第 7 章 聚合物的断裂和强度

合集下载

屈服与断裂——精选推荐

屈服与断裂——精选推荐

1什么叫做时温等效原理?一聚合物的T g =55℃,125℃下观测到的tanδ与时间的关系曲线如图所示,试采用时温等效原理及WLF 方程,得出该聚合物75℃下的tanδ与时间的关系曲线。

拉伸试验ISO :是指由『 国际标准化组织(InternationalOrganization for Standardization, ISO) 』制定的标准 GB : 国家标准聚丙烯/聚酰胺热塑性弹性体/(PP/PA/PTE ,49/30/21)共混高聚物,T g 40~60o C(PP/PA/PTE ,49/30/21)共混高聚物聚苯乙烯聚丙烯室温拉伸曲线拉伸强度几乎相同 注塑试样的韧性更好注塑试样具有较高的拉伸强度及断裂伸长率第八章 聚合物的屈服与断裂——研究聚合物的极限性质在较大外力的持续作用或强大外力的短时作后,聚合物发生大形变直至宏观破坏或断裂•聚合物的应力—应变曲线 •聚合物的屈服8.1 聚合物的塑性和屈服• 聚合物的强度• 聚合物的断裂形式 • 格理非斯断裂理论 • 聚合物的增强与增韧8.2 聚合物的断裂与强度 晶态高聚物的 应力-应变曲线8.1.1 聚合物应力-应变曲线Y 屈服点 σY 屈服应力 B 断裂点 εB 断裂伸长 σB 断裂强度 A 弹性极限点 εA 弹性极限应变 σA 弹性极限应力Y冷拉AAE εσεσ=∆∆=Aε A σAσY εY应变硬化应变软化 Strain %S t r e s sε BσB B断裂能 Fracture energyσ –ε 曲线下面积——断裂能:材料从开始拉伸至破坏所吸收的能量。

εσ⎰εσd 聚合物的屈服强度(Y 点强度) 聚合物的杨氏模量(OA 段斜率) 聚合物的 断裂强度(B 点强度) 聚合物的断裂伸长率(B 点伸长率) 聚合物的断裂韧性(曲线下面积)εσ 应力-应变曲线拉伸聚合物力学信息晶态片晶受拉伸形变时内部晶片发生位错、转向、定向排列、拉伸示意图εσ球晶拉伸形变时 内部晶片变化示意图σB > σY时可能在断裂之前产生屈服 玻璃态:T b ~T g脆化温度 T b 是塑料的最低使用温度σOσYσB YBεBε非晶态高聚物的典型应力应变曲线(玻璃态时)σOσyσB YBεBεσ拉伸过程均经历:弹性变形、屈服、发展大形变、应变硬化 大形变在室温时都不能自发回复,而加热后则产生回复。

高分子物理-金日光-课后习题答案(1)

高分子物理-金日光-课后习题答案(1)

1. 构型与构象有何区别?聚丙烯分子链中碳-碳单键是可以旋转的,通过单建的内旋转是否可以使全同立构的聚丙烯变为间同立构的聚丙烯?为什么?答:构型:是指分子中由化学键所固定的原子在空间的几何排列。

构象:由于分子中的单键内旋转而产生的分子在空间的不同形态。

全同立构聚丙烯与间同立聚丙烯是两种不同构型,必须有化学键的断裂和重排。

3. 哪些参数可以表征高分子链的柔顺性?如何表征?答: 空间位阻参数δ212,20⎥⎦⎤⎢⎣⎡=r f h h δ答:因为等规PS 上的苯基基团体积较大,为了使体积较大的侧基互不干扰,必须通过C -C 键的旋转加大苯基之间的距离,才能满足晶体中分子链构象能量最低原则;对于间规PVC 而言,由于氢原子体积小,原子间二级近程排斥力小,所以,晶体中分子链呈全反式平面锯齿构象时能量最低。

δ越大,柔顺性越差;δ越小,柔顺性越好;特征比C n 220nl h c n =对于自由连接链 c n =1对于完全伸直链c n =n ,当n→∞时,c n 可定义为c ∞,c ∞越小,柔顺性越好。

链段长度b :链段逾短,柔顺性逾好。

7.比较下列四组高分子链的柔顺性并简要加以解释。

解:(1)PE>PVC>PAN主链均为C -C 结构,取代基极性-CN ﹥-Cl ,所以,聚丙烯腈的柔顺性较聚氯乙烯差;(2)2>1>31与3中都含有芳杂环,不能内旋转;3中全为芳环,柔顺性最差;主链中-O-会增加链的柔顺性;(3)3>2>1因为1中取代基的比例较大,沿分子链排布距离小,数量多,分子链内旋转困难;2和3中均含有孤立双键,易内旋转,故柔顺性较好。

(4)2>1>32中取代基对称排列,分子偶极矩极小,易内旋转;3中极性取代基较中比例大,分子内旋转困难,故柔顺性最差。

第2章 聚合物的凝聚态结构1. 名词解释凝聚态:物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。

东华大学《高分子物理》各章选择判断题

东华大学《高分子物理》各章选择判断题

1. 氯乙烯聚合时存在头—尾、头-头或尾—尾键接方式,它们被称为:(a) 旋光异构体 (b) 顺序异构体 (c ) 几何异构体 (d ) 无规立构体2. 1,4—丁二烯聚合可以形成顺式和反式两种构型,它们被称为:(a) 旋光异构体 (b) 几何异构体 (c) 间同异构体 (d) 无规立构体3。

下列哪些因素会使聚合物的柔性增加:(a) 结晶 (b) 交联 (c) 主链上引入孤立双键 (d) 形成分子间氢键4. 下列哪个物理量不能描述聚合物分子链的柔性:(a ) 极限特征比 (b ) 均方末端距 (c ) 链段长度 (d ) 熔融指数5. 高分子内旋转受阻程度增加,其均方末端距:(a ) 增加 (b ) 减小 (c ) 不变 (d ) 不能确定6. 如果不考虑键接顺序,线形聚异戊二烯的异构体数为:(a) 6 (b ) 7 (c ) 8 (d) 97. 比较聚丙烯(PP)、聚乙烯(PE )、聚丙烯腈(PAN )和聚氯乙烯(PVC )柔性的大小,正确的顺序是:(a ) PE 〉PP> PAN 〉 PVC (b ) PE 〉PP 〉PVC>PAN(c) PP 〉 PE >PVC 〉PAN (d ) PP 〉 PE 〉 PAN > PVC8. 同一种聚合物样品,下列计算值哪个最大:(a ) 自由结合链的均方末端距 (b) 自由旋转链的均方末端距(c ) 等效自由结合链的均方末端距 (d ) 一样大9.聚合度为1000的PE ,键长为0.154nm ,则其自由结合链的均方末端距为:(a) 23.7 nm 2 (b ) 47.4nm 2 (c) 71。

1 nm 2 (d ) 94。

8 nm 210。

PE 的聚合度扩大10倍,则其自由结合链的均方末端距扩大:(a ) 10倍 (b ) 20倍 (c) 50倍 (d) 100倍11。

PE 自由结合链的根均方末端距扩大10倍,则聚合度需扩大:(a ) 10倍 (b ) 100倍 (c ) 50倍 (d) 20倍三、判断题:1. 聚合物和其它物质一样存在固态、液态和气态。

自编教材第七章材料弹性变形与内耗

自编教材第七章材料弹性变形与内耗

第七章 材料弹性变形与内耗固体材料在受外力作用时,首先会产生弹性变形,外力去除后,变形消失而恢复原状,因此,弹性变形有可逆性的特点。

材料的弹性变形是人们选择和使用材料的依据之一,近代航空、航天、无线电及精密仪器仪表工业对材料的弹性有更高要求,不仅要有高的弹性模量,而且还要恒定。

另一方面,材料的弹性模量是组织不敏感参量,准确测定材料的弹性模量,对于研究材料原子的相互作用和相变等都具有工程和理论意义。

实际上,绝大多数固体材料很难表现出理想的弹性行为,或是材料在交变应力作用下,在弹性范围内还存在非弹性行为,并因此产生内耗。

内耗代表材料对振动的阻尼能力,作为重要的物理性能,工程上有些零件要求材料要有高的内耗以消振,如机床床身、涡轮叶片等,而有些零件则要求材料有低的内耗,以降低阻尼,如弹簧、游丝、乐器等。

另一方面,内耗是结构敏感性能,故可用于研究材料的内部结构、溶质原子的浓度以及位错与溶质原子的交互作用等材料的微观结构问题,是一种很有效的物理性能分析方法。

第一节 材料弹性变形一.弹性模量及弹性变形本质在弹性范围内,物体受力的作用要产生应变,其应力和应变之间的关系符合胡克定律σ=E ε, τ=G γ,p=K θ (7-1)式中,σ、τ和p 分别为正应力、切应力和体积压缩应力;ε、γ和θ 分别为线应变、切应变和体积应变;比例系数E 、G 和K 分别为正弹性模量(杨氏模量)、切变模量和体积模量。

它们均表示材料弹性变形的难易程度,即引起单位变形所需要的应力大小。

在各向同性的材料中,它们之间的关系是G =)1(2μ+E (7-2) K = )21(3μ-E (7-3) 式中,μ为泊松比,即当材料受到拉伸或压缩时,横向应变与纵向应变之比。

可以证明,如果材料在形变时体积不变,则泊松比为0.5。

大多数材料在拉伸时有体积变化(膨胀),泊松比为0.2~0.5。

对于多数金属的μ值约在0.25~0.35之间,G/E 的实验值大约是3/8。

《高分子物理》练习题及解答

《高分子物理》练习题及解答

《高分子物理》练习题一、名词解释1. 等规度2. 键接方式(键接结构)3. 等效自由结合链4.构型5.切应力双生互等定律6.应变二、简析题1. 讨论玻璃态聚合物的高弹形变和橡胶高弹形变的异同?2. 画出非晶态聚合物在适宜的拉伸速率下,在玻璃化转变温度以下几十度时的应力-应变曲线,并标出聚合物的屈服强度、聚合物的断裂强度、聚合物的断裂伸长率,并指出从应力-应变曲线上可以获得哪些信息。

3.从热力学角度讨论拉伸对聚合物结晶过程、结晶形态和熔点的影响。

除此之外,列举两个措施提高结晶聚合物的熔点?4.什么是银纹?银纹与裂纹有什么差别和联系?聚合物材料中出现银纹是否总是有害的?《高分子物理》练习题答案一、名词解释1. 等规度:全同异构体和间同异构体合称等规异构体,等规异构体所占的百分数。

2. 键接方式(键接结构):指结构单元在高分子链的连接方式,有头-尾键接和头-头键接两种。

3. 等效自由结合链:实际的高分子链并不是自由内旋转的,在旋转时还有空间位阻效应以及分子间的各种远程相互作用,但是只要链足够长,并且有一定的柔性,则仍然可把它当成自由结合链进行统计处理,即当成等效自由结合链。

4. 构型:指分子中由化学键所固定的原子、原子团在空间的几何排列。

5.切应力双生互等定律:韧性聚合物拉伸到屈服点时,常看到试样出现与拉伸方向成大约45°倾斜的滑移变形带。

由于两个45°都会产生,所以这种性质又称为双生互等定律。

6.应变:当材料在外力作用下,材料的几何形状和尺寸就要发生变化,这种变化称为应变。

二、简析题1.讨论玻璃态聚合物的高弹形变和橡胶高弹形变的异同?相同点:玻璃态聚合物在大应力条件下发生的这种高弹形变本质上与橡胶态,聚合物的高弹形变是相同的,它们都是由链段运动所导致的高弹形变。

不同点:(1)橡胶的高弹形变发生在Tg温度以上(橡胶态),链段本身就具有了运动能力;因此在小应力下就可以发生大形变;(2)橡胶的高弹形变当外力去除后可以自动回复;(3)玻璃态聚合物的高弹形变发生在Tg 温度以下(玻璃态),链段本身不具备运动能力,只是在很大的应力下使链段的运动解冻了,才可以发生大形变,而且这种大形变只有当加热到Tg 温度附近时才可以回复。

材料在高温条件下的力学性能

材料在高温条件下的力学性能
7
蠕变变形机制及断裂机理
高温下的位错热激活主要是刃型位错的攀移,模型见下图:
8
蠕变变形机制及断裂机理 (2)扩散蠕变
认为蠕变是高温下大量原子
与空位定向移动造成的:
承受拉应力(A、B晶界)的晶界, 空位浓度增加; 承受压应力(C、D晶界)的晶界, 空位浓度减小。 晶体内空位从受拉晶界向受压晶 界迁移,原子朝相反方向运动, 使得晶体伸长--扩散蠕变。
分子运动
宏观力学性能 强烈地依赖于温度和外力作用时间
29
聚合物的黏弹性与蠕变
虎克定律 Hooke’s law
E
弹性模量 E
Elastic modulus
应变在外力的 瞬时达到平衡 值,除去应力 时,应变瞬时 回复。
形变对时间不存在依赖性
Ideal elastic solid 理想弹性体
30
持久强度极限表示方法:

3
t
--在规定温度(t)下,达到规定的持续时间τ抵抗断裂 的最大应力。
若σ>300 MPa或τ>1000 h,试件均发生断裂。
1700 300Mpa 10
表示材料在700℃经1000小时后发生断裂的应力(即持久强度极 限)为300MPa。
金属高温力学性能指标 (3)持松弛稳定性
材料力学性能
第 7章 材料在高温条件下的力学性能
材料与机电学院 艾建平 E-mail: ai861027@
内容提纲
7.1 材料在高温下力学性能特点
7.2 蠕变的宏观规律及蠕变机制
7.3 金属高温力学性能指标
7.4 影响金属高温力学性能的主要因素
7.5 金属蠕变与疲劳的交互作用
聚合物的黏弹性与蠕变
牛顿定律 Newton’s law

聚合物的结构与性能


对应用做材料的高分子来说,关心的不是具体构型(左旋 或右旋),而是构型在分子链中的异同,即全同(等规)、间 同或无规。
聚合物的结构与性能
Isotactic 全同立构
Syndiotactic 间同立构
Atactic 无规立构
结构规整 较规整 不规整
等规度(tacticity): 全同或间同立构单元所占的百分数
非反应性:-CH3、-OCH3, 如聚甲醛受热降解从端羟基开始,必须进行酯化或醚化以封端。
HO-CH2-O-CH2-O-CH2 CH3O-CH2-O-CH2-O-CH2
-O-CH2-O-CH2-OH 酯化
-O-CH2-O-CH2-OCH3
聚合物的结构与性能
反应性:-OH、-COOH、-NH2, 可进一步反应合成复杂结构
聚合物的结构与性能
一、(单根)高分子链的结构
高分子链结构的特点
●既简单又复杂; ●长而柔; ●分子量大而不均匀
聚合物的结构与性能
1.一级结构
1).化学组成
结构术语
主链
支链
聚合物的结构与性能
端基
侧基
➢ 主链
(A) 碳链高分子
主链全部由碳原子组成
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
聚乙烯
聚合物的结构与性能
有机氟高分子的化学特性:
最好的化学稳定性: 高抗紫外线性、高耐候性、高耐化学性、高耐老化性 特异的表面性能—表面能最低: 拒水性好、拒油性好、耐沾污性好 理想的生物稳定性和生物相容性: 优异的光学性能: 可有低折射率、高透明性 优异的电学性能:
低介电常数、高绝缘性 有机氟高分子材料被誉为“有机材料之王”。

聚合物的力学性能

运动松弛时间减小到与外力作用时间同一数量级时,链段开始由蜷曲变
为伸展,产生强迫高弹变形。
也就是在外力的作用下,非晶聚合物中本来被冻结的链段被强迫运动,
使高分子链发生伸展,产生大的形变。但由于聚合物仍处于玻璃态,当外
力移去后,链段不能再运动,形变也就得不到回复,只有当温度升至Tg附
近,使链段运动解冻,形变才能复原。
若链段运动的松弛时间与外力作用速率相适应,材料在断裂
前可发生屈服,出现强迫高弹性,表现为韧性断裂
若外力作用时间越短,链段的松弛跟不上外力作用速率,为
使材料屈服需要更大的外力,材料的屈服强度提高,材料在断裂
前不发生屈服,表现为脆性断裂
所以,降低温度与提高外力作用速率有同样的效果,
这是时-温等效原理在高分子力学行为中的体现。
的冷拉,由于局部的高度拉伸应变(1000%),造成了很大的横
向收缩,这种局部的收缩要大于材料整体的横向收缩,结果在局
部性的取向链束或片层间形成一定的空的体积,并在表面上出现
凹槽。也可以发生在材料内部形成内银纹。
精选课件
27
第八章 聚合物的力学性能
3.产生银纹的结果:
①银纹可发展成裂缝,使材料的使用性能降低。


B
=A ,断裂强度
Mn
分子量
精选课件
33
第八章 聚合物的力学性能
②取向与结晶的影响
结晶度增加,强度增加韧性下降以PE为例。
聚乙烯强度与结晶度的关系
性形变(plastic deformation )(强迫高弹形变)、应变硬化四
个阶段
精选课件
11
第八章 聚合物的力学性能
σ
B
Y
σ

第三版-高分子物理课后习题答案(详解)[1]1-图文

第三版-高分子物理课后习题答案(详解)[1]1-图文第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型,举例说明高分子的构造。

等。

举例说明高分子链的构造:线形:聚乙烯,聚α-烯烃环形聚合物:环形聚苯乙烯,聚芳醚类环形低聚物梯形聚合物:聚丙烯腈纤维受热,发生环化形成梯形结构支化高分子:低密度聚乙烯交联高分子:酚醛、环氧、不饱和聚酯,硫化橡胶,交联聚乙烯。

2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。

(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(ttt)构象极不稳定,必须通过C-C 键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。

(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。

4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;(2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺。

5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。

该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。

高分子物理课后答案

第一章:高分子链的结构一、根据化学组成不同,高分子可分为哪几类?(1、分子主链全部由碳原子以共价键相连接的碳链高分子2、分子主链除含碳外,还有氧、氮、硫等两种或两种以上的原子以共价键相连接的杂链高分子3、主链中含有硅、硼、磷、铝、钛、砷、锑等元素的高分子称为元素高分子 4、分子主链不含碳,且没有有机取代基)二、什么是构型,不同构型分别影响分子的什么性能?(构型是指分子中由化学键所固定的原子在空间的几何构型;1、旋光异构影响旋光性 2、几何异构影响弹性 3、键接异构对化学性能有很大影响)三、什么是构造,分子构造对高分子的性能有什么影响?(分子构造是指聚合物分子的各种形状,线性聚合物分子间没有化学键结构,可以在适当溶剂中溶解,加热时可以熔融,易于加工成型。

支化聚合物的化学性质与线形聚合物相似,但其物理机械性能、加工流动性能等受支化的影响显着。

树枝链聚合物的物理化学性能独特,其溶液黏度随分子量增加出现极大值。

)四、二元共聚物可分为哪几种类型?(嵌段共聚物、接枝共聚物、交替共聚物、统计共聚物)五、什么是构象?什么是链段?分子结构对旋转位垒有什么影响?(构象表示原子基团围绕单元链内旋转而产生的空间排布。

把若干个链组成的一段链作为一个独立运动的单元,称为链段。

位垒:1、取代基的基团越多,位垒越大 2、如果分子中存在着双键或三键,则邻近双键或三键的单键的内旋转位垒有较大下降。

)六、什么是平衡态柔性?什么是动态柔性?影响高分子链柔性的因素有哪些?(平衡态柔性是指热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差。

动态柔性是指外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式与旁式构象之间转变位垒与外场作用能之间的联系。

影响因素:一、分子结构:1、主链结构 2、取代基 3、支化交联 4、分子链的长链二、外界因素:温度、外力、溶剂)七、自由连接链?自由旋转链?等效自由连接链?等效自由旋转链?蠕虫状链?(自由连接链:即键长l 固定,键角⊙不固定,内旋转自由的理想化模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档