材料力学第七章_3_ 应变能密度和强度理论概要

合集下载

材料力学第20讲 Chapter7-4第七章 强度理论

材料力学第20讲  Chapter7-4第七章 强度理论
33
低碳钢圆截面试件,实验表明: 在单向拉伸时会发生显著的屈服现象。
若在圆试件中部切出一个环形槽(如 图a所示)。 试 验表明:直到拉断都看不到显著的 屈服现象和塑性变形,而是在最弱部 位发生脆断。其断口平齐,与铸铁拉 伸断口相似(b)。 这是因为在最弱截面处,材料处于三向拉伸应力状态,斜截面 上的剪应力较小,不可能出现屈服现象,只可能发生脆断。
只要微元内的最大拉应力 1 达到了单向拉伸
的强度极限 b ,就发生断裂破坏。
脆性断裂的判据(或极限条件) 1 u
强度条件 1
19
《评价》
二向时:当 1 2 0 该理论与实验基本一致
三向时:当 1230同上
当主应力中有压应力时,只要 3 1 同上
当主应力中有压应力时,只要 3 1 误差较大
理论与实验基本符合 比第三理论更接近实际
29
二、相当应力(强度准则的统一形式)
r [ ] r —相当应力(equivalent stress)
r1 1
r21(23)
r3 13
r 4 1 2 [1 22 2 3 2 3 1 2 ]
[]1n{b,0.2,s}
30
强度理论应用于许用拉应力和许用切应力间的换算
m
在平均应力作用下,单元体的形
m
状不变, 仅发生是体积改变
m
7
按迭加原理(应力)
1
m
1-m
m
2
3
m
2-m 3-m
交互项
体积改变能密度
v v
1 2
3
v i
v i
i 1
3 2
mm
形状改变能密度 (畸变比能)
v d
1 2

材料力学强度理论

材料力学强度理论

9 强度理论1、 脆性断裂和塑性屈服脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。

塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。

2、四种强度理论(1)最大拉应力理论(第一强度理论)材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:01σσ= (2)最大伸长拉应变理论(第二强度理论):无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε=(3)最大切应力理论(第三强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值,即: 0max ττ=(4)形状改变比能理论(第四强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u 0dd =强度准则的统一形式 [] σσ≤*其相当应力: r11σ=σr2123()σ=σ-μσ+σ r313σ=σ-σ222r41223311()()()2⎡⎤σ=σ-σ+σ-σ+σ-σ⎣⎦ 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。

9.1图9.1所示的两个单元体,已知正应力σ =165MPa ,切应力τ=110MPa 。

试求两个单元体的第三、第四强度理论表达式。

图9.1[解] (1)图9.1(a )所示单元体的为空间应力状态。

注意到外法线为y 及-y 的两个界面上没有切应力,因而y 方向是一个主方向,σ是主应力。

显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。

外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a )所示单元体的三个主应力为:τστσσσ-===321、、,第三强度理论的相当应力为解题范例r4σ=()eq313165110275a σσσστ=-=+=+=MPa第四强度理论的相当应力为:()eq4a σ==252.0== MPa(2)图9.1(b)所示单元体,其主应力为第三强度理论的相当应力为:()eq31322055275b σσσ=-=+=MPa第四强度理论的相当应力为:()eq4a σ=252.0==MPa9.2一岩石试件的抗压强度为[]σ=14OMPa,E=55GPa, μ=0.25, 承受三向压缩。

材料力学各章重点内容总结

材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N FAσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F Aσσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F Aσσ=≤一定要有结论 2.设计截面[],maxN F A σ≥3.确定许可荷载[],maxN F A σ≤七、线应变ll ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F ll EA∆=注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l llδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学应力和应变分析强度理论

材料力学应力和应变分析强度理论

§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y

x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP

材料力学第七章知识点总结

材料力学第七章知识点总结

p
σα
α
τα
)
(−
B
各边边长,
d x d y
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
(2) 应力状态的分类
a、单向应力状态:只有一个主应力不等于零,另两个主应力
都等于零的应力状态。

b、二向应力状态:有两个主应力不等于零,另一个主应力
等于零的应力状态。

c、三向应力状态:三向主应力都不等于零的应力状态。

平面应力状态:单向应力状态和二向应力状态的总称。

空间应力状态:三向应力状态
简单应力状态:单向应力状态。

复杂应力状态:二向应力状态和三向应力状态的总称。

纯剪切应力状态:单元体上只存在剪应力无正应力。

y
x
σx
σy
σz
τxy τyx
τyz
τzy τzx
τxz
x
y
σx
σy
τyx
τxy
τ第一个下标表示微面元方向,第二个下标表示面元上力的方向
空间问题简化
为平面问题
α——由o
c
b
σττ
σ
ττ
τ
max τ
min
τα
D
A
H
3040MPa
7.27422
)
7.27(=−−
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
y
x
z。

材料力学强度理论

材料力学强度理论

2
2
2
u f 6E
σ1 σ 2 σ 2 σ3 σ3 σ1
将 σ1 σ s , σ 2 σ3 0 代入上式,可得材料的极限值
u fu

1 ν
6E
2
2 s

强度条件为:
1
2
2
2
2 1 2 2 3 3 1


2

2
2
2
2
设 ,则
2 2
1 2 3
由第四强度理论的计算应力 状态 (a )
r4 2 3 2
状态 (b ) r4 2 3 2
两种情况下的危险程度相等。
基本观点
构件受外力作用而发生破坏时,不论破坏的 表面现象如何复杂,其破坏形式总不外乎几种类型, 而同一类型的破坏则可能是某一个共同因素所引起的。
材料破坏的两种类型(常温、静载荷)
1. 脆断破坏: 无明显的变形下突然断裂。 2. 屈服失效: 材料出现显著的塑性变形而丧
失其正常的工作能力。
引起破坏的某一共同因素
1 3

70 2
30

2 50 MPa
70

2
30 2


402
94.72
50 20 5
MPa
5.28
r 3 89.44MPa , r 4 77.5MPa
例题 2 两种应力状态分别如图所示,试按第四强度理论, 比较两者的危险程度。



(a)
120MPa
(2)对于图 b 所示的单元体,

材料力学应力状态分析

材料力学应力状态分析

的就是主应力;但除此之外,
图a所示单元体上平行于xy平面 的面上也是没有切应力的,所 以该截面也是主平面,只是其 上的主应力为零。
24
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
在弹性力学中可以证明, 受力物体内一点处无论是什么 应力状态必定存在三个相互垂 直的主平面和相应的三个主应 力。对于一点处三个相互垂直
垂直面上的应力来确定,故受力物体内一点处的应力状
态(state of stress)可用一个单元体(element)及其上的应力 来表示。
2
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
p cos 0 cos2 0 p sin sin 2
1
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
§7-1 概述
在第二章和第三章中曾讲述过杆受拉压时和圆截面
杆受扭时杆件内一点处不同方位截面上的应力,并指出: 一点处不同方位截面上应力的集合(总体)称之为一点处 的应力状态。由于一点处任何方位截面上的应力均可根 据从该点处取出的微小正六面体── 单元体的三对相互
的主应力,根据惯例按它们的
代数值由大到小的次序记作1,
2,3。图b所示应力圆中标
出了1和2,而3=0。
25
材 料 力 学 Ⅰ 电 子 教 案
第七章 应力状态和强度理论
当三个主应力中有二个主应力不等于零时为平面应力状态; 平面应力状态下等于零的那个主应力如下图所示,可能是
1,也可能是2或3,这需要确定不等于零的两个主应力
状态的一些特征,可使上述计算公式以图形即所称的应力
圆(莫尔圆)(Mohr’s circle for stresses)来表示。 先将上述两个计算公式中的第一式内等号右边第一项 移至等号左边,再将两式各自平方然后相加即得:

材料力学课件第7章 应力、应变分析及强度理论

材料力学课件第7章 应力、应变分析及强度理论
第7章 应力、应变
分析及强度理论
1
太原科技大学应用科学学院
第7章 应力、应变分析及强度理论
7.1 应力状态的概念 7.2 应力状态的实例 7.3 二向应力状态分析——解析法 7.4 二向应力状态分析——图解法 7.5 三向应力状态 7.7 广义胡克定律 7.8 复杂应力状态下的应变能密度 7.9 强度理论概述 7.10 四种常用强度理论
xy
a
dA
yx
y
t
F 0
t
dA xy (dAcos ) cos x (dAcos ) sin yx (dAsin ) sin y (dAsin ) cos 0
15
目录
太原科技大学应用科学学院
7.3 二向应力状态分析——解析法
例题2 分析轴向拉伸杆件的最大切应力的作用面,说 明低碳钢拉伸时发生屈服的主要原因。 低碳钢拉伸时,其上任意一点都是单向应力状态
x


x y

x
2
x
2

x y
2
cos 2 xy sin 2
45
45
0

2 x y 2 sin 2
x y 2 2
28
2
x y 2 xy 2
太原科技大学应用科学学院
2
7.4 二向应力状态分析——图解法
x y 2 观察方程 2
2
x y 2 xy 2
1 2 3
该单元体称为主应力单元体。
8
太原科技大学应用科学学院
7.1 应力状态的概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学
第 7章 应力和应变分析·强度理论
[例9-8]证明弹性模量E 、泊松比µ 、切变弹性模量G 之间 的关系为 G E 。
2(1 )
证明: 纯剪应力状态应变能密度为
3
v1
1
2
1 2
2G
1 , 2 0, 3
1
用主应力计算比能
v2
1 2E
[
2 1
2 2
2 3
2 (1 2
2 3
1
3
k
1
3
2
OC
B
3
1
2
1 3
河南理工大学土木工程学院
A
材料力学
第 7章 应力和应变分析·强度理论
各向同性材料的广义胡克定律:
εx
1 E
σx
μ
σy
σz
εy
1 E
σy
μσz
σx
εz
1 E
σz
μ
σx σy
xy
xy
G
,
yz
yz
G
,
zx
zx
G
上述一组方程为用应力表示应变,若用应变表示应力,
河南理工大学土木工程学院

材料力学
第 7章 应力和应变分析·强度理论
二、常用四个强度理论
● 第一强度理论(最大拉应力理论) 该理论不论材料处于什么应力状态,引起材料脆性断裂
破坏的主要原因是最大拉应力,并认为当复杂应力状态的最 大拉应力达到单向应力状态破坏时的最大拉应力时,材料便 发生断裂破坏。由此,材料的断裂判据为
一、强度理论的概念
1. 什么是强度理论 强度理论是关于材料破坏原因的学说。
2.材料的两种破坏类型
① 脆性断裂 ② 塑性屈服
正应力强度条件
切应力强度条件
σmax [σ]
max [ ]
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
3. 强度理论的提出 杆件基本变形时,危险点处于单向应力状态或纯剪切应力
max min
x
y
2
x
2
y
2
2 x
y y
x x
20
tan1( 2 x x
y
)
河南理工大学土木工程学院
材料力学
y
y
第 7章 应力和应变分析·强度理论
应力圆的作法:
x
x
x
x
D
o
B
C
A
最大和最小切应力的表达式:
y
D′
mmainx
1
2
2
x
河南理工大学土木工程学院
材料力学
2
1
3 2
第 7章 应力和应变分析·强度理论 2
σ1 σ3 τ xy σ2 0
0
即在小变形下,切应力不引起各向同性材料的体积改变.
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
目录
§7-1 应力状态概述 §7-2 平面应力状态分析·主应力
§7-3 空间应力状态的概念 §7-4 应力与应变间的关系
§7-5 空间应力状态下的应变能密度
1
2
E
(σ1
σ2
σ3
)
ε1
1 E
σ1
μσ2
σ3
ε2
1 E
σ2
μσ3
σ1
ε3
1 E
σ3
μσ1
σ2
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论

m
1 3
(
1
2
3)
K E
3(1 2)
m
K
m称为平均正应力,K 称为体积弹性模量。上式称为体
积胡克定律。
纯剪切应力状态下的体积应变
材料力学
第 7章 应力和应变分析·强度理论
2、三个主应力同时存在时, 单元体的应变能密度为
1 vε 2 (σ1ε1 σ2ε2 σ3ε3 )
ε1
1 E
σ1
μσ2
σ3
将广义胡克定律代
ε2
1 E
σ2
μσ3
σ1
入上式, 经整理得
ε3
1 E
σ3
μσ1
σ2

1 2E
2 1
2 2
2 3
2 σ1σ 2
31 )]
1 [ 2 0 ( )2 2(0 0 2 )] 1 2
2E
E
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
v1 v2
1 2 1 2
2G
E
G E
2(1 )
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
§11-5 强度理论
材料力学期末考试 考试时间:6月7日(15周周六)上午8:30-10:30。 考试地点:3205、3206、3207 考试方式:闭卷、统考。
河南理工大学土木工程学院
材料力学 斜截面上的应力:
第 7章 应力和应变分析·强度理论
x
y
2
x
y
2
cos 2
x sin 2
x
y
2
sin 2
x
cos 2
主应力的解析表达式:
σ2σ3
σ3σ1
应变能密度 vε等于两部分之和
vε vV vd
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
式中,体积改变能密度为:
vV
1 2
6E
( 1
2
3 )2
形状改变能密度为:
vd
1
6E
[(σ1
σ2 )2
(σ2
σ3 )2
(σ3
σ1 )2 ]
河南理工大学土木工程学院
状态,其强度条件分别为
max
max
许用应力可由实验测出。 在复杂应力状态下,不可能测出每一种应力状态下的极
限应力,因此提出了材料在不同应力状态下产生某种形式破 坏的共同原因的各种假设,这些假设称为强度理论。强度理 论的核心是认为复杂应力状态下的某一因素达到简单拉伸的
试验破坏时的同一因素,材料也将失效。
2
a2
1
3
a1
a3
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
体积应变为:
VV
V
a1(1 ε1 ) a2(1 ε2 ) a3(1 ε3 ) a1a2a3 a1a2a3
a1a2a3 (1 ε1 ε2 ε3 ) a1a2a3 a1a2a3
ε1 ε2 ε3
材料力学
第 7章 应力和应变分析·强度理论
材 料力学
第7章 应力状态和强度理论
2021年4月15日
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
材料力学实验(拉、压、扭):5月11日(本周日) 地点:1号实验楼一楼
➢ 安全12-1、12-3:上午9:00-12:00 ➢ 安全12-2、12-4:下午3:00-6:00 ➢ 安全12-5:晚上7:00-9:30
§7-6 强度理论及其相当应力
§7-7 强度理论的应用
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
§7-9 空间应力状态的应变能密度
一、应变能密度的定义 物体在单位体积内所积蓄的应变能。
二、应变能密度的计算公式
1、单向应力状态下,物体内积蓄的应变能密度为
1 vε 2 σε
河南理工大学土木工程学院
该如何改写?
河南理工大学土木工程学院
材料力学
第 7章 应力和应变分析·强度理论
二、各向同性材料的体积应变
构件每单位体积的体积变化, 称为体积应变用θ表示.
如图所示的单元体,三个边长为 a1 , a2 , a3 变形后的边长分别为
a1(1+,a2(1+2 ,a3(1+3
变形后单元体的体积为
V'=a1(1+·a2(1+2 ·a3(1+3
相关文档
最新文档