山东省滕州市第三中学2014-2015学年高二上学期期中考试数学试题

合集下载

山东省兖州市2014-2015学年高二上学期期中考试数学试题word版含答案

山东省兖州市2014-2015学年高二上学期期中考试数学试题word版含答案

2014-2015学年度第一学期期中质量检测高二数学试题一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、在ABC 中,15,10,60a b A ,则cos B()A .233B .233C .63D .632、在等差数列n a 中,已知4816a a ,则该数列前11项和11S ()A .58 B.88 C.143 D.1763、设33tan,32,则sin cos的值为()A .1322B .1322C .1322D .13224、设等差数列n a 的前n 项和为n S ,若14611,6a a a ,则当n S 取最小值时,n 等于()A .6B .7 C.8 D.95、在等差数列n a 中,12505152100200,2700a a a a a a ,则1a 为()A .22.5B .21.5 C .20.5 D.206、数列n a 的前n 项和为n S ,若111,3(1)nn a a S n ,则6a ()A .434 B .534 C.44 D.547、如图,,D C B 三点在地面同一直线上,DC a ,从,C D 两点测得A 点的仰角分别为,(),则A 点离地面的高度AB( ) A .sin sinsin()a B.sin sinsin()a C .sin cossin()a D .cos sin sin()a 8、已知n a 是等比数列,对任意nN ,都有0na ,如果335446()()25a a a a a a ,则35a a ()A .5 B .10 C.15 D.209、已知向量1(,1),(2,),n n aa b a nN 且12,a ab ,则数列n a 的前n 项和为n S ()A .122n B .122n C .12n D.31n10、已知函数2(1cos2)sin ,f x x x xR ,则f x 是()A .最小正周期为的奇函数B .最小正周期为2的奇函数C .最小正周期为的偶函数 D.最小正周期为2的偶函数二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

山东省滕州市善国中学高二上学期期中考试数学(理)试题

山东省滕州市善国中学高二上学期期中考试数学(理)试题

2013-2014学年度山东省滕州市善国中学高二第一学期期中考试数学(理)试题考生注意:1、本试卷设试卷Ⅰ、Ⅱ卷和答题卡纸三部分,试卷所有答题都必须写在答题纸上。

2、答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。

3、考试时间为120分钟,试卷满分为150分第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的 )1、已知d c b a ,,,为实数,且d c >,则“a b >”是“a c b d +>+”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2、二圆221:1C x y +=和222:450C x y x +--=的位置关系是( )A .相交B .外切C .内切D .外离3、记(P)f 为双曲线 22221x y a b-=(a >0,b >0)上一点P 到它的两条渐近线的距离之和;当P 在双曲线上移动时,总有(P)f ≥b .则双曲线的离心率的取值范围是A .5(1,]4B .5(1,]3C .(0,2]D .4、“直线L 垂直于平面内无数条直线”是“直线L 垂直于平面”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5、若圆O :x 2+y 2=4与圆C :x 2+y 2+4x -4y +4=0关于直线L 对称,则直线L 的方程是A .x +y =0B .x -y =0C .x -y +2=0D .x +y +2=06、已知焦点在x 轴上的椭圆的离心率为21,它的长轴长等于圆x 2+y 2-2x-15=0的半径,则椭圆的标准方程是A .1121622=+y x B .1422=+y x C .141622=+y x D .13422=+y x 7、正方体ABCD —A 1B 1C 1D 1的棱长为1,则点A 1到平面ABC 1D 1的距离为A .21 B .42C .22D .23 8、若点O 和点F 分别为椭圆2212x y +=的中心和右焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值是A .2-B .12C .2+D .不存在9、已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于A .4B .4C .2D .210、若直线y =x+k 与曲线y =有公共点,则k 的取值范围是A .33⎡--+⎣B .4,3⎡--+⎣C .32⎡⎤---⎣⎦D .[]4,2--11、已知球的直径SC =4,A 、B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则三棱锥S -ABC 的体积为 A .33B .233C .433D .53312、设直线022:=+-y x l 关于原点对称的直线为l ',若l '与椭圆4422=+y x 的交点为P 、Q, 点M 为椭圆上的动点,则使△MPQ 的面积为12的点M 的个数为 A .1B .2C .3D .4第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分。

【数学】2014-2015年山东省枣庄市滕州一中高三(上)期中数学试卷与答案(文科)

【数学】2014-2015年山东省枣庄市滕州一中高三(上)期中数学试卷与答案(文科)

2014-2015学年山东省枣庄市滕州一中高三(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为()A.3 B.11 C.8 D.122.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.233.(5分)“a=﹣1”是“(a﹣i)2”为纯虚数的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)α,β是两个不同的平面,则下列命题中错误的是()A.若α∥β,则α内一定存在直线平行于βB.若α∥β,则α内一定存在直线垂直于βC.若α⊥β,则α内一定存在直线平行于βD.若α⊥β,则α内一定存在直线垂直于β5.(5分)设a=log3,b=()0.3,c=lnπ,则()A.a<b<c B.a<c<b C.c<a<b D.b<a<c6.(5分)已知,为单位向量,且夹角为,则向量2+与的夹角大小是()A. B.C.D.7.(5分)关于函数f(x)=2﹣x+lnx,下列说法正确的是()A.无零点B.有且仅有一个零点C.有两个零点x1,x2,且(x1﹣1)(x2﹣1)>0D.有两个零点x1,x2,且(x1﹣1)(x2﹣1)<08.(5分)在△ABC中,a,b,c分别为角A、B、C的对边且,则角B的大小为()A.B.C.D.9.(5分)记f(P)为双曲线﹣=1(a>0,b>0)上一点P到它的两条渐近线的距离之和;当P在双曲线上移动时,总有f(P)≥b.则双曲线的离心率的取值范围是()A.(1,]B.(1,]C.(1,2]D.(1,]10.(5分)函数f(x)=x3+x﹣sinx的定义域为R,数列{a n}是公差为d的等差数列,且a1+a2+a3+…+a2014<0,记m=f(a1)+f(a2)+f(a3)+…+f(a2014).关于实数m,下列说法正确的是()A.m恒为负数B.m恒为正数C.当d>0时,m恒为正数;当d<0时,m恒为负数D.当d>0时,m恒为负数;当d<0时,m恒为正数二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)复数z满足=i,其中i是虚数单位,则z=.12.(4分)如图,一个简单空间几何体的三视图,其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是.13.(4分)函数f(x)=,则不等式f(x)<4的解集是.14.(4分)已知D是△OAB的边OA的中点,E是边AB的一个三等分点,且=2,若向量=,=,试用,表示向量=.15.(4分)已知1≤x≤2,2≤y≤3,当x,y在可取值范围内变化时,不等式xy ≤ax2+2y2恒成立,则实数a的取值范围是.16.(4分)△ABC中,AB=6,AC=3,M是线段BC上一点,且BC=3BM,若cos ∠CAM=,则BC=.17.(4分)已知A(﹣2,4),B(2,8)是直线y=x+6上两点,若线段AB与椭圆+=1有公共点,则正数a的取值范围是.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)函数f(x)=sin2ωx+2sinωx•cosωx+3cos2ωx的定义域为[0,],(1)当ω=1时,求函数f(x)的最小值;(2)若ω>0,定义域为[0,]的函数f(x)的最大值为M,如果关于x的方程f(x)=M在区间[0,]有且仅有一个解,求ω的取值范围.19.(14分)设等比数列{a n}的首项为a,公比q>0,前n项和为S n(1)当a=1时,S1+1,S2+2,S3+1三数成等差数列,求数列{a n}的通项公式;(2)甲:S n,(S n+1+1),S n+2三数构成等差数列,其中n是一个正整数;乙:S n+1,(S n+2+1),S n+3三数构成等差数列,其中n是一个正整数;求证:对于同一个正整数n,甲与乙不能同时为真.20.(15分)如图E,F是正方形ABCD的边CD、DA的中点,今将△DEF沿EF 翻折,使点D转移至点P处,且平面PEF⊥平面ABCEF(1)若平面PAF∩平面PBC=l,求证:l∥BC;(2)求直线BC与平面PAB所成的角的正弦值.21.(15分)已知函数f(x)=ax2﹣3x+2+2lnx(a>0)(1)当a=﹣1时,求函数f(x)的单调区间,并指出在每个单调区间上是增函数还是减函数;(2)求实数a的取值范围,使对任意的x∈[1,+∞),恒有f(x)≥0成立.22.(14分)抛物线C:y2=4x及圆M:(x﹣3)2+y2=1,(1)过圆上一点P(3,1)的直线l1交抛物线C于A、B两点,若线段AB被点P平分,求直线l1的方程;(2)直线l2交抛物线C于E、F两点,若线段EF的中点在圆M上,求•的取值范围.2014-2015学年山东省枣庄市滕州一中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为()A.3 B.11 C.8 D.12【解答】解:由题意得,A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A 且y∈B},当x=1时,z=1或2或3;当x=2时,z=2或4或6;当x=3时,z=3或6或9;当x=4时,z=4或8或12;当x=5时,z=5或10或15;所以C={1,2,3,4,6,8,9,12,5,10,15}中的元素个数为11,故选:B.2.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.3.(5分)“a=﹣1”是“(a﹣i)2”为纯虚数的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:(a﹣i)2=a2﹣2ai+i2=a2﹣1﹣2ai,若“(a﹣i)2”为纯虚数,则a2﹣1=0且﹣2a≠0,解得a=±1,∴“a=﹣1”是“(a﹣i)2”为纯虚数充分不必要条件,故选:A.4.(5分)α,β是两个不同的平面,则下列命题中错误的是()A.若α∥β,则α内一定存在直线平行于βB.若α∥β,则α内一定存在直线垂直于βC.若α⊥β,则α内一定存在直线平行于βD.若α⊥β,则α内一定存在直线垂直于β【解答】解:若α∥β,则由平面与平面平行的性质知,α内任间一条直线都平行于β,故A正确;若α∥β,则由平面与平面平行的性质知,α内任间一条直线都平行于β,故B错误;若α⊥β,则α内的直线与β相交、平行或包含于平面β,故C正确;若α⊥β,则由平面与平面垂直的判定定理知α内一定存在直线垂直于β,故D 正确.故选:B.5.(5分)设a=log3,b=()0.3,c=lnπ,则()A.a<b<c B.a<c<b C.c<a<b D.b<a<c【解答】解:∵<=0,=1,lnπ>lne=1,∴c>b>a,故选:A.6.(5分)已知,为单位向量,且夹角为,则向量2+与的夹角大小是()A. B.C.D.【解答】解:由,为单位向量,且夹角为,不妨取=(1,0),则=,∴2+=,∴=,==.设向量2+与的夹角为θ,∴cosθ===,∵θ∈[0,π],∴.故选:D.7.(5分)关于函数f(x)=2﹣x+lnx,下列说法正确的是()A.无零点B.有且仅有一个零点C.有两个零点x1,x2,且(x1﹣1)(x2﹣1)>0D.有两个零点x1,x2,且(x1﹣1)(x2﹣1)<0【解答】解:f′(x)=﹣1+=,则f(x)=2﹣x+lnx在(0,1)上单调递增,在(1,+∞)上单调递减,又∵x→0时,f(x)→﹣∞,f(1)=2﹣1+0=1>0,f(e2)=2﹣e2+2<0,则有两个零点,且在1的两侧;即有两个零点x1,x2,且(x1﹣1)(x2﹣1)<0,故选:D.8.(5分)在△ABC中,a,b,c分别为角A、B、C的对边且,则角B的大小为()A.B.C.D.【解答】解:在△ABC中,∵,由正弦定理可得,化简可得﹣sin(B+C)=2sinAcosB,即﹣sinA=2sinAcosB,解得cosB=﹣,故B=,故选:D.9.(5分)记f(P)为双曲线﹣=1(a>0,b>0)上一点P到它的两条渐近线的距离之和;当P在双曲线上移动时,总有f(P)≥b.则双曲线的离心率的取值范围是()A.(1,]B.(1,]C.(1,2]D.(1,]【解答】解:设P(x,y),∵双曲线﹣=1(a>0,b>0)的渐近线为y=±x,∴f(P)=+≥≥,∵f(P)≥b恒成立.∴,∴,∴双曲线的离心率的取值范围是(1,2].故选:C.10.(5分)函数f(x)=x3+x﹣sinx的定义域为R,数列{a n}是公差为d的等差数列,且a1+a2+a3+…+a2014<0,记m=f(a1)+f(a2)+f(a3)+…+f(a2014).关于实数m,下列说法正确的是()A.m恒为负数B.m恒为正数C.当d>0时,m恒为正数;当d<0时,m恒为负数D.当d>0时,m恒为负数;当d<0时,m恒为正数【解答】解:∵函数f(x)=x3+x﹣sinx的定义域为R,是奇函数,且它的导数f′(x)=x2+1﹣cosx≥0,故函数f(x)在R上是增函数.数列{a n}是公差为d的等差数列,当d>0时,数列为递增数列,由a1+a2014<0,可得a2014<﹣a1,∴f(a2014)<f(﹣a1)=﹣f(a1),∴f(a1)+f(a2014)<0.同理可得,f(a2)+f(a2013)<0,f(a3)+f(a2012)<0,…故m=f(a1)+f(a2)+f(a3)+…+f(a2012)+f(a2014)=f(a1)+f(a2014)+f(a2)+f(a2013)+f(a3)+f(a2012)+…+f(a1007)+f(a1008)<0.当d<0时,数列为递减数列,同理求得m<0.当d=0时,该数列为常数数列,每一项都小于,故有f(a n)<0,故m=f(a1)+f(a2)+f(a3)+…+f(a2012)+f(a2014)<0,故选:A.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)复数z满足=i,其中i是虚数单位,则z=﹣1﹣i.【解答】解:∵复数z满足=i,∴2+z=zi,∴z===﹣1﹣i.故答案为:﹣1﹣i.12.(4分)如图,一个简单空间几何体的三视图,其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的表面积是12.【解答】解:由题意一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图为正方形,∴此几何体是一个正四棱锥,其底面是边长为2的正方形,斜高为2∴此几何体的表面积是S=2×2+4××2×2=4+8=12故答案为:1213.(4分)函数f(x)=,则不等式f(x)<4的解集是.【解答】解:若x>0,则由f(x)<4得x2+1<4,即x2<3,解得,此时0<x<,若x≤0,则由f(x)<4得2﹣x<4,即﹣x<2,解得x>﹣2,此时﹣2<x≤0,综上﹣2<x<,故答案为:(﹣2,)14.(4分)已知D是△OAB的边OA的中点,E是边AB的一个三等分点,且=2,若向量=,=,试用,表示向量=+.【解答】解:如图所示,∵AD=DB,=2,∴AE=AB;又∵=,=,∴=﹣=﹣,=+=+(﹣)=+.故答案为:+.15.(4分)已知1≤x≤2,2≤y≤3,当x,y在可取值范围内变化时,不等式xy ≤ax2+2y2恒成立,则实数a的取值范围是[﹣1,+∞).【解答】解:由题意,分离参数可得a≥,对于x∈[1,2],y∈[2,3]恒成立,令t=,则1≤t≤3,∴a≥t﹣2t2在[1,3]上恒成立,∵y=﹣2t2+t=﹣2(t﹣)2+∵1≤t≤3,∴y max=﹣1,∴a≥﹣1故答案为:[﹣1,+∞).16.(4分)△ABC中,AB=6,AC=3,M是线段BC上一点,且BC=3BM,若cos∠CAM=,则BC=.【解答】解:由于BC=3BM,则,则==+,||2=++=1+16+,=+=3+,又=||•3•cos∠CAM=,即有3+=,解得=﹣,即有6×3×cos∠CAB=﹣,即cos∠CAB=﹣,则BC2=62+32﹣2×6×3×cos∠CAB=36+9+=,则BC=.故答案为:17.(4分)已知A(﹣2,4),B(2,8)是直线y=x+6上两点,若线段AB与椭圆+=1有公共点,则正数a的取值范围是.【解答】解:联立,化为(2a2﹣4)x2+12a2x+40a2﹣a4=0,(*)令△=0,及a2>4,解得a2=20.方程(*)(3x+10)2=0,解得x=﹣.∵<﹣2<2.∴切点在线段AB之外.因此把A(﹣2,4)代入椭圆方程可得,及a2>4,解得+2.把B(2,8)代入椭圆方程可得,及a2>4,解得a=2+4.由于线段AB与椭圆+=1有公共点,因此正数a的取值范围是.故答案为:.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)函数f(x)=sin2ωx+2sinωx•cosωx+3cos2ωx的定义域为[0,],(1)当ω=1时,求函数f(x)的最小值;(2)若ω>0,定义域为[0,]的函数f(x)的最大值为M,如果关于x的方程f(x)=M在区间[0,]有且仅有一个解,求ω的取值范围.【解答】解:(1)f(x)=sin2ωx+2sinωx•cosωx+3cos2ωx=2+sin2ωx+cos2ωx=2+sin(2ωx+)∵定义域为[0,],ω=1∴2x+∈[,]故由函数图象和性质可知,f(x)min=2+sin=1.(2)由(1)知,定义域为[0,]的函数f(x)的最大值为M=2+根据题意有2+sin(2ωx+)=2+,关于x的方程f(x)=M在区间[0,]有且仅有一个解,就是sin(2ωx+)=1在区间[0,]有且仅有一个解,∵ω>0,∴x=时,2ω×,解得ω<,综上ω∈(0,).19.(14分)设等比数列{a n}的首项为a,公比q>0,前n项和为S n(1)当a=1时,S1+1,S2+2,S3+1三数成等差数列,求数列{a n}的通项公式;(2)甲:S n,(S n+1+1),S n+2三数构成等差数列,其中n是一个正整数;乙:S n+1,(S n+2+1),S n+3三数构成等差数列,其中n是一个正整数;求证:对于同一个正整数n,甲与乙不能同时为真.【解答】解:∵等比数列{a n}的首项为a,公比q>0,前n项和为S n,∴当q=1时,S n=na当q≠1时,S n=(1)当a=1时,若q=1时,S1+1=2,S2+2=4,S3+1=4,S1+1,S2+2,S3+1三数不成等差数列,不符合题意∴q≠1,q>0若q≠1时,S1+1=2,S2+2=3+q,S3+1=2+q+q2,∵S1+1,S2+2,S3+1成等差数列,∴2(3+q)=4+q+q2,即q2﹣q﹣2=0,q=2,q=﹣1(舍去)所以a n=2n﹣1(2)证明:S n=na,S n+1+1=a(n+1)+1,S n+2=a(n+2)∵S n,(S n+1+1),S n+2三数构成等差数列,其中n是一个正整数,∴得出:2=0,不可能甲正确.S n+1=a(n+1),S n+2+1=a(n+2)+1,S n+3=a(n+3),∵S n+1,(S n+2+1),S n+3三数构成等差数列,其中n是一个正整数,∴2a(n+2)+2=a(n+1)+a(n+3),即2=0,乙不可能正确②当q≠1时,S n=,S n+1+1=+1,S n+2=,∴得出甲:aq n(q2﹣2q﹣1)=2(q﹣1),S n+1=,2+S n+2=+2,S n+3=,∵S n+1,(S n+2+1),S n+3三数构成等差数列,其中n是一个正整数;∴aq n+1(q2﹣2q+1)=4q﹣4,即aq n+1(q+1)=4,乙:即aq n+1(q+1)=4,甲:aq n(q2﹣2q﹣1)=2(q﹣1),如果n是同一个整数则甲乙组成方程组必定有解,化简即可得到:q3﹣2q2+3q+2=0,(q>0)令f(q)=q3﹣2q2+3q+2,(q>0)f′(q)=3q2﹣4q+3,(q>0),∵△=16﹣36<0,∴f′(q)=3q2﹣4q+3>0,恒成立(q>0),即f(q)=q3﹣2q2+3q+2,(q>0)单调递增函数,f(0)=2>0,所以可判断:q3﹣2q2+3q+2=0,(q>0)无解,出现矛盾.由以上可以判断:于同一个正整数n,甲与乙不能同时为真.20.(15分)如图E,F是正方形ABCD的边CD、DA的中点,今将△DEF沿EF 翻折,使点D转移至点P处,且平面PEF⊥平面ABCEF(1)若平面PAF∩平面PBC=l,求证:l∥BC;(2)求直线BC与平面PAB所成的角的正弦值.【解答】(1)证明:∵AF∥BC,AF⊄平面PBC,BC⊂平面PBC,∴AF∥平面PBC,∵AF⊂平面PAF,平面PAF∩平面PBC=l,∴l∥BC;(2)解:设正方形的边长为2,则取EF的中点O,连接OA,OB,则PO=,OB=,OA=,∴PA=,PB=,∴cos∠APB=,∴sin∠APB=,∴S==△PAB设C到平面PAB的距离为h,=V C﹣PAB,∵V P﹣ABC∴=h,∴h=,∴直线BC与平面PAB所成的角的正弦值=.21.(15分)已知函数f(x)=ax2﹣3x+2+2lnx(a>0)(1)当a=﹣1时,求函数f(x)的单调区间,并指出在每个单调区间上是增函数还是减函数;(2)求实数a的取值范围,使对任意的x∈[1,+∞),恒有f(x)≥0成立.【解答】解:(1)a=﹣1时,f(x)=﹣x2﹣3x+2+2lnx,f′(x)=﹣2x﹣3+=;令f′(x)=0得x=﹣2,或;∵x>0,∴0<x<,时,f′(x)>0,∴函数f(x)在上单调递增,是它的单调增区间;x时,f′(x)<0,∴函数f(x)在上单调递减,是它的单调减区间;(2)由题意得,f(1)=a﹣1≥0,∴a≥1;f′(x)=,x>0,对于二次函数2ax2﹣3x+2,△=9﹣16a<0;∴2ax2﹣3x+2>0恒成立,即f′(x)>0在[1,+∞)上恒成立;∴f(x)在[1,+∞)上递增,所以a≥1时,f(x)≥f(1)=a﹣1≥0恒成立;∴实数a的取值范围是[1,+∞).22.(14分)抛物线C:y2=4x及圆M:(x﹣3)2+y2=1,(1)过圆上一点P(3,1)的直线l1交抛物线C于A、B两点,若线段AB被点P平分,求直线l1的方程;(2)直线l2交抛物线C于E、F两点,若线段EF的中点在圆M上,求•的取值范围.【解答】解:(1)设A(x1,y1),B(x2,y2),直线l1的斜率为k,则,①,②①﹣②得(y1+y2)(y1﹣y2)=4(x1﹣x2),∵线段AB被点P(3,1)平分,∴,∴直线l1的方程为y﹣1=2(x﹣3),即2x﹣y﹣5=0;(2)设E,F的坐标分别为(x3,y3),(x4,y4),∵E、F在抛物线C:y2=4x上,∴•==.由题意可知,当EF的中点分别是圆与x轴的两个交点时,y3y4有最小值﹣16和最大值﹣8,即y 3y 4∈[﹣16,﹣8], ∴∈[﹣4,0].∴•的取值范围是[﹣4,0].赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x第21页(共21页)。

山东省滕州市第三中学高一上学期期中考试数学试题 Word版含答案

山东省滕州市第三中学高一上学期期中考试数学试题 Word版含答案

2014-2015学年度山东省滕州市第三中学高一第一学期期中考试数学试题时间: 120 分钟 总分:150分一、选择题:(每小题5分,共计60分)1.全集{}1,2,3,4,0U =----,{}{}1,2,0,3,4,0A B =--=--,则()U C A B ⋂=A .{}0B .{}3,4--C .{}1,2--D .∅ 2.下列函数中与函数x y =相同的是 A .2)(x y =B .xx y 2=C .2x y =D .33x y =3.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )A .x x f lg )(=B .()3f x x =C .()12xf x ⎛⎫= ⎪⎝⎭D .()3xf x =4.设3.0log ,3.0,2223.0===c b a ,则c b a ,,的大小关系是A .c b a <<B .a b c <<C .b a c <<D .a c b << 5.函数log (2)1a y x =++的图象过定点 A .(1,2)B .(2,1)C .(-2,1)D .(-1,1)6.函数2)1(2)(2+-+-=x a x x f 在)4,(-∞上是增函数,则实数a 的范围是A .a ≥5B .a ≥3C .a ≤3D .a ≤5-7.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是A .)23(-f >)252(2++a a fB .)23(-f <)252(2++a a fC .)23(-f ≥)252(2++a a fD .)23(-f ≤)252(2++a a f8.函数1(0,1)x y a a a a=->≠的图象可能是9.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数[]2,1,2∈=x x y 与函数[]1,2,2--∈=x x y 即为“同族函数”.请你找出下面哪个函数解析式也能够被用来构造“同族函数”的是A .x y =B .3-=x yC .x y 2=D .12log y x =10.已知函数)(x f 是R 上的增函数,)1,0(-A ,)1,3(B 是其图象上的两点,记不等式)1(+x f <1的解集M ,则M C R =A .(1,2)-B .(1,4)C .(,1][2,)-∞-+∞D .(,1)[4,)-∞-+∞11.方程133-=x x 的三根 1x ,2x ,3x ,其中1x <2x <3x ,则2x 所在的区间为A .)1,2(--B .(0 , 1 )C .(1,23) D .(23, 2) 12.设)(x f 是奇函数,且在),0(+∞内是增函数,又0)3(=-f ,则0)(<⋅x f x 的解集是A .{}303|><<-x x x 或B .{}303|<<-<x x x 或C .{}3003|<<<<-x x x 或D .{}33|>-<x x x 或二、填空题:本大题共4小题,每小题5分,共20分。

山东省滕州市第二中学高二上学期期中考试数学理试题 W

山东省滕州市第二中学高二上学期期中考试数学理试题 W

2014-2015学年度山东省滕州市第二中学高二第一学期期中考试数学理试题考试时间:120分钟 试卷满分:150一、选择题(本题10小题,每小题5分,共50分,只有一项是符合题目要求的) 1.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是 A .若m ∥α,n ∥α,则m ∥n B .若α⊥γ,β⊥γ,则α∥βC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,n ⊥α,则m ∥n2.函数12)(2+-=ax x x f 在(]2,∞-上是单调递减函数的必要不充分条件是( )A .2≥aB .6=aC .3≥aD .0≥a3.抛物线的顶点在原点,焦点与双曲线22154y x -=的一个焦点重合,则抛物线的标准方程可能是( )A .24x y =B .24x y =-C .212y x =-D .212x y =-4.执行如图所示的程序框图,如果输入的[2,2]t ∈-,则输出的 S 属于( )A .[6,2]--B .[5,1]--C .[4,5]-D .[3,6]-5.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和 y 轴交于点A ,若OAF ∆(O 为坐标原点)的面积为4,则抛物线方程为( ).A .24y x =± B .28y x =± C .24y x = D .28y x =6.已知椭圆 22221(0)x y a b a b+=>>的左、右焦点为12,F F ,,过2F 的直线l 交C 于,A B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 7.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r =( ) A .3B .2C .3D .68.设1F 、2F 分别为双曲线22221(0x y a a b-=>,0)b >的左、右焦点,双曲线上存在一点P 使得12||||3PF PF b +=,129||||4PF PF ab ⋅=,则该双曲线的离心率为( ) A .43B .53C .94D .39.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .2B .3C .115D .371610.ABC ∆的顶点(5,0),(5,0)A B -,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是( )A .221916x y -=B .221169x y -= C .221(3)916x y x -=> D .221(4)169x y x -=> 二、填空题:本大题共5小题,每小题5分,共25分.11.若,a b ≤则22ac bc ≤,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是____.12.椭圆 22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则12F PF ∠的大小为____. 13.过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =____.14.在平面直角坐标系中,O 为原点, (1,0),(3,0)A B C -,动点D 满足1CD =,则OA OB OD ++的最大值是____.15.如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为____.三、解答题:本大题共6小题, 共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本题12分)已知命题:P 函数log (12)a y x =-在定义域上单调递增;命题:Q 不等式2(2)2(2)40a x a x -+--<对任意实数x 恒成立.若P Q ∨是真命题,求实数a 的取值范围.17.(本题12分)如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2AB =,3BAD π∠=,M 为BC 上一点,且12BM =,MP AP ⊥.(1)求PO 的长;(2)求二面角A PM C --的正弦值. 18.(本题12分)是否存在同时满足下列两条件的直线l :(1)l 与抛物线x y 82=有两个不同的交点A 和B ;(2)线段AB 被直线1:550l x y +-=垂直平分.若不存在,说明理由,若存在,求出直线l 的方程.19.(本题12分)已知椭圆22:2 4.C x y +=(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =上,点B 在椭圆C 上,且,OA OB ⊥求线段AB 长度的最小值.20.(本题13分)))(,(000a x y x P ±≠是双曲线E :)0,0(12222>>=-b a by a x 上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为51.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A 、B 两点,O 为坐标原点,C 为双曲线上一点,满足→→→+=---------OB OA OC λ,求λ的值.21.(本题14分)如图,O 为坐标原点,椭圆221221(0)x y C a b a b+=>>:的左右焦点分别为12,F F ,离心率为1e ;双曲线222221(0)x y C a b a b-=>>:的左右焦点分别为34,F F ,离心率为2e ,已知12e e =,且241F F =. (1)求12C C ,的方程;(2)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.2014-2015学年度山东省滕州市第二中学高二第一学期期中考试数学理试题参考答案1-10DDDDB AABAC 11.212.23π 13.214.115.解析:考查椭圆的基本性质,如顶点、焦点坐标,离心率的计算等。

2014-2015年山东省枣庄市滕州二中高二上学期期末数学试卷(理科)与解析

2014-2015年山东省枣庄市滕州二中高二上学期期末数学试卷(理科)与解析

2014-2015学年山东省枣庄市滕州二中高二(上)期末数学试卷(理科)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(4分)抛物线y=x2的准线方程是()A.y=﹣1B.y=﹣2C.x=﹣1D.x=﹣22.(4分)直线(a为实常数)的倾斜角的大小是()A.30°B.60°C.120°D.150°3.(4分)已知,,且,则()A.B.C.D.x=1,y=﹣1 4.(4分)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β5.(4分)命题“若ab=0,则a=0或b=0”的否命题是()A.若ab=0,则a≠0或b≠0B.若ab=0,则a≠0且b≠0C.若ab≠0,则a≠0或b≠0D.若ab≠0,则a≠0且b≠0 6.(4分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.27.(4分)双曲线与椭圆(a>0,m>b>0)的离心率互为倒数,则()A.a2+b2=m2B.a2+b2>m2C.a2+b2<m2D.a+b=m8.(4分)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是()A.y2=8x B.y2=4x C.y2=﹣4x D.y2=﹣8x9.(4分)直线y=x+2与曲线=1的交点个数为()A.0B.1C.2D.310.(4分)三棱锥O﹣ABC中,OA,OB,OC两两垂直且相等,点P,Q分别是线段BC和OA上移动,且满足BP≤BC,AQ≤AO,则PQ和OB所成角余弦值的取值范围是()A.B.C.D.二、填空题(本大题共7小题,每小题4分,满分28分).11.(4分)双曲线4x2﹣y2=16的渐近线方程是.12.(4分)在空间直角坐标系中,若A(3,﹣4,0),B(﹣3,4,z)两点间的距离为10,则z=.13.(4分)直线+=1的倾斜角的余弦值为.14.(4分)如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点F上,且灯的深度EG等于灯口直径AB,若灯的深度EG为64cm,则光源安装的位置F到灯的顶端G的距离为cm.15.(4分)在正方体AC1中,直线BC1与平面ACC1A1所成角的大小为.16.(4分)若圆x2+y2=25与圆x2+y2﹣6x+8y+m=0的公共弦的长为8,则m=.17.(4分)对于曲线x2﹣xy+y2=1有以下判断,其中正确的有(填上相应的序号即可).(1)它表示圆;(2)它关于原点对称;(3)它关于直线y=x对称;(4)|x|≤1,|y|≤1.三、解答题(本大题共4小题,满分52分.解答应写出文字说明.证明过程或演算步骤).18.(12分)如图,已知长方形ABCD的两条对角线的交点为E(1,0),且AB 与BC所在的直线方程分别为x+3y﹣5=0与ax﹣y+5=0.(1)求AD所在的直线方程;(2)求出长方形ABCD的外接圆的方程.19.(12分)已知命题p:存在x∈[1,4]使得x2﹣4x+a=0成立,命题q:对于任意x∈R,函数f(x)=lg(x2﹣ax+4)恒有意义.(1)若p是真命题,求实数a的取值范围;(2)若p∨q是假命题,求实数a的取值范围.20.(14分)如图,斜三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,低面ABC是边长为2的正三角形,其重心为G点(重心为三条中线的交点).E是线段BC1上一点且.(1)求证:GE∥侧面AA1B1B;(2)求平面B1GE与底面ABC所成锐二面角的大小.21.(14分)已知椭圆+=1(a>b>0)的右焦点为F,M为上顶点,O为坐标原点,若△OMF的面积为,且椭圆的离心率为.(1)求椭圆的方程;(2)是否存在直线l交椭圆于P,Q两点,且使点F为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.2014-2015学年山东省枣庄市滕州二中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(4分)抛物线y=x2的准线方程是()A.y=﹣1B.y=﹣2C.x=﹣1D.x=﹣2【解答】解:抛物线y=x2的标准方程为x2=4y,焦点在y轴上,2p=4,∴=1,∴准线方程y=﹣=﹣1.故选:A.2.(4分)直线(a为实常数)的倾斜角的大小是()A.30°B.60°C.120°D.150°【解答】解:∵直线(a为实常数)的斜率为﹣令直线(a为实常数)的倾斜角为θ则tanθ=﹣解得θ=150°故选:D.3.(4分)已知,,且,则()A.B.C.D.x=1,y=﹣1【解答】解:∵,∴=(1+2x,4,4﹣y),=(2﹣x,3,2﹣2y),∵,∴,解得故选:B.4.(4分)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【解答】解:若l⊥α,α⊥β,则l⊂β或l∥β,故A错误;若l∥α,α∥β,则l⊂β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选:C.5.(4分)命题“若ab=0,则a=0或b=0”的否命题是()A.若ab=0,则a≠0或b≠0B.若ab=0,则a≠0且b≠0C.若ab≠0,则a≠0或b≠0D.若ab≠0,则a≠0且b≠0【解答】解:根据否命题的定义可知:命题“若ab=0,则a=0或b=0”的否命题是:若ab≠0,则a≠0且b≠0,故选:D.6.(4分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.2【解答】解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,三棱柱的底面为等腰三角形,且三角形的底边长为2,底边上的高为1,∴几何体的体积V=××2×1×2=.故选:B.7.(4分)双曲线与椭圆(a>0,m>b>0)的离心率互为倒数,则()A.a2+b2=m2B.a2+b2>m2C.a2+b2<m2D.a+b=m【解答】解:双曲线的离心率为椭圆的离心率为∵双曲线与椭圆(a>0,m>b>0)的离心率互为倒数∴×=1∴a2m2=(a2+b2)(m2﹣b2)∴a2+b2=m2故选:A.8.(4分)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是()A.y2=8x B.y2=4x C.y2=﹣4x D.y2=﹣8x【解答】解:设动圆M的半径为r,依题意:|MF|=r﹣1,点M到定直线x=2的距离为d=r﹣1∴动点M到定点F(﹣2,0)的距离等于到定直线x=2的距离∴M的轨迹为以F为焦点,x=2为准线的抛物线∴此动圆的圆心M的轨迹方程是y2=﹣8x故选:D.9.(4分)直线y=x+2与曲线=1的交点个数为()A.0B.1C.2D.3【解答】解:当x≥0时,曲线方程为,图形为双曲线在y轴的右半部分;当x<0时,曲线方程为y2+x2=2,图形为圆在y轴的左半部分;如图所示,∵y=x+2是y2+x2=2的切线,渐近线方程为y=±x∴直线y=x+2与曲线=1的交点个数为1.故选:B.10.(4分)三棱锥O﹣ABC中,OA,OB,OC两两垂直且相等,点P,Q分别是线段BC和OA上移动,且满足BP≤BC,AQ≤AO,则PQ和OB所成角余弦值的取值范围是()A.B.C.D.【解答】解:如图所示,不妨取OA=2.则B(0,2,0),C(0,0,2).设P(0,y,z),,.则(0,y﹣2,z)=λ(0,﹣2,2)=(0,﹣2λ,2λ),∴解得y=2﹣2λ,z=2λ.∴P(0,2﹣2λ,2λ).设Q(m,0,0),.则=(m,2λ﹣2,﹣2λ),又=(0,2,0),∴==.①当点P取B(0,1,0)时,取时,,λ=0,则==.取Q(1,0,0)时,m=1,λ=0,=.②当点P取B(0,,)时,取时,,λ=,则==.取Q(1,0,0)时,m=1,λ=,==.综上可得:PQ和OB所成角余弦值的取值范围是.故选:C.二、填空题(本大题共7小题,每小题4分,满分28分).11.(4分)双曲线4x2﹣y2=16的渐近线方程是y=±2x.【解答】解:将双曲线化成标准方程,得,∴a=2且b=4,双曲线的渐近线方程为y=±2x.故答案为:y=±2x.12.(4分)在空间直角坐标系中,若A(3,﹣4,0),B(﹣3,4,z)两点间的距离为10,则z=0.【解答】解:∵空间直角坐标系中,点A(3,﹣4,0),B(﹣3,4,z)两点间的距离为10,∴=10,∴z2=0.解得z=0.故答案为:0.13.(4分)直线+=1的倾斜角的余弦值为.【解答】解:化已知直线的方程为斜截式:y=﹣2x+4可得直线的斜率为﹣2,设直线的倾斜角为α,α∈[0,π),可得tanα=﹣2,∴,解方程组可得,∴所求余弦值为:故答案为:14.(4分)如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点F上,且灯的深度EG等于灯口直径AB,若灯的深度EG为64cm,则光源安装的位置F到灯的顶端G的距离为4cm.【解答】解:以反射镜顶点为原点,以顶点和焦点所在直线为x轴,建立直角坐标系.设抛物线方程为y2=2px,依题意可点A(64,32)在抛物线上代入抛物线方程得322=128p解得p=8∴焦点坐标为(4,0),而光源到反射镜顶点的距离正是抛物线的焦距,即4cm.故答案为:4.15.(4分)在正方体AC1中,直线BC1与平面ACC1A1所成角的大小为.【解答】解:连接BD,BD∩AC=0,连接OC1,由正方体的性质可得BO⊥AC,BO⊥AA1且AA1∩AC=A∴BO⊥平面AA 1C1C∴∠BC1O为直线BC1与平面A1ACC1所成的角设正方体的棱长为a,则OB=a,BC1=a在Rt△BC1O中,sin∠BC1O==∴∠BC1O=.故答案为:.16.(4分)若圆x2+y2=25与圆x2+y2﹣6x+8y+m=0的公共弦的长为8,则m=﹣55或5.【解答】解:x2+y2=25①x2+y2﹣6x+8y+m=0②两式相减得6x﹣8y﹣25﹣m=0.圆x2+y2=25的圆心为(0,0),半径r=5.圆心(0,0)到直线6x﹣8y﹣25﹣m=0的距离为=.则公共弦长为2=8∴r2﹣d2=16.∴d2=9.∴d==3.解得,m=﹣55或d=5故答案为:﹣55或5.17.(4分)对于曲线x2﹣xy+y2=1有以下判断,其中正确的有(2)(3)(填上相应的序号即可).(1)它表示圆;(2)它关于原点对称;(3)它关于直线y=x对称;(4)|x|≤1,|y|≤1.【解答】解:(1)曲线x2﹣xy+y2=1中含有xy项,方程不表示圆;(2)在原方程中,同时将x换成﹣x,且将y换成﹣y,方程不变,就说明曲线关于原点对称;(3)在原方程中,将x,y互换,方程不变,因此曲线关于直线y=x对称;(4)x=时,y2﹣﹣=0,所以y=,不满足|y|≤1,即(4)不正确.故答案为:(2)(3).三、解答题(本大题共4小题,满分52分.解答应写出文字说明.证明过程或演算步骤).18.(12分)如图,已知长方形ABCD的两条对角线的交点为E(1,0),且AB 与BC所在的直线方程分别为x+3y﹣5=0与ax﹣y+5=0.(1)求AD所在的直线方程;(2)求出长方形ABCD的外接圆的方程.【解答】解:(1)∵ABCD为正方形,∴AB⊥BC,∵长方形ABCD的两条对角线的交点为E(1,0),且AB与BC所在的直线方程分别为x+3y﹣5=0与ax﹣y+5=0.∴a=3,…(2分)由题意知AD∥BC,∴设AD所在的直线方程为3x﹣y+C=0∵长方形ABCD的两条对角线的交点为E(1,0),∴E到BC的距离和E到AD的距离相等,∴,解得C=﹣11,∴AD所在的直线方程3x﹣y﹣11=0.…(6分)(2)由,得B(﹣1,2),…(8分)∴,∴长方形ABCD的外接圆以E为圆心以|BE|为半径,即(x﹣1)2+y2=8.…(12分)19.(12分)已知命题p:存在x∈[1,4]使得x2﹣4x+a=0成立,命题q:对于任意x∈R,函数f(x)=lg(x2﹣ax+4)恒有意义.(1)若p是真命题,求实数a的取值范围;(2)若p∨q是假命题,求实数a的取值范围.【解答】解:(1)设g(x)=x2﹣4x+a,对称轴为x=2若存在一个x∈[1,4]满足条件,则g(1)<0,g(4)≥0,得0≤a<3,…(3分)若存在两个x∈[1,4]满足条件,则g(1)≥0,g(2)≤0,得3≤a≤4,故p是真命题时实数a的取值范围为0≤a≤4…(6分)(2)由题意知p,q都为假命题,若p为假命题,则a<0或a>4…(8分)若命题q为真命题即对于任意x∈R,函数f(x)=lg(x2﹣ax+4)恒有意义所以x2﹣ax+4>0恒成立所以△=a2﹣16<0得﹣4<a<4所以q为假命题时a≤﹣4或a≥4…(10分)故满足条件的实数a的取值范围为a≤﹣4或a>4…(12分)20.(14分)如图,斜三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,低面ABC是边长为2的正三角形,其重心为G点(重心为三条中线的交点).E是线段BC1上一点且.(1)求证:GE∥侧面AA1B1B;(2)求平面B1GE与底面ABC所成锐二面角的大小.【解答】解:(1)延长B1E交BC于F,∵△B1EC1∽△FEB,BE=EC1∴BF=B1C1=BC,从而F为BC的中点.(2分)∵G为△ABC的重心,∴A、G、F三点共线,且=,∴GE∥AB1,又GE⊄侧面AA1B1B,AB1⊂侧面AA1B1B,∴GE∥侧面AA1B1B (4分)(2)在侧面AA1B1B内,过B1作B1H⊥AB,垂足为H,∵侧面AA1B1B⊥底面ABC,∴B1H⊥底面ABC.又侧棱AA1与底面ABC成60°的角,AA1=2,∴∠B1BH=60°,BH=1,B1H=(6分)在底面ABC内,过H作HT⊥AF,垂足为T,连B1T.由三垂线定理有B1T⊥AF,又平面B1GE与底面ABC的交线为AF,∴∠B1TH为所求二面角的平面角(8分)∴AH=AB+BH=3,∠HAT=30°,∴HT=AHsin30°=,在Rt△B1HT中,tan∠B1TH=(10分)从而平面B1GE与底面ABC所成锐二面角的大小为arctan(12分)21.(14分)已知椭圆+=1(a>b>0)的右焦点为F,M为上顶点,O为坐标原点,若△OMF的面积为,且椭圆的离心率为.(1)求椭圆的方程;(2)是否存在直线l交椭圆于P,Q两点,且使点F为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(1)∵椭圆+=1(a>b>0)的右焦点为F,M为上顶点,O 为坐标原点,△OMF的面积为,且椭圆的离心率为,由题意得,解得b=1,,故椭圆方程为.(2)假设存在直线l交椭圆于P,Q两点,且F为△PQM的垂心,设P(x1,y1),Q(x2,y2),因为M(0,1),F(1,0),故k PQ=1.于是设直线l的方程为y=x+m,由得3x2+4mx+2m2﹣2=0.由△>0,得m2<3,且,.由题意应有,又,故x1(x2﹣1)+y2(y1﹣1)=0,得x1(x2﹣1)+(x2+m)(x1+m﹣1)=0.即.整理得.解得或m=1.经检验,当m=1时,△PQM不存在,故舍去m=1.当时,所求直线l存在,且直线l 的方程为.赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法yxo②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。

【数学】2014-2015年山东省枣庄市滕州二中高三(上)期中数学试卷与答案(文科)

2014-2015学年山东省枣庄市滕州二中高三(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填写在答题卷上的相应题目的答题区域内.1.(5分)已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈A B.3∉B C.A∩B=B D.A∪B=B2.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)3.(5分)下列函数在定义域内为奇函数的是()A.y=x+B.y=xsinx C.y=|x|﹣1 D.y=cosx4.(5分)某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为()A.15 B.20 C.25 D.305.(5分)若a=3,b=log cos60°,c=log 2tan30°,则()A.a>b>c B.b>c>a C.c>b>a D.b>a>c6.(5分)已知l,m,n是三条不同的直线,α,β是两个不同的平面,下列命题为真命题的是()A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l⊥α,α∥β,m⊂β,则l⊥m C.若l∥m,m⊂α,则l∥αD.若l⊥α,α⊥β,m⊂β,则l∥m7.(5分)将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.(,0)B.(﹣,0) C.(﹣,0) D.(,0)8.(5分)已知函数f(x)=若f(a)≥1,则实数a的取值范围为()A.[0,1]B.[1,+∞)C.[0,3]D.[0,+∞)9.(5分)如图,在边长为2的菱形ABCD中,∠ABC=60°,对角线相交于点O,P是线段BD的一个三等分点,则•等于()A.1 B.2 C.3 D.410.(5分)已知函数f(x)=xsinx的图象是下列两个图象中的一个,请你选择后再根据图象作出下面的判断:若x1,x2∈(﹣,),且f(x1)>f(x2),则()A.x1>x2B.x1+x2>0 C.x1<x2D.x12>x22二、填空题:本大题共6小题,每小题4分,共24分.在答题卷上的相应题目的答题区域内作答.11.(4分)命题:“∀x∈R,x2+2x+1≥0.”的否定是.12.(4分)等差数列{a n}中,a3+a8=6,则=.13.(4分)已知角α的终边上一点的坐标为,则角α的最小正值为.14.(4分)已知a>0,b>0,且a+2b=1,则的最小值为.15.(4分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.16.(4分)记S k=1k+2k+3k+…+n k,当k=1,2,3,…时,观察下列等式:S1=n,S2=n,S3=,S4=n,S5=An6+,…可以推测,A﹣B=.三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}是各项均为正数的等差数列,a1=1,且a2,a3+1,a6成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.18.(12分)已知向量=(cosx+sinx,2cosx),=(cosx﹣sinx,sinx),函数f(x)=•(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最大值和最小值.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.20.(12分)如图,某海滨城市位于海岸A处,在城市A的南偏西20°方向有一个海面观测站B,现测得与B处相距31海里的C处,有一艘豪华游轮正沿北偏西40°方向,以40海里/小时的速度向城市A直线航行,30分钟后到达D处,此时测得B、D间的距离为21海里.(1)求sin∠BDC的值;(2)试问这艘游轮再向前航行多少分钟即可到达城市A?21.(14分)如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF∥AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.(Ⅰ)求证:NC∥平面MFD;(Ⅱ)若EC=3,求证:ND⊥FC;(Ⅲ)求四面体NFEC体积的最大值.22.(14分)已知a∈R,函数.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)讨论f(x)的单调性;(3)是否存在a的值,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,说明理由.2014-2015学年山东省枣庄市滕州二中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填写在答题卷上的相应题目的答题区域内.1.(5分)已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},则下列结论正确的是()A.﹣3∈A B.3∉B C.A∩B=B D.A∪B=B【解答】解:∵|x|≥0,∴|x|﹣1≥﹣1;∴A={y|y≥﹣1},又B={x|x≥2}∴A∩B={x|x≥2}=B.故选:C.2.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.3.(5分)下列函数在定义域内为奇函数的是()A.y=x+B.y=xsinx C.y=|x|﹣1 D.y=cosx【解答】解:A.函数f(x)的定义域为{x|x≠0},则f(﹣x)=﹣x﹣=﹣(x+)=﹣f(x),则函数是奇函数.B.f(﹣x)=﹣xsin(﹣x)=xsinx=f(x)为偶函数,C.f(﹣x)=|﹣x|﹣1=|x|﹣1=f(x)为偶函数,D.f(﹣x)=cos(﹣x)=cosx=f(x),为偶函数.故选:A.4.(5分)某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为()A.15 B.20 C.25 D.30【解答】解:三个年级的学生人数比例为3:3:4,按分层抽样方法,在高三年级应该抽取人数为人,故选:B.5.(5分)若a=3,b=log cos60°,c=log 2tan30°,则()A.a>b>c B.b>c>a C.c>b>a D.b>a>c【解答】解:∵a=3>30=1,0=<b=log cos60°<=1,c=log2tan30°<log21=0,∴a>b>c.故选:A.6.(5分)已知l,m,n是三条不同的直线,α,β是两个不同的平面,下列命题为真命题的是()A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l⊥α,α∥β,m⊂β,则l⊥m C.若l∥m,m⊂α,则l∥αD.若l⊥α,α⊥β,m⊂β,则l∥m【解答】解:若l⊥m,l⊥n,m⊂α,n⊂α,则当m与n相交时,l⊥α,故A错误;若l⊥α,α∥β,m⊂β,则l⊥β,所以l⊥m,故B正确;若l∥m,m⊂α,则l∥α或l⊂α,故C错误;若l⊥α,α⊥β,m⊂β,则l与m相交、平行或异面,故D错误.故选:B.7.(5分)将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.(,0)B.(﹣,0) C.(﹣,0) D.(,0)【解答】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:当x=时,sin(2×﹣)=0;∴(,0)就是函数的一个对称中心坐标.故选:A.8.(5分)已知函数f(x)=若f(a)≥1,则实数a的取值范围为()A.[0,1]B.[1,+∞)C.[0,3]D.[0,+∞)【解答】解:若a≤1,则由f(a)≥1,得f(a)=2a≥1,解得0≤a≤1,若a>1,则由f(a)≥1,得f(a)=a2﹣4a+5≥1,即a2﹣4a+4=(a﹣2)2≥0,解得a>1,综上a≥0,故选:D.9.(5分)如图,在边长为2的菱形ABCD中,∠ABC=60°,对角线相交于点O,P是线段BD的一个三等分点,则•等于()A.1 B.2 C.3 D.4【解答】解:如图所示,在边长为2的菱形ABCD中,∠ABC=60°,对角线相交于点O,P是线段BD的一个三等分点,∴A(0,1),C(0,﹣1),P.则•=•(0,﹣2)=2.故选:B.10.(5分)已知函数f(x)=xsinx的图象是下列两个图象中的一个,请你选择后再根据图象作出下面的判断:若x1,x2∈(﹣,),且f(x1)>f(x2),则()A.x1>x2B.x1+x2>0 C.x1<x2D.x12>x22【解答】解:因为y=x和y=sinx都是奇函数,所以函数f(x)=xsinx为偶函数,图象关于y轴对称,所以图象为第二个.且当x∈(0,)时,函数f(x)=x•sinx是增函数,当x∈(﹣,0)时,函数f(x)=x•sinx是减函数.若x1,x2∈(0,),f(x1)>f(x2),则有x1>x2,故C不正确;若x1,x2∈(﹣,0),f(x1)>f(x2),此时x1<x2,所以此时A,B都不正确,排除A,B.因为x12,x22∈(0,),f(x1)>f(x2),所以x12>x22,成立.故选:D.二、填空题:本大题共6小题,每小题4分,共24分.在答题卷上的相应题目的答题区域内作答.11.(4分)命题:“∀x∈R,x2+2x+1≥0.”的否定是.【解答】解:因为全称命题的否定是特称命题,所以命题:“∀x∈R,x2+2x+1≥0.”的否定是:.故答案为:(写成∃x∈R,x2+2x+1<0也给分)12.(4分)等差数列{a n}中,a3+a8=6,则=30.【解答】解:由等差数列{a n},a3+a8=6,∴a1+a10=a2+a9=a3+a8=…,∴==a1+a2+…+a10=5(a3+a8)=5×6=30.故答案为30.13.(4分)已知角α的终边上一点的坐标为,则角α的最小正值为.【解答】解:由题意,点在第四象限∵==∴角α的最小正值为故答案为:14.(4分)已知a>0,b>0,且a+2b=1,则的最小值为.【解答】解:∵a>0,b>0,且a+2b=1,∴=(a+2b)=3+=,当且仅当a=b时取等号.∴的最小值为.故答案为:.15.(4分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为2.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC=,在Rt△BCD中,BD=,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.16.(4分)记S k=1k+2k+3k+…+n k,当k=1,2,3,…时,观察下列等式:S1=n,S2=n,S3=,S4=n,S 5=An6+,…可以推测,A﹣B=.【解答】解:根据所给的已知等式得到:各等式右边各项的系数和为1;最高次项的系数为该项次数的倒数;所以A=,解得B=,所以A﹣B=,故答案为:三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}是各项均为正数的等差数列,a1=1,且a2,a3+1,a6成等比数列.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和S n.【解答】解:(1)设等差数列{a n}的公差为d,∵a2,a3+1,a6成等比数列.∴,即(2d+2)2=(1+d)(1+5d),解得d=3或d=﹣1.由已知数列{a n}各项均为正数,∴d=3,故a n=1+3(n﹣1)=3n﹣2.(2)∵,∴.∴S n=1﹣=.18.(12分)已知向量=(cosx+sinx,2cosx),=(cosx﹣sinx,sinx),函数f(x)=•(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最大值和最小值.【解答】解:(I)∵=,∴函数f(x)的最小正周期为.(II)令,∵,∴,即,∴sint在上是增函数,在上是减函数,∴当,即,时,.当或,即x=0或时,.19.(12分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.【解答】(Ⅰ)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵CD⊥BD,AB∩BD=B,∴CD⊥平面ABD;(Ⅱ)解:∵AB⊥平面BCD,BD⊂平面BCD,∴AB⊥BD.∵AB=BD=1,=,∴S△ABD∵M为AD中点,=S△ABD=,∴S△ABM∵CD⊥平面ABD,=V C﹣ABM=S△ABM•CD=.∴V A﹣MBC20.(12分)如图,某海滨城市位于海岸A处,在城市A的南偏西20°方向有一个海面观测站B,现测得与B处相距31海里的C处,有一艘豪华游轮正沿北偏西40°方向,以40海里/小时的速度向城市A直线航行,30分钟后到达D处,此时测得B、D间的距离为21海里.(1)求sin∠BDC的值;(2)试问这艘游轮再向前航行多少分钟即可到达城市A?【解答】解:(1)由已知可得CD=40×=20,△BDC中,根据余弦定理求得cos∠BDC==﹣,∴sin∠BDC==.(2)由已知可得∠BAD=20°+40°=60°,∴sin∠ABD=sin(∠BDC﹣60°)=×﹣(﹣)×=.△ABD中,由正弦定理可得.又BD=21,∴AD==15,∴t==22.5分钟.即这艘游轮再向前航行22.5分钟即可到达城市A.21.(14分)如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF∥AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.(Ⅰ)求证:NC∥平面MFD;(Ⅱ)若EC=3,求证:ND⊥FC;(Ⅲ)求四面体NFEC体积的最大值.【解答】(Ⅰ)证明:因为四边形MNEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD.所以四边形MNCD是平行四边形,…(2分)所以NC∥MD,…(3分)因为NC⊄平面MFD,所以NC∥平面MFD.…(4分)(Ⅱ)证明:连接ED,设ED∩FC=O.因为平面MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF,…(5分)因为FC⊂平面ECDF,所以FC⊥NE.…(6分)又EC=CD,所以四边形ECDF为正方形,所以FC⊥ED.…(7分)所以FC⊥平面NED,…(8分)因为ND⊂平面NED,所以ND⊥FC.…(9分)(Ⅲ)解:设NE=x,则EC=4﹣x,其中0<x<4.由(Ⅰ)得NE⊥平面FEC,所以四面体NFEC的体积为.…(11分)所以.…(13分)当且仅当x=4﹣x,即x=2时,四面体NFEC的体积最大.…(14分)22.(14分)已知a∈R,函数.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)讨论f(x)的单调性;(3)是否存在a的值,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,说明理由.【解答】解:(1)当a=1时,∴k=f′(1)=0所以曲线y=f(x)在点(1,f(1))处的切线的斜率为0;(2)①当a ≤0时,f′(x )<0,f (x )在(0,+∞)上单调递减; ②当..∴(3)存在a ∈(0,e 3),使得方程f (x )=2有两个不等的实数根. 理由如下:由(1)可知当a ≤0时,f′(x )<0,f (x )在(0,+∞)上单调递减,方程f (x )=2不可能有两个不等的实数根; 由(2)得,,使得方程f (x )=2有两个不等的实数根,等价于函数f (x )的极小值,即,解得0<a <e 3所以a 的取值范围是(0,e 3)赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kx y1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2b f a-xxx第21页(共21页)则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-0xx<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-0x。

2014-2015学年度山东省滕州市实验中学高三数学第一学期期中试题

2014-2015学年度山东省滕州市实验中学高三第一学期期中考试数学试题第1卷〔60分〕一、选择题:〔本大题共12小题,每一小题5分,共60分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.〕1.设集合A={2|320x x x -+=},如此满足A B={0,1,2}的集合B 的个数是 A .1 B .3 C .4 D .62.b a >,如此如下不等式一定成立的是 A .33->-b a B .bc ac >C .c bc a <D .32+>+b a 3.b a ,是两个非零向量,给定命题b a b a p =⋅:,命题R t q ∈∃:,使得b t a =,如此p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.各项均为正数的等比数列}{n a 中,13213,,22a a a 成等差数列,如此=++1081311a a a aA .27B .3C .1-或3D .1或275.函数)(x f 的定义域为]1,0(,如此函数)2(lg 2xx f +的定义域为A .]4,5[-B .)2,5[--C .]4,1[]2,5[ --D .]4,1()2,5[ --6.33)6cos(-=-πx ,如此=-+)3cos(cos πx x A .332-B .332±C .1-D .1±7.x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by x y x x ,记目标函数2z x y =+的最小值为1,最大值为7,如此,b c的值分别为A .-1,-2B .-2,-1C .1,2D .1,-28.等比数列{}n a 满足n a >0,n =1,2,…,且25252(3)n n a a n -⋅=≥,如此当n ≥1时,2122221log log log n a a a -++⋅⋅⋅+=A .n 〔2n -1〕B .〔n +1〕2C .n2D .〔n -1〕29.x ∈⎝⎛⎭⎫0,π2,且函数f 〔x 〕=1+2sin2xsin 2x的最小值为b ,假设函数g 〔x 〕=⎩⎨⎧-1⎝⎛⎭⎫π4<x <π28x2-6bx +4⎝⎛⎭⎫0<x ≤π4,如此不等式g 〔x 〕≤1的解集为A .⎝⎛⎭⎫π4,π2B .⎝⎛⎦⎤π4,32C .⎣⎡⎦⎤34,32D .⎣⎡⎭⎫34,π2 10.设F1,F2是双曲线C :22221x y a b -=〔a >0,b >0〕的左、右焦点,过F1的直线l 与C的左、右两支分别交于A ,B 两点.假设| AB | : | BF2 | : | AF2 |=3:4 : 5,如此双曲线的离心率为AB C .2D11.假设曲线f 〔x ,y 〕=0上两个不同点处的切线重合,如此称这条切线为曲线f 〔x ,y 〕=0的“自公切线〞.如下方程:①x2-y2=1;②y =x2-|x|;③y =3sin x +4cos x ;④|x|+1=4-y2对应的曲线中存在“自公切线〞的有 A .①②B .②③C .①④D .③④ 12.函数()32f x x ax bx c=+++,在定义域[]2,2x ∈-上表示的曲线过原点,且在1x =±处的切线斜率均为1-.有以下命题: ①()f x 是奇函数;②假设()[],f x s t 在内递减,如此t s-的最大值为4;③()f x 的最大值为M ,最小值为m ,如此=0M m +;④假设对[]()2,2x k f x '∀∈-≤,恒成立,如此k的最大值为2.其中正确命题的个数为 A .1个B .2个C .3个D .4个第2卷〔90分〕二、填空题:本大题共4题,每一小题5分,共20分. 13.假设函数()f x 在R 上可导,()()321f x x x f '=+,如此()20f x dx =⎰ .14.假设0,0,x y ≥≥且21x y +=,如此223x y +的最小值为 .15.抛物线C 的顶点在原点,焦点F 与双曲线16322=-y x 的右焦点重合,过点P 〔2,0〕且斜率为1的直线l 与抛物线C 交于A,B 两点,如此弦AB 的中点到抛物线准线的距离为_______16.对于实数a,b,定义运算""*:⎩⎨⎧>-≤-=*)()(22b a ab b b a ab a b a 设)1()12()(-*-=x x x f ,且关于x 的方程)()(R m m x f ∈=恰有三个互不相等的实数根321,,x x x ,如此321xx x 的取值范围是___________三、解答题:本大题共六个大题,总分为70;解答应写出文字说明,证明过程或演算步骤. 17.〔此题总分为10分〕〔1〕1411)cos(,71cos -=+=βαα,且)2,0(,πβα∈,求βcos 的值;〔2〕α为第二象限角,且42sin =α,求1)2sin(2cos )4cos(+---παααπ的值.18.〔此题总分为12分〕在锐角三角形ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,2sin 0c A -=.〔Ⅰ〕求角C 的大小; 〔Ⅱ〕假设2,a b c =+求的最大值. 19.〔此题总分为12分〕设数列}{n a 是等差数列,数列}{n b 的前n 项和nS 满足)1(23-=n n b S 且2512,ba b a ==〔Ⅰ〕求数列}{n a 和}{n b 的通项公式:〔Ⅱ〕设,n n n c a b =⋅,设n T 为{}n c 的前n 项和,求n T .20.〔此题总分为12分〕设椭圆C :)0(12222>>=+b a b y a x 的离心率21=e ,右焦点到直线1=+b ya x 的距离721=d ,O 为坐标原点.〔1〕求椭圆C 的方程;〔2〕过点O 作两条互相垂直的射线,与椭圆C 分别交于A,B 两点,证明:点O 到直线AB 的距离为定值,并求弦AB 长度的最小值。

山东省滕州市第二中学2014-2015学年高二上学期期中考试数学文试题 Word版含答案

2014-2015学年度山东省滕州市第二中学高二第一学期期中考试数学文试题一、选择题(本题10小题,每小题5分,共50分,只有一项是符合题目要求的) 1.关于空间两条直线a 、b 与平面α,下列命题正确的是 A .若//,a b b α⊂,则//a α B .若//,a b αα⊂,则//a bC .//,//a b αα,则//a bD .若,,a b αα⊥⊥则//a b2.命题“若a b >,则a c b c +>+”的逆否命题为( ) A .若a b <,则a c b c +>+ B .若a b ≤,则a c b c +≤+C .若a c b c +<+,则a b <D .若a c b c +≤+,则a b ≤3.已知抛物线)0(22>=p px y 的准线与圆05422=--+x y x 相切,则p 的值为A .10B .6C .4D .24.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和 y 轴交于点A ,若OAF ∆ (O 为坐标原点)的面积为4,则抛物线方程为A .24y x =±B .28y x =±C .24y x =D .28y x =5.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为A .e 2B .eC .ln 22D .ln 26.双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r = A .3 B .2C .3D .67.设1F 、2F 分别为双曲线22221(0x y a a b-=>,0)b >的左、右焦点,双曲线上存在一点P 使得12||||3PF PF b +=,129||||4PF PF ab ⋅=,则该双曲线的离心率为 A .43B .53C .94D .38.设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠= ,则C 的离心率为A .6B .13 C .12D .39.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是A .2B .3C .115D .371610.ABC ∆的顶点(5,0),(5,0)A B -,ABC ∆的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是A .221916x y -=B .221169x y -= C .)3(116922>=-x y x D .221(4)169x y x -=> 二、填空题:本大题共7小题,每小题5分,共35分.11.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.12.“p 或q ”为真命题是“p 且q ”为真命题的___必要不充分_____条件.13.如果直线l 将圆C :(x -2)2+(y +3)2=13平分,那么坐标原点O 到直线l 的最大距离为________.14.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________15.椭圆 22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则12F PF ∠的大小为 .16.过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =_______________.17.在平面直角坐标系中,O 为原点, (1,0),(3,0)A B C -,动点D 满足1CD =,则OA OB OD ++的最大值是 .三、解答题:本大题共5小题, 共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本题12分)已知命题:P 函数log (12)a y x =-在定义域上单调递增;命题:Q 不等式2(2)2(2)40a x a x -+--<对任意实数x 恒成立.若Q P ∨是真命题,求实数a 的取值范围. 已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p 或q ”是假命题,求a 的取值范围.19.(本题12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上; (3)在(2)的条件下求△F 1MF 2的面积. 20.(本题13分)已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.21.(本题14分)如图所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?22.(本题14分)设抛物线)0(2:2>p px y =ℜ过点)2,(t t (t 是大于零的常数). (1)求抛物线ℜ的方程;(2)若F 是抛物线ℜ的焦点,斜率为1的直线交抛物线ℜA,B 两点,x 轴负半轴上的点D C ,满足FB FD FC FA ==,,直线BD AC ,相交于点E , 当852=∙ABFBEF AEF S S S △△△时,求直线AB的方程.2014-2015学年度山东省滕州市第二中学高二第一学期期中考试数学文试题参考答案1-10AADBB ABDAC 11.2 12.略 13.13 14.[2,+∞) 15.32π 16.2 17.71+三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2. 又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”, 即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2.∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值范围为{a |a >2或a <-2}. 19.(1)解 ∵离心率e =2,∴双曲线为等轴双曲线,可设其方程为x 2-y 2=λ(λ≠0), 则由点(4,-10)在双曲线上,可得λ=42-(-10)2=6,∴双曲线方程为x 2-y 2=6.(2)证明 ∵点M (3,m )在双曲线上,∴32-m 2=6,∴m 2=3, 又双曲线x 2-y 2=6的焦点为F 1(-23,0),F 2(23,0),∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m )=(-3)2-(23)2+m 2=9-12+3=0,∴MF 1⊥MF 2,∴点M 在以F 1F 2为直径的圆上. (3)解 21MF F S ∆=12×43×|m |=6.20.解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a =2,c =2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 20+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4 (0<x 20≤4).因为x 202+8x 20≥4(0<x 20≤4),当x 20=4时等号成立,所以|AB |2≥8. 故线段AB 长度的最小值为22. 21.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0), 直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150. 因此新桥BC 的长是150 m .(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知,直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r , 即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时,圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m .(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 22.(1)x y 22=(2)25-=x y 和61+=x y。

2014-2015年山东省潍坊市高二上学期数学期中试卷及参考答案(理科)

2014-2015学年山东省潍坊市高二(上)期中数学试卷(理科)一、选择题(每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)数列1,2,3,4,…的一个通项公式为()A.n+B.n﹣C.n+D.n+2.(5分)若a>b,则下列正确的是()A.a2>b2B.ac>bc C.ac2>bc2 D.a﹣c>b﹣c3.(5分)已知数列{a n}中,a1=1,a n+1=a n+3,若a n=2014,则n=()A.667 B.668 C.669 D.6724.(5分)△ABC中,a=1,b=,A=30°,则B等于()A.60°B.60°或120°C.30°或150°D.120°5.(5分)过椭圆(a>b>0)的一个焦点F作垂直于长轴的椭圆的弦,则此弦长为()A.B.3 C.D.6.(5分)设变量x,y满足约束条件,则目标函数z=3x+2y的最小值为()A.3 B.4 C.6 D.87.(5分)△ABC中,已知a=x,b=2,B=60°,如果△ABC 有两组解,则x的取值范围()A.x>2 B.x<2 C. D.8.(5分)已知关于x的不等式<1的解集为{x|x<1或x>3},则a的值为()A.3 B.C.﹣ D.9.(5分)已知等比数列{a n}满足a n>0,n=1,2,…,且a5•a2n﹣5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n﹣1=()A.n(2n﹣1)B.(n+1)2 C.n2D.(n﹣1)210.(5分)下列命题中真命题的个数是()①△ABC中,B=60°是△ABC的三内角A,B,C成等差数列的充要条件;②若“am2<bm2,则a<b”的逆命题为真命题;③“x>2”是“x2﹣3x+2>0”的充分不必要条件;④命题p:“∀x,x2﹣2x+3>0”则¬p:“∃x,x2﹣2x+3<0”.A.1个 B.2个 C.3个 D.4个二、填空题(每小题5分,共25分)11.(5分)椭圆+=1的离心率为.12.(5分)已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.13.(5分)若正数x,y满足x+3y=5xy,则x+y的最小值为.14.(5分)跳伞塔CD高h,在塔顶C测得地面上两点A,B的俯角分别是60°和45°,又测得∠ADB=30°,则AB的长为.15.(5分)设f(x)是定义在R上不为零的函数,对任意x,y∈R,都有f(x)•f(y)=f(x+y),若,则数列{a n}的前n项和的取值范围是.三、解答题(共75分,解答应写出必要的文字说明、证明过程或演算步骤)16.(12分)设命题p:关于m的不等式:m2﹣4am+3a2<0,其中a<0,命题q:∀x>0,使x+≥1﹣m恒成立,且p是q的充分不必要条件,求a的取值范围.17.(12分)等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)若a1=1,求等比数列{a n}的通项公式;(Ⅱ)若a3﹣a2=3,求等比数列{a n}前n项和S n.18.(12分)在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=.(Ⅰ)若△ABC的面积等于,试判断△ABC的形状,并说明理由;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.19.(12分)某科研所计划利用宇宙飞船进行新产品搭载实验,计划搭载新产品甲、乙,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?20.(13分)已知数列{a n}的前n项和S n满足S n=3a n﹣3(n∈N*),数列{b n}满足b n=(n∈N*).(Ⅰ)求出数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.21.(14分)已知函数f(x)=x2﹣(a+1)x+a,(1)当a=2时,求关于x的不等式f(x)>0的解集;(2)求关于x的不等式f(x)<0的解集;(3)若f(x)+2x≥0在区间(1,+∞)上恒成立,求实数a的取值范围.2014-2015学年山东省潍坊市高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)数列1,2,3,4,…的一个通项公式为()A.n+B.n﹣C.n+D.n+【解答】解:由数列1,2,3,4,…可得一个通项公式为a n=n+.故选:A.2.(5分)若a>b,则下列正确的是()A.a2>b2B.ac>bc C.ac2>bc2 D.a﹣c>b﹣c【解答】解:A选项不正确,因为若a=0,b=﹣1,则不成立;B选项不正确,若c=0时就不成立;C选项不正确,同B,c=0时就不成立;D选项正确,因为不等式的两边加上或者减去同一个数,不等号的方向不变.故选:D.3.(5分)已知数列{a n}中,a1=1,a n+1=a n+3,若a n=2014,则n=()A.667 B.668 C.669 D.672【解答】解:∵a1=1,a n+1=a n+3,∴a n﹣a n=3,+1∴{a n}为首项a1=1公差d=3的等差数列,∴a n=a1+(n﹣1)d=3n﹣2.∵a n=2 014,∴3n﹣2=2014,解得:n=672.故选:D.4.(5分)△ABC中,a=1,b=,A=30°,则B等于()A.60°B.60°或120°C.30°或150°D.120°【解答】解:由正弦定理可得,∴,∴sinB=.又0<B<π,∴B=或,故选:B.5.(5分)过椭圆(a>b>0)的一个焦点F作垂直于长轴的椭圆的弦,则此弦长为()A.B.3 C.D.【解答】解:由椭圆(a>b>0),可得a2=4,b2=3,∴=1.不妨取焦点F(1,0),过焦点F作垂直于长轴的椭圆的弦为AB,,解得.∴弦长|AB|==3.故选:B.6.(5分)设变量x,y满足约束条件,则目标函数z=3x+2y的最小值为()A.3 B.4 C.6 D.8【解答】解:由z=3x+2y得,作出不等式组对应的平面区域如图(阴影部分):平移直线由图象可知当直线经过点C时,直线的截距最小,此时z也最小,将C(1,0)代入目标函数z=3x+2y,得z=3.故选:A.7.(5分)△ABC中,已知a=x,b=2,B=60°,如果△ABC 有两组解,则x的取值范围()A.x>2 B.x<2 C. D.【解答】解:当asinB<b<a时,三角形ABC有两组解,所以b=2,B=60°,设a=x,如果三角形ABC有两组解,那么x应满足xsin60°<2<x,即.故选:C.8.(5分)已知关于x的不等式<1的解集为{x|x<1或x>3},则a的值为()A.3 B.C.﹣ D.【解答】解:不等式<1可化为<0,即[(a﹣1)x+1](x﹣1)<0;且原不等式的解集为{x|x<1或x>3},∴a﹣1<0,∴原不等式可化为(x+)(x﹣1)>0,令﹣=3,解得a=,∴a的值为.故选:D.9.(5分)已知等比数列{a n}满足a n>0,n=1,2,…,且a5•a2n﹣5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n﹣1=()A.n(2n﹣1)B.(n+1)2 C.n2D.(n﹣1)2【解答】解:∵a5•a2n﹣5=22n=a n2,a n>0,∴a n=2n,∴log2a1+log2a3+…+log2a2n﹣1=log2(a1a3…a2n﹣1)=log221+3+…+(2n﹣1)=log2=n2.故选:C.10.(5分)下列命题中真命题的个数是()①△ABC中,B=60°是△ABC的三内角A,B,C成等差数列的充要条件;②若“am2<bm2,则a<b”的逆命题为真命题;③“x>2”是“x2﹣3x+2>0”的充分不必要条件;④命题p:“∀x,x2﹣2x+3>0”则¬p:“∃x,x2﹣2x+3<0”.A.1个 B.2个 C.3个 D.4个【解答】解:对于①,△ABC中,若B=60°,则△ABC的三内角A,B,C成等差数列(充分性成立),反之,若△ABC的三内角A,B,C成等差数列,则2B=A+C,3B=A+B+C=π,B=60°(必要性成立),故△ABC中,B=60°是△ABC的三内角A,B,C成等差数列的充要条件,①正确;对于②,若“am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”,不正确,当m=0时,am2=bm2=0,②不正确;对于③,“x>2”⇒“x2﹣3x+2>0”(充分性成立),反之,不然,必要性不成立,故“x>2”是“x2﹣3x+2>0”的充分不必要条件,③正确;对于④,命题p:“∀x,x2﹣2x+3>0”则¬p:“∃x,x2﹣2x+3≤0”,④不正确.综上所述,真命题的个数是2个,故选:B.二、填空题(每小题5分,共25分)11.(5分)椭圆+=1的离心率为.【解答】解:由椭圆方程可知,a=5,b=3,c=4,∴离心率e==,故答案为:.12.(5分)已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=2n﹣1.【解答】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,13.(5分)若正数x,y满足x+3y=5xy,则x+y的最小值为.【解答】解:∵正数x,y满足x+3y=5xy,∴.∴x+y=(x+y)≥.当且仅当,即时取等号,此时结合x+3y=5xy,得∴x+y≥,可知x+y的最小值为.故答案为.14.(5分)跳伞塔CD高h,在塔顶C测得地面上两点A,B的俯角分别是60°和45°,又测得∠ADB=30°,则AB的长为.【解答】解:如图根据已知,CD=h,在△ACD中,∠ACD=30°,AD=h,在△BCD中,∠BCD=45°,BD=h,故在△BDA中,∠ADB=30°,AB2=AD2+BD2﹣2×AD×BD×cos∠ADB=h2+h2﹣2×=h2.故AB=.15.(5分)设f(x)是定义在R上不为零的函数,对任意x,y∈R,都有f(x)•f(y)=f(x+y),若,则数列{a n}的前n项和的取值范围是.【解答】解:由题意可得,f(2)=f2(1),f(3)=f(1)f(2)=f3(1),f(4)=f(1)f(3)=f4(1),a1=f(1)=∴f(n)=∴=∈[,1).故答案:[,1)三、解答题(共75分,解答应写出必要的文字说明、证明过程或演算步骤)16.(12分)设命题p:关于m的不等式:m2﹣4am+3a2<0,其中a<0,命题q:∀x>0,使x+≥1﹣m恒成立,且p是q的充分不必要条件,求a的取值范围.【解答】解:解m2﹣4am+3a2<0,a<0,得:3a<m<a,由∀x>0,x+≥2=4,若∀x>0,使x+≥1﹣m恒成立,则1﹣m≤4,解得m≥﹣3,∵p是q的充分不必要条件,∴0>3a≥﹣3,解得:﹣1≤a<0,∴a的取值范围为[﹣1,0).17.(12分)等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)若a1=1,求等比数列{a n}的通项公式;(Ⅱ)若a3﹣a2=3,求等比数列{a n}前n项和S n.【解答】解:设等比数列{a n}的公比为q,(Ⅰ)当a1=1时,由S1,S3,S2成等差数列可得2S3=S1+S2,∴2(1+q+q2)=1+1+q,解得q=﹣∴等比数列{a n}的通项公式为a n=;(Ⅱ)由S1,S3,S2成等差数列可得2S3=S1+S2,∴2(a1+a2+a3)=a1+a1+a2,∵a3﹣a2=3,∴a3=a2+3,∴2(a1+a2+a2+3)=a1+a1+a2,化简可得a2=﹣2,∴a3=a2+3=1,∴公比q==,∴a1=4,∴等比数列{a n}前n项和S n ==[1﹣]18.(12分)在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知c=2,C=.(Ⅰ)若△ABC 的面积等于,试判断△ABC的形状,并说明理由;(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.【解答】解:(Ⅰ)△ABC为等边三角形,理由为:∵c=2,C=,∴由余弦定理得:c2=a2+b2﹣2abcosC,即a2+b2﹣ab=4①,∵△ABC的面积等于②,∴absinC=,即ab=4,联立①②解得:a=b=2,则△ABC为等边三角形;(Ⅱ)由sinC+sin(B﹣A)=2sin2A,变形得:sin(B+A)+sin(B﹣A)=4sinAcosA,即sinBcosA=2sinAcosA,若cosA=0,即A=,由c=2,C=,得b=,此时△ABC面积S=bc=;若cosA≠0,可得sinB=2sinA,由正弦定理得:b=2a③,联立①③得:a=,b=,此时△ABC面积为S=absinC=.19.(12分)某科研所计划利用宇宙飞船进行新产品搭载实验,计划搭载新产品甲、乙,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?【解答】解:设搭载甲产品x件,乙产品y件,总预计收益为z万元,则总预计收益z=120x+90y,则,作出平面区域如图,作出直线l0:4x+3y=0并平移,由图象得,当直线经过点M时z取得最大值,由解得,x=9,y=4;即搭载甲产品9件,乙产品4件,总预计收益最大,为120×9+90×4=1440万元.20.(13分)已知数列{a n}的前n项和S n满足S n=3a n﹣3(n∈N*),数列{b n}满足b n=(n∈N*).(Ⅰ)求出数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【解答】解:(I)当n=1时,a1=S1=3a1﹣3,解得a1=.当n≥2时,a n=S n﹣S n﹣1=3a n﹣3﹣(3a n﹣1﹣3),化为2a n=3a n﹣1,∴数列{a n}是等比数列,∴.∴b n===.(II)=.∴数列{}的前n项和T n=+++…+,=++…++,∴=+…+﹣=﹣=2﹣,∴T n=.21.(14分)已知函数f(x)=x2﹣(a+1)x+a,(1)当a=2时,求关于x的不等式f(x)>0的解集;(2)求关于x的不等式f(x)<0的解集;(3)若f(x)+2x≥0在区间(1,+∞)上恒成立,求实数a的取值范围.【解答】解:(1)当a=2时,则f(x)=x2﹣3x+2,由f(x)>0,得x2﹣3x+2>0,令x2﹣3x+2=0,解得x=1,或x=2∴原不等式的解集为(﹣∞,1)∪(2,+∞)(2)由f(x)<0得(x﹣a)(x﹣1)<0,令(x﹣a)(x﹣1)=0,得x1=a,x2=1,…5 分,当a>1时,原不等式的解集为(1,a);…6 分,当a=1时,原不等式的解集为∅;…(7分),当a<1时,原不等式的解集为(a,1).…(8分).(2)由f(x)+2x≥0即x2﹣ax+x+a≥0在(1,+∞)上恒成立,得..…9 分,令t=x﹣1(t>0),则,…13 分∴.故实数a的取值范围是…14 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共11页 山东省滕州市第三中学2014-2015学年高二上学期期中考试 数学试题 考试时间:120分钟 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷(选择题60分) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的. 1.下列命题中,假命题是( ) A.02,1xRx B.2sin,xRx C.01,2xxRx D.2lg,xRx 2.已知焦点在x轴上的椭圆的离心率为21,它的长轴长等于圆x2+y2-2x-15=0的半径,则椭圆的标准方程是

A.1121622yx B.1422yx C.141622yx D.13422yx 3.过A(11,2)作圆22241640xyxy的弦,其中弦长为整数的弦共有( ) A.16条 B.17条 C.32条 D.34条 4.函数12)(2axxxf在2,上是单调递减函数的必要不充分条件是( ) A.2a B.6a C.3a D.0a 5.过抛物线xy2的焦点F的直线交抛物线于A、B两点,且A、B在直线41x上的射影分别M、N,则∠MFN等于( ) A.45° B.60° C.90° D.以上都不对 6.有下列四个命题: ①命题“若1xy,则x,y互为倒数”的逆命题; ②命题“面积相等的三角形全等”的否命题; ③命题“若1m,则022mxx有实根”的逆否命题; ④命题“若ABB,则AB”的逆否命题. 第2页 共11页

其中是真命题的个数是( ) A.1 B.2 C.3 D.4 7.方程02nymx与)0(122nmnymx的曲线在同一坐标系中的示意图可能是( )

8.已知动点),(yxP满足5|1243|)2()1(22yxyx,则点P的轨迹是 ( ) A.两条相交直线 B.抛物线 C.双曲线 D.椭圆 9.一个圆的圆心为椭圆的右焦点F,且该圆过椭圆的中心交椭圆于点P, 直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )

A.21 B.22 C.23 D.13 10.已知点P为抛物线221xy上的动点,点P在x轴上的射影为M,点A的坐标是)217,6(,则PMPA的最小值是( ) A.8 B.219 C.10 D.221

11.若椭圆1422yx与双曲线1222yx有相同的焦点F1、F2,P是这两条曲线的一个交点,则21PFF的面积是( ) A.4 B.2 C.1 D.21

12.已知,AB是椭圆22221(0)xyabab长轴的两个端点, ,MN是椭圆上关于x轴对称的两点,直线,AMBN的斜率分别为12,kk)0(21kk,若椭圆的离心率为23,则 第3页 共11页

||||21kk的最小值为( )

A.1 B.2 C.3 D.2 第Ⅱ卷 (非选择题90分) 二、填空题:本大题共4小题,每小题5分,共20分。

13.过椭圆191622yx的焦点F的弦中最短弦长是 . 14.过抛物线xy122的焦点作直线l,直线l交抛物线于,AB两点,若线段AB中点的横坐标为9,则AB .

15.设圆过双曲线116922yx的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离为 . 16.设点P是椭圆)0(12222babyax与圆2223byx的一个交点,21,FF分别是椭圆的左、右焦点,且||3||21PFPF,则椭圆的离心率为 . 三、解答题:本大题共6小题,共70分,解答应有证明或演算步骤 17.(本题满分10分) 已知半径为5的圆的圆心M在x轴上,圆心M的横坐标是整数,且圆M与直线43290xy相切.

求:(Ⅰ)求圆M的方程; (Ⅱ)设直线50axy与圆M相交于,AB两点,求实数a的取值范围. 18.(本题满分12分) 在平面直角坐标系xOy中,直线l与抛物线xy42相交于不同的两点,AB. (Ⅰ)如果直线l过抛物线的焦点,求OAOB的值; (Ⅱ)在此抛物线上求一点P,使得P到)0,5(Q的距离最小,并求最小值. 19.(本题满分12分) 已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线022yx的距 第4页 共11页

离为3. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆与直线mxy相交于不同的两点M、N,问是否存在实数m使ANAM;若存在求出m的值;若不存在说明理由。

20.(本题满分12分) 如图,已知四棱锥SABCD中,SAD是边长为a的正三角形,平面SAD平面ABCD,四边形ABCD是菱形,60DAB,P是AD的中点,Q是SB的中点.

(Ⅰ)求证://PQ平面SCD. (Ⅱ)求二面角BPCQ的余弦值.

21.(本题满分12分) 设过点(,)Pxy的直线分别与x轴和y轴交于,AB两点,点Q与点P关于y轴对称,O

为坐标原点,若PABP3且4ABOQ. (Ⅰ)求点P的轨迹M的方程; (Ⅱ)过)0,2(F的直线与轨迹M交于BA,两点,求FBFA的取值范围. 22.(本题满分12分)

如图,椭圆)0(12222babyax的一个 焦点是F(1,0),O为坐标原点. (Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F的直线l交椭圆于A、B两点,若直线l绕点F任意转动,恒有222OAOBAB, 求a的取值范围. 第5页 共11页 第6页 共11页

2014-2015学年度山东省滕州市第三中学高二第一学期期中考试 数学试题参考答案 一、选择题: 1.B 2.D 3.C 4.D 5.C 6.B 7.A 8.B 9.D 10.B 11.C 12.A 二、填空题:

13.92 14.24 15.316 16.144 三、解答题 18.解:(Ⅰ)由题意:抛物线焦点为(1,0) 设,41:2xytyxl代入抛物线消去x得 ),(),,(,04422112yxByxAtyy设 则4,42121yytyy, 212122212121212(1)(1)()1OAOBxxyytytyyytyytyyyy

=3414422tt (Ⅱ))32,3(P,4minPQ

19.(Ⅰ)依题意可设椭圆方程为 1222yax ,

则右焦点F(0,12a)由题设322212a 解得32a 故所求椭圆的方程为1322yx. 1322yx

(Ⅱ)设P为弦MN的中点,由2213yxmxy 得 2246330xmxm 第7页 共11页

由于直线与椭圆有两个交点,,0即 22m 324MNpxxmx 从而4ppmyxm

11434pAppmykmx



 又MNAPANAM,,则

14134mm 即 2m 所以不存在实数m使AMAN

20.证明(Ⅰ)取SC的中点R,连接QRDR,. 由题意知//PDBC且12PDBC,//QRBC且12QRBC, 所以//PDQR且PDQR,即四边形PDRQ是平行四边形,所以//PQDR, 又PQ平面SCD,DR平面SCD 所以//PQ平面SCD. (Ⅱ)以P为坐标原点,PA为x轴,PB为y轴,PS为z轴,建立如图所示的空间直角坐标系,Pxyz,则

33(00)(00)22SaBa,,,,,,333(0)(0)244CaaQaa,,,,,,

平面PAC的法向量3(00)2PSa,,,设()nxyz,,是平面PQC的法向量, 第8页 共11页

由0230434300ayaxazayPCnPQn,令3y, 得3(3-3)2n,,32112cos1133322anPSa, 又二面角BPCQ的平面角是锐角, 所以二面角BPCQ的平面角的余弦值是21111 21.解:(Ⅰ)∵过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,∴Q(-x,y),设A(a,0),B(0,b), ∵O为坐标原点,

∴BP=(x,y-b),PA=(a-x,-y),OQ=(-x,y),),(baAB, ∵BP=3PA且OQ4AB

∴43)(3byaxybyxax,

解得点P的轨迹M的方程为1322yx. (Ⅱ)设过F(2,0)的直线方程为y=kx-2k,

联立13222yxkkxy,得(3k2+1)x2-12k2x+12k2-3=0,

设A(x1,y1),B(x2,y2),则x1+x2=131222kk,x1x2=1331222kk, FA=(x1-2,y1),FB=(x2-2,y2),

∴FAFB=(x1-2)(x2-2)+y1y2=(1+k2)(x1-2)(x2-2)=(1+k2)[x1x2-2(x1+x2)+4] =(1+k2)(1324133122222kkkk+4)=39231131222kkk,

相关文档
最新文档