:1-5:DBCAC 6-10:CABBA 11、12:CD二.填空题:13.15,24⎡⎤⎢⎥⎣⎦, 14.mn A , 15.1, 16.50.三、解答题: 17.【解】:(Ⅰ)210.960.2p p -=⇔=.(Ⅱ)∵该批产品共20件,由(Ⅰ)知其二等品有200.24⨯=件, 显然X=0,1,2.故216220C 12(0)C 19P X ===.11164220C C 32(1)C 95P X ===.24220C 3(2)C 95P X ===.所以X 的分布列为∴EX=389518.【解】:(Ⅰ)当1n =时,11a S =,∴11a pa =,1p ⇒=或10a =当1p =时,n n S na =则有221221222S a a a a a a =⇔+=⇔=与已知矛盾, ∴1p ≠,只有10a =.当2n =时,由2212222S pa a a pa =⇔+=,∵10a =又12a a ≠∴20a ≠∴12p =(Ⅱ)∵22a =,12n n S na =,当2n >时,11122n n n n n n n a S S a a ---=-=- 11(2)(1)12n n n n a a n a n a n n ---=-⇔=--,∴22211n n a aa n n =⇔=--当1121202 2.n n a a n ==⨯-=∴=-时,也适合。
湖北省2019年四月高考模拟调考试理科数学答案
湖北省2019年四月高考模拟调研考试理科数学参考答案一、选择题123456789101112DDBBCACCCACB二、填空题13.84-;14.2;15.439433或;16.x y 242=;三、解答题17.解:(1)当2≥n 时,由11--n S ,n S ,1+n S 成等差数列得:1112+-+-=n n n S S S ,即n n n n S S S S -+-=-+-111,即)2(11≥+-=+n a a n n ,则)2(11≥=-+n a a n n ,又112=-a a ,故{}n a 是公差为1的等差数列;……6分(2)由(1)知数列{}n a 公差为1,由0=n S ,41=+n S 得41=+n a ,即41=+n a ,由0=n S 得02)1(1=-+n n na ,即0211=-+n a ,联立解得:7=n .……12分18.解:(1)由3=AB ,4=BC ,5=AC 知222AC BC AB =+,则BC AB ⊥,由⊥PA 面ABCD ,⊂BC 面ABCD 得BC PA ⊥,由A AB PA = ,PA ,⊂AB 面PAB ,则PAB BC 面⊥,则点C 到平面PAB 的距离为一个定值,4=BC ;……4分(2)由⊥PA 面ABCD ,AB 为PB 在平面ABCD 上的射影,则PAB ∠为直线PB 与平面ABCD 所成的角,则 45=∠PAB ,所以3==AB PA .由BC AD //,BC AB ⊥得AD AB ⊥,故直线AB 、AD 、AP 两两垂直,因此,以点A 为坐标原点,以AB 、AD 、AP 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,易得)3,0,0(P ,)0,3,0(D ,)0,4,3(C ,于是)3,3,0(-=DP ,)0,1,3(=DC ,设平面PDC 的法向量为),,(1z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅0011DC n DP n ,即⎩⎨⎧=+=+-03033y x z y ,取1=x ,则3-=y ,3-=z ,于是)3,3,1(1--=n ;显然)0,0,1(2=n 为平面PAD 的一个法向量,于是,1919)3()3(11222=-+-+==n n .……11分分析知,二面角C PD A --的余弦值为1919-.……12分19.解:(1)由题意知:⎪⎩⎪⎨⎧-=-=3223a c a c ,解得⎩⎨⎧==23a c ,由1222=-=c a b ,知椭圆的方程为:1422=+y x .……4分(2)设),(11y x A ,),(22y x B ,),1(t P ,若直线AB 与x 轴不重合时,设直线AB 的方程为1+=my x ,代入椭圆方程整理得:032)4(22=-++my y m ,显然0>∆,则42221+-=+m m y y ,43221+-=m y y ,22112111x y t x y t k k --+--=+)1)(1()1)(()1)((211221x x x y t x y t ----+--=))(())(())((211221my my my y t my y t ----+--=2121212)(y my y y y y t ++-=43(43242222+-⋅+-⋅++-⋅-=m m m m m t 02332362km t m mt =--⋅=--=若直线AB 与x 轴重合时,则)0,2(-B ,)0,2(A ,)0,4(N ,此时t t t k k 321321-=-+=+,而t k 320-=,故0212k k k =+;综上所述,存在实数2=λ符合题意。
2019年高考全国卷一理科数学模拟卷及答案解析
2019年高考全国卷一理科数学模拟卷一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1、设全集{|0}U x R x =∈>,函数()ln 1f x x =-定义域为A ,则为( )A. (0,]eB. ()0,eC. (),e +∞D. [e,)+∞2、①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%的学生进行调查;②一次数学月考中,某班有10人在100分以上,32人在90~100分,12人低于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加4100?m ⨯接力赛的6支队伍安排跑道.就这三件事,恰当的抽样方法分别为( )A.分层抽样、分层抽样、简单随机抽样B.系统抽样、系统抽样、简单随机抽样C.分层抽样、简单随机抽样、简单随机抽样D.系统抽样、分层抽样、简单随机抽样3、我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )A.多1斤B.少1斤C.多13斤 D.少13斤 4、不等式组11x y x y ⎧+≤⎪⎨-≤⎪⎩表示的平面区域内整点的个数是( )A.0B.2C.4D.55、设四边形ABCD 为平行四边形, 6AB =,4AD =.若点,M N 满足3BM MC =,2DN NC =,则AM NM ⋅= ( )A.20B.15C.9D.66、一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( )A. B. 4C.D. 7、当输人的实数[]2,30x ∈时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A.914 B. 514C.37D. 928 8、已知定义在R 上的奇函数f ()x 满足(2)()f x e f x +=- (其中 2.7182?e =⋯),且在区间[,2]e e 上是减函数,令ln 2ln 3ln 5,,235a b c ===,则(),(),()f a f b f c 的大小关系(用不等号连接)为( )A. ()()()f b f a f c >>B. ()()()f b f c f a >>C. ()()()f a f b f c >>D. ()()()f a f c f b >>9、设函数()61,0,0,x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪≥⎩则当0x >时, ()f f x ⎡⎤⎣⎦表达式的展开式中常数项为( )A. 20-B. 20C. 15-D. 1510、在四面体ABCD 中, BCD ∆与ACD ∆均是边长为4的等边三角形,二面角A CD B --的大小为60,则四面体ABCD 外接球的表面积为( ) A.2089π B. 529π C. 643π D. 523π11、设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线右支上存在一点P ,使()220OP OF F P +⋅= (O 为坐标原点),且123PF PF =,则双曲线的离心率为()A. 121112、已知函数()x f x e ax b =--,若()0f x ≥恒成立,则ab的最大值为( )B. 2eC. eD. 2e 二、填空题:本题共4小题,每小题5分,共20分.13、已知i 是虚数单位, 1z i =+,z 为z 的共轭复数,则复数2z z在复平面内对应的点的坐标为__________.14、抛物线22(0)y px p =>的焦点为F ,准线为l ,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB 的中点M 在l 上的投影为N ,则MN AB的最大值是__________. 15、已知数列 {}n a 满足: 1112,2,n n n n n a a a a a a a +≥⎧=⎨+<⎩*()n N ∈若33a =,则1a =__________ 16、设函数()()cos 06f x x ωωπ⎛⎫=-> ⎪⎝⎭,若()4f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,则ω的最小值为__________三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答.17、已知在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且cos cos 3sin B C A b c C+= 1.求b 的值。
2019年河南省六市高考数学二模试卷(理科)(解析版)
2019年河南省六市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={(x,y)|y=x+1,x∈Z},集合B={y|y=2x,x∈Z},则集合A∩B等于()A. B. C. D.2.若复数z满足(3-4i)z=|3-4i|,则z的虚部为()A. B. C. 4 D.3.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学生中抽取30人进行调查.现将2400名学生随机地从1~2400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2321~2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是()A. 416B. 432C. 448D. 4644.若等差数列{a n}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和S n取最小值时,n的值等于()A. 7B. 6C. 5D. 45.设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P()A. 仅有一个B. 有有限多个C. 有无限多个D. 不存在6.已知Rt△ABC,点D为斜边BC的中点,,,,则等于()A. B. C. 9 D. 147.设变量x,y满足不等式组,则z=|x-y-4|的最大值为()A. B. C. D. 68.函数f(x)=的大致图象为()A.B.C.D.9.设实数a,b,c分别满足,b lnb=1,3c3+c=1,则a,b,c的大小关系为()A. B. C. D.10.在直角坐标系xOy中,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ于点M,若M是线段PF 的中点,则椭圆C的离心率为()A. B. C. D. 11.在数列{a n}中,已知a1=1,且对于任意的m,n∈N*,都有a m+n=a m+a n+mn,则=()A. B. C. D.12.已知函数f(x)=sin2x的图象与直线2kx-2y-kπ=0(k>0)恰有三个公共点,这三个点的横坐标从小到大依次为x1,x2,x3,则(x1-x2)tan(x2-2x3)=()A. B. C. 0 D. 1二、填空题(本大题共4小题,共20.0分)13.已知tan(x+)=2,x是第三象限角,则cos x=______.14.《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率______.15.抛物线y2=4x的焦点为F,其准线为直线l,过点M(5,2)作直线l的垂线,垂足H,则∠FMH的角平分线所在的直线斜率是______.16.我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何”,羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图粗线所示,其中小正方形网格的边长为1,则该羡除的体积为______.三、解答题(本大题共7小题,共84.0分)17.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足sin2A+sin A sin B-6sin2B=0.(1)求的值;(2)若cos C=,求sin B的值.18.如图,四棱锥P-ABCD,AB∥CD,∠BCD=90°,AB=2BC=2CD=4,△PAB为等边三角形,平面PAB⊥平面ABCD,Q为PB中点.(1)求证:AQ⊥平面PBC;(2)求二面角B-PC-D的余弦值.19.为评估M设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到如表:(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ-σ<X<μ+σ)≥0.6826;②p(μ-2σ<X<μ+2σ)≥0.9544;③p(μ-3σ<X<μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断M设备的性能等级.(2)将直径小于等于μ-2σ的零件或直径大于等于μ+2σ的零件认定为是“次品”,将直径小于等于μ-3σ的零件或直径大于等于μ+3σ的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数ξ的数学期望.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.21.已知函数f(x)=e x(2x-1),g(x)=ax-a(a∈R).(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;(2)已知a<1,若存在唯一的整数x0,使得f(x0)<g(x0),求a的取值范围.22.在直角坐标系xOy中,抛物线C的方程为y2=4x.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的倾斜角.23.已知函数f(x)=|x-1|+|2x+m|(m∈R).(1)若m=2时,解不等式f(x)≤3;(2)若关于x的不等式f(x)≤|2x-3|在x∈[0,1]上有解,求实数m的取值范围.答案和解析1.【答案】D【解析】解:由题可得:集合A是点集,集合B是数集,所以A∩B=∅.故选:D.由题可得:集合A是点集,集合B是数集,由交集概念即可得解.本题主要考查了集合的表示及交集运算,属于基础题.2.【答案】B【解析】解:∵(3-4i)z=|3-4i|,∴z==.∴z的虚部为:.故选:B.整理(3-4i)z=|3-4i|得:z=,由复数的基本概念得答案.本题主要考查了复数的模及复数的除法运算,还考查了复数的有关概念,考查计算能力,属于基础题.3.【答案】A【解析】解:样本间隔为2400÷30=80,设首个号码为x,则第三.第四个号码为x+160,x+240,则x+160+x+240=2x+400=432,得2x=32,x=16,则第6组抽到的号码为16+80×5=400+16=416,故选:A.先求出样本间隔,设出首个号码x,建立方程组求出x,利用系统抽样的定义进行求解即可.本题主要考查系统抽样的应用,根据样本间隔,结合条件求出首个号码是解决本题的关键.4.【答案】B【解析】解:由a5是a2与a6的等比中项,可得a52=a2a6,由等差数列{a n}的公差d为2,即(a1+8)2=(a1+2)(a1+10),解得a1=-11,a n=a1+(n-1)d=-11+2(n-1)=2n-13,由a1<0,a2<0,…,a6<0,a7>0,…可得该数列的前n项和S n取最小值时,n=6.故选:B.由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.5.【答案】A【解析】解:设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,故选:A.设P是正方体ABCD-A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P是正方体的中心,即可得出结论.本题考查点面距离,考查学生分析解决问题的能力,比较基础.6.【答案】D【解析】解:如图,分别以边AC,AB所在直线为x,y轴,建立平面直角坐标系,则:;;∴=;∴=,,;∴.故选:D.可分别以直线AC,AB为x,y轴,建立平面直角坐标系,根据条件便可求出点A,B,C,D的坐标,进而求出点E的坐标,从而得出向量的坐标,这样进行数量积的坐标运算即可求出的值.考查建立平面直角坐标系,通过坐标解决向量问题的方法,能求平面上点的坐标,以及向量数乘的几何意义,数量积的坐标运算.7.【答案】D【解析】解:作出不等式组表示的平面区域如下:作出直线l:x-y-4=0,当l往上平移时,x-y-4变小,当直线l经过点B(,)时,x-y-4最大,当直线l经过点C(1,3)时,x-y-4最小.即:1-3-4≤x-y-4≤,所以-6≤x-y-4≤-,所以,所以z=|x-y-4|的最大值为6.故选:D.作出不等式组表示的平面区域,利用线性规划知识求得-6≤x-y-4≤-,问题得解.本题主要考查了利用线性规划知识求目标函数的最值,考查了数形结合思想及转化能力,属于中档题.8.【答案】C【解析】解:函数f(x)=,当x=0时,y=-3,排除选项A,B,D.即可判断选项C正确,故选:C.利用特殊值对应点的坐标排除选项,判断即可.本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.9.【答案】B【解析】解;因为,所以a=,又因为blnb=1>0,所以lnb>0,所以b>1,又因为f(x)=3x3+x-1在R上为增函数,又f(1)=3>0,f ()=-1<0,又f(c)=0,由函数零点定理可得:,即b>c>a,故选:B.由对数不等式得求法得:blnb=1>0,所以lnb>0,所以b>1,由函数的零点定理得:因为f(x)=3x3+x-1在R上为增函数,又f(1)=3>0,f()=-1<0,又f(c)=0,由函数零点定理可得:,得解.本题考查了解对数不等式及函数的零点定理,属中档题.10.【答案】C【解析】解:可令F(-c,0),由x=-c,可得y=±b =±,由题意可设P(-c,),B(a,0),可得BP的方程为:y=-(x-a),x=0时,y=,E(0,),A(-a,0),则AE的方程为:y=(x+a),则M(-c,-),M是线段QF的中点,可得2•(-)=,即2a-2c=a+c,即a=3c,可得e==.故选:C.利用已知条件求出P的坐标,然后求解E的坐标,推出M的坐标,利用中点坐标公式得到双曲线的离心率即可.本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.11.【答案】C【解析】解:数列{a n}中,已知a1=1,且对于任意的m,n∈N*,都有a m+n=a m+a n+mn,则:a2=a1+a1+1×1=3=1+2,a3=a1+a2+1×2=6=1+2+3,…,a n=1+2+3+…+n=,所以:,所以:=,=2(),=,=.故选:C.首先利用赋值法求出数列的通项公式,进一步利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.12.【答案】B【解析】解:由题意得直线2kx-2y-kπ=0(k>0)过定点(,0),且斜率k>0,由对称性可知,直线与三角函数图象切于另外两个点,所以x3+x1=π;x2=,f′(x)=2cos2x,则切线方程过点(x1,sin2x1),(x2,sin2x2),所以2(2x3-π)cos2x3=2sin2x3,,而(x1-x2)tan(x2-2x3)=(-x3)tan (-2x3)=(π-2x3)cot2x3=-.故选:B.求出直线恒过的定点,利用函数的导数求出切线方程,转化求解表达式的值即可.直线与曲线相切一般要应用三点,一是曲线在切点处的导数是切线的斜率,二是切点即在曲线上也在切线上,三是没有切点要设切点.本就用到了上面三点,然后再配求所求式子的结构.13.【答案】【解析】解:因为tan(x+)=2,所以=2,解得:tanx=,即:sinx=cosx,又sin2x+cos2x=1,所以cos2x=,又x是第三象限角,所以cosx=-.故答案为:-.由两角和的正切公式即可求得tanx=,结合sin2x+cos2x=1,即可求得cos2x=,问题得解.本题主要考查了两角和的正切公式及同角三角函数基本关系,考查计算能力,属于基础题.14.【答案】【解析】解:从八卦中任取两卦,共有=28种取法,若两卦的六根线中恰有三根阳线和三根阴线,可按取得卦的阳、阴线的根数分类计算;当有一卦阳、阴线的根数为3、0时,另一卦阳、阴线的根数为0、3,共有1种取法.当有一卦阳、阴线的根数为2、1时,另一卦阳、阴线的根数为1、2,共有3×3=9种取法.所以两卦的六根线中恰有三根阳线和三根阴线的取法有1+9=10种.则从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率为P=,故答案为:由图可得:三根都是阳线的有一卦,三根都是阴线的有一卦,两根阳线一根阴线的有三卦,两根阴线一根阳线的有三卦,利用组合数可得基本事件总数,分类利用计算原理求得符合要求的基本事件个数为10个,问题得解.本题主要考查了组合计数及分类思想,考查古典概型概率计算公式,属于中档题.15.【答案】【解析】解:连接HF,因为点M在抛物线y2=4x上,所以由抛物线的定义可知|MH|=|MF|,所以△MHF为等腰三角形,所以∠FMH的角平分线所在的直线经过HF的中点,因为F(1,0),H(-1,),所以HF的中点为(0,),所以∠FMH的角平分线的斜率为=.故答案为:.由抛物线定义可知|MH|=|MF|,进而可推断出∠FMH的角平分线所在的直线经过HF的中点,利用斜率的两点式即可得到结论.在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用.抛物线定义有两种用途:一是当已知曲线是抛物线时,抛物线上的点M满足定义,它到准线的距离为d,则|MF|=d,可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.16.【答案】24【解析】解:由三视图还原原几何体如图所示,在长宽高分别为6,3,4的长方体中,A1E=D1F=2,BG=CH=1,三视图所对应的几何体是多面体AEG-DHF,该组合体是由一个三棱锥和一个四棱锥组成的组合体,其体积: V=V E-AGHD +V H-EFD=.故答案为:24.首先确定几何体的空间结构特征,然后将其分割之后求解其体积即可.本题考查求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,训练了利用分割补形法求解多面体的体积,是中档题. 17.【答案】解:(1)因为sin 2A +sin A sin B -6sin 2B =0,sin B ≠0,所以( )2+ -6=0,得 =2或=-3(舍去).由正弦定理得 ==2. (2)由余弦定理得cos C ==.① 将=2,即a =2b 代入①,得5b 2-c 2=3b 2,得c = b .由余弦定理cos B =,得:cos B ==,则sin B = =.【解析】(1)由已知可得()2+-6=0,解方程可得=2,由正弦定理得=2.(2)由已知及余弦定理可求c=b ,进而可求cosB 的值,根据同角三角函数基本关系式可求sinB 的值.本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18.【答案】证明:(1)因为AB ∥CD ,∠BCD =90°, 所以AB ⊥BC ,又平面PAB ⊥平面ABCD ,且平面PAB ∩平面ABCD =AB , 所以BC ⊥平面PAB ,(1分)又AQ ⊂平面PAB ,所以BC ⊥AQ ,(2分)因为Q 为PB 中点,且△PAB 为等边三角形,所以PB ⊥AQ ,(3分) 又PB ∩BC =B ,所以AQ ⊥平面PBC .(4分) 解:(2)取AB 中点为O ,连接PO , 因为△PAB 为等边三角形,所以PO ⊥AB ,由平面PAB ⊥平面ABCD ,因为PO ⊂平面PAB , 所以PO ⊥平面ABCD ,(5分)所以PO ⊥OD ,由AB =2BC =2CD =4,∠ABC =90°, 可知OD ∥BC ,所以OD ⊥AB .以AB 中点O 为坐标原点,分别以OD ,OB ,OP 所在直线为x ,y ,z 轴, 建立如图所示的空间直角坐标系O -xyz .(6分)所以A (0,-2,0),D (2,0,0),C (2,2,0),P (0,0,2 ),B (0,2,0),则 =(2,2,0), =(-2,0,2 ), =(0,-2,0), 因为Q 为PB 中点,所以Q (0,1, ), 由 (1)知,平面PBC 的一个法向量为 =(0,3, ),(7分)设平面PCD 的法向量为=(x ,y ,z ), 由,取z =1,得 =( , , ),(9分) 由cos < , >=== .(11分)因为二面角B -PC -D 为钝角,所以,二面角B -PC -D 的余弦值为.(12分)【解析】(1)推导出AB ⊥BC ,从而BC ⊥平面PAB ,进而BC ⊥AQ ,再求出PB ⊥AQ ,由此能证明AQ ⊥平面PBC .(2)取AB 中点为O ,连接PO ,推导出PO ⊥AB ,PO ⊥平面ABCD ,OD ⊥AB .以AB 中点O 为坐标原点,分别以OD ,OB ,OP 所在直线为x ,y ,z 轴,建立空间直角坐标系O-xyz ,利用向量法能求出二面角B-PC-D 的余弦值.该题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题. 19.【答案】解:(1)p (m -s <X <m +s )=p (82.8<X <87.2)=0.8>0.6826p (m -2s <X <m +2s )=p (80.6<X <89.4)=0.94<0.9544p (m -3s <X <m +3s )=p (78.4<X <91.6)=0.98<0.9974,因为设备的数据仅满足一个不等式,故其性能等级为丙.( 2)由题意可知,样本中次品个数为 6,突变品个数为 2,“突变品”个数ξ的可能取值为 0,1,2, P (ξ=0)==,P (ξ=1)==,P (ξ=2)==,可得ξ的分布列:EY =0×+1×+2×=. 【解析】(1)利用正态分布列的概率计算公式即可得出.( 2)由题意可知,样本中次品个数为 6,突变品个数为 2,“突变品”个数ξ的可能取值为 0,1,2,利用超几何分布列的计算公式即可得出ξ的分布列与数学期望.本题考查了正态分布列的概率计算公式、超几何分布列的计算公式,考查了推理能力与计算能力,属于中档题.20.【答案】解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.△ >,△,△,所以,,,四边形==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.【解析】(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.【答案】解:(1)f′(x)=e x(2x-1)+2e x=e x(2x+1),设切点为(m,n),由题意可得a=e m(2m+1),又n=am-a=e m(2m-1),解方程可得,a=1或4;(2)函数f(x)=e x(2x-1),g(x)=ax-a由题意知存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,∵f′(x)=e x(2x-1)+2e x=e x(2x+1),∴当x<-时,f′(x)<0,当x>-时,f′(x)>0,∴当x=-时,f(x)取最小值-2,当x=0时,f(0)=-1,当x=1时,f(1)=e>0,直线y=ax-a恒过定点(1,0)且斜率为a,故-a>f(0)=-1且f(-1)=-3e-1≥-a-a,解得≤a<1.【解析】(1)求出导数,设出切点(m,n),求得切线的斜率,由切线的方程,可得a=e m(2m+1),又n=am-a=e m(2m-1),解方程可得a的值;(2)函数f(x)=e x(2x-1),g(x)=ax-a,问题转化为存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,求导数可得函数的极值,数形结合可得-a>f(0)=-1且f(-1)=-3e-1≥-a-a,解关于k的不等式组可得.本题考查导数的运用:求切线的斜率和极值、最值,涉及数形结合和转化的思想,属中档题.22.【答案】解:(1)∵ ,代入y2=4x,∴ρsin2θ-4cosθ=0(2)不妨设点A,B对应的参数分别是t1,t2,把直线l的参数方程代入抛物线方程得:t2sin2α-4cosα•t-8=0,∴△=16cos2α+32sin2α>0,∴t1+t2=,t1t2=-,则|AB|=|t1-t2|==4,∴,∴或.【解析】(1)由x=ρcosθ,y=ρsinθ可得抛物线C的极坐标方程;(2)不妨设点A,B对应的参数分别是t1,t2,根据弦长公式,即可求解.本题考查普通方程与极坐标方程的转化,考查弦长公式,考查学生分析解决问题的能力,属于中档题.23.【答案】解:(1)若m=2时,|x-1|+|2x+2|≤3,当x≤-1时,原不等式可化为-x+1-2x-2≤3解得x≥-,所以,当-1<x<1时,原不等式可化为1-x+2x+2≤3得x≤0,所以-1<x≤0,当x≥1时,原不等式可化为x-1+2x+2≤3解得x≤,所以x∈Φ,综上述:不等式的解集为;(2)当x∈[0,1]时,由f(x)≤|2x-3|得1-x+|2x+m|≤3-2x,即|2x+m|≤2-x,故x-2≤2x+m≤2-x得-x-2≤m≤2-3x,又由题意知:(-x-2)min≤m≤(2-3x)max,即-3≤m≤2,故m的范围为[-3,2].【解析】(1)通过去掉绝对值符号,转化求解不等式的解集即可.(2)已知条件转化为即|2x+m|≤2-x,即-x-2≤m≤2-3x,即可求解实数m的取值范围.本题主要考查了解绝对值不等式,利用绝对值不等式的几何意义解决问题;考查推理论证能力、运算求解能力等;考查化归与转化思想、数形结合思想、函数与方程思想等;考查数学抽象、逻辑推理、直观想象、数学运算等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考高三最新信息卷 理 科 数 学(八) 注意事项: 1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答题前,考生务必将自己的姓名、考生号填写在答题卡上。 2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在试卷上无效。 3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。 4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.[2019·延安模拟]已知集合2,xAyyxR,lg2Bxyx,则AB( ) A.0,2 B.,2 C.,2 D.0,2 2.[2019·衡阳联考]在三个复数1iza,211izaa,2321izaaa中,有且仅有一个纯虚数,则实数a为( ) A.0或2 B.0 C.1 D.2 3.[2019·山南模拟]以下说法错误的是( )
A.命题“若2320xx,则1x”的逆否命题为“若1x,则2320xx” B.“2x”是“2320xx”的充分不必要条件 C.若命题:P存在0xR,使得20010xx,则p:对任意xR,都有210xx D.若p且q为假命题,则p,q均为假命题 4.[2019·宣城期末]函数2sin2xfxx的图象可能是( )
A. B.
C. D. 5.[2019·南昌外国语]右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为16,20,则输出的a( )
A.0 B.2 C.4 D.1 6.[2019·广州测试]已知1sincos5,其中,ππ2,则tan2( ) A.247 B.43 C.724 D.247 7.[2019·永州模拟]某几何体的三视图如图所示,则该几何体的体积为( )
A.5π3 B.4π3 C.π3 D.2π3 8.[2019·青岛一模]设0πsindaxx,则8axx展开式中的常数项为( ) A.560 B.1120 C.2240 D.4480 9.[2019·萍乡期末]矩形ABCD中,4AB,3BC,沿AC将ABCD矩形折起,使面BAC面DAC,则四面体ABCD的外接球的体积为( ) A.125π6 B.125π9 C.125π12 D.125π3
10.[2019·滨州期末]已知抛物线2:4Cyx的焦点为F,准线为l,P是l上一点,Q是PF直线 2
与抛物线C的一个交点,若,则QF( ) A.3 B.83 C.4或83 D.3或4 11.[2019·陕师附中]已知函数221fxxxR,若等比数列na满足120191aa, 则1232019fafafafa( ) A.2019 B.20192 C.2 D.12
12.[2019·聊城一模]已知函数,01ln,0xxxfxxxx,若关于x的方程fxa,有且只有一个 实数根,则实数a的取值范围为( ) A.1,0,e1 B.1,0,e1 C.1e,1 D.10,e
第Ⅱ卷 二、填空题:本大题共4小题,每小题5分. 13.[2019·平罗中学]某中学为调查在校学生的视力情况,拟采用分层抽样的方法,从该校三个年级中抽取一个容量为30的样本进行调查,已知该校高一、高二、高三年级的学生人数之比为4:5:6,则应从高三年级学生中抽取______名学生.
14.[2019·马鞍山二中]设实数x、y满足约束条件002xyxyx,则14xzy的取值范围是______. 15.[2019·德州模拟]数列na的前n项和为nS,若11a,0na,131nnnSaa, 则2019a______. 16.[2019·柳州模拟]已知函数3lnfxxx与3gxxax的图像上存在关于原点对称的对称点,则实数a的取值范围是______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2019·抚顺一模]已知a,b,c分别是ABC△的三个内角A,B,C的对边, 若10a,角B是最小的内角,且34sin3coscaBbA. (1)求sinB的值; (2)若ABC△的面积为42,求b的值. 18.(12分)[2019·毛坦厂中学]如图所示,在几何体ABCDE中,ABC△是等边三角形,AE平面ABC,CDAE∥,且22CDAEAC. (1)试在线段BD上确定点M的位置,使EM平面BCD,并证明; (2)求二面角EBCD的余弦值. 19.(12分)[2019·太原模拟]为方便市民出行,倡导低碳出行.某市公交公司推出利用支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,在推广期内采用随机优惠鼓励市民扫码支付乘车.该公司某线路公交车队统计了活动推广期第一周内使用扫码支付的情况,其中x(单位:天)表示活动推出的天次,y(单位:十人次)表示当天使用扫码支付的人次,整理后得到如图所示的统计表1和散点图. 表1: (1)由散点图分析后,可用ebxay作为该线路公交车在活动推广期使用扫码支付的人次y关于活动推出天次x的回归方程,根据表2的数据,求此回归方程,并预报第8天使用扫码支付的人次(精确到整数). 表2: 表中lnzy,7117iizz. (2)推广期结束后,该车队对此期间乘客的支付情况进行统计,结果如表3. 表3: 统计结果显示,扫码支付中享受5折支付的频率为13,享受7折支付的频率为12,享受9折支付的频率为16.已知该线路公交车票价为1元,将上述频率作为相应事件发生的概率,记随机变量为在活动期间该线路公交车搭载乘客一次的收入(单位:元),求的分布列和期望. 参考公式:对于一组数据11,uv,22,uv,,,nnuv,其回归直线vu的斜率和截距的最小二乘估计分别为1221ˆniiiniiuvnuvunu,ˆˆvu,参考数据:5.323e00.3,5.529e44.6,5.727e98.8.
20.(12分)[2019·南开中学]已知0,2A,3,1B是椭圆2222:10xyCabab上两点. (1)求椭圆C的标准方程; (2)设O为坐标原点,M为椭圆C上一动点,点3,0P,线段PM的垂直平分线交y轴于点Q,求OQ的最小值. 4
21.(12分)[2019·衡水联考]已知函数21e02xfxaxaxaxa. (1)求函数fx的单调区间; (2)当0a时,函数fx在,0上的最小值为ga,若不等式lngataa有解,求实数t的取值范围.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】
[2019·玉溪一中]在平面直角坐标系xOy中,曲线1C的参数方程为cos2sinxtyt(t为参数),以坐标 原点为极点,x轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位,直线l的直角坐标方程为3yx. (1)求曲线1C的极坐标方程; (2)若曲线2C的极坐标方程为8cos0,与直线l在第三象限交于A点,直线l与1C在第一象限的交点为B,求AB.
23.(10分)【选修4-5:不等式选讲】 [2019·唐山二模]已知1124fxaxaxa. (1)若0fx,求a的取值范围; (2)若0a,yfx的图像与x轴围成的封闭图形面积为S,求S的最小值. 绝密 ★ 启用前 2019年高考高三最新信息卷 理科数学答案(八) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A 【解析】∵,20xAyyxyyR, lg220Bxyxxx2,2xx,∴020,2ABxx,故选A. 2.【答案】D 【解析】若1z为纯虚数,则0a,3z也为纯虚数,不符合题意;1a,2z显然不为纯虚数, 故3z为纯虚数,2a,故选D. 3.【答案】D 【解析】A选项:根据逆否命题的定义可知:原命题的逆否命题为“若1x,则2320xx”,可知A正确; B选项:由2320xx,解得1x,2,因此“2x”是“2320xx”的充分不必要, 可知B正确; C选项:根据命题的否定可知p:对任意xR,都有210xx,可知C正确; D选项:由p且q为假命题,则p,q至少有一个为假命题,因此D不正确.故选D. 4.【答案】C 【解析】∵fx的定义域为2xx,关于原点对称, 又∵2sin2xfxfxx,即函数fx是奇函数,∴fx的图象关于原点对称,排除A、D, 当02x时,sin0x,220x,∴2sin02xfxx,排除B,故选C. 5.【答案】C 【解析】输入a,b的值,分别为16,20, 第一次循环:第一层判断:满足ab,进入第二层选择结构, 第二层判断:不满足ab,满足ab,故20164b; 第二次循环:第一层判断:满足ab,进入第二层选择结构, 第二层判断:满足ab,故16412a; 第三次循环:第一层判断:满足ab,进入第二层选择结构, 第二层判断:满足ab,故1248a; 第四次循环:第一层判断:满足ab,进入第二层选择结构, 第二层判断:满足ab,故844a; 第五次循环:第一层判断:满足4ab,故输出4,故选C. 6.【答案】D 【解析】∵1sincos5,且22sincossincos2,∴249sincos25,
∵,ππ2,∴7sincos5,因此4sin5,3cos5, 从而4tan3,22tan24tan271tan,故选D. 7.【答案】D 【解析】有三视图可知原几何体为:半个圆柱中间去掉半个圆锥, 则半个圆柱体积为:211π12π2V, 半个圆锥体积为:2211π223π13V, 则几何体体积为:122π3VVV,故选D. 8.【答案】B 【解析】设π00πsindcos2axxx,