2010年中考数学试题精选汇编:圆形的相似于位似
全国中考数学圆与相似的综合中考模拟和真题分类汇总附详细答案

全国中考数学圆与相似的综合中考模拟和真题分类汇总附详细答案一、相似1.在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;【答案】(1)解:由抛物线过点A(-3,0),B(1,0),则解得∴二次函数的关系解析式(2)解:连接PO,作PM⊥x轴于M,PN⊥y轴于N.设点P坐标为(m,n),则.PM = ,,AO=3.当时,=2.∴OC=2.===.∵=-1<0,∴当时,函数有最大值.此时=.∴存在点,使△ACP的面积最大.(3)解:存在点Q,坐标为:,.分△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC三种情况讨论可得出【解析】【分析】(1)由题意知抛物线过点A(-3,0),B(1,0),所以用待定系数法即可求解;(2)因为三角形ACP是任意三角形,所以可做辅助线,连接PO,作PM⊥x轴于M,PN⊥y轴于N.则三角形ACP的面积=三角形APM的面积+矩形PMON的面积-三角形AOC 的面积-三角形PCN的面积。
于是可设点P的横坐标为m,则纵坐标可用含m的代数式表示出来,即M(m,−−m + 2),则三角形ACP的面积可用含m的代数式表示,整理可得是一个二次函数,利用二次函数的性质即可求解;(3)根据对应顶点的不同分三种情况(△BQE∽△AOC,△EBQ∽△AOC,△QEB∽△AOC)讨论即可求解。
2.如图,抛物线经过,两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分;(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.【答案】(1)解:将,代入得:,解得:,,抛物线的解析式为(2)解:,,,取,则,由两点间的距离公式可知,,,,,在和中,,,,≌,,平分(3)解:如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为,则.,,,,,,,同理:,又,,,点M的坐标为或【解析】【分析】(1)利用待定系数法,将点A、B两点坐标分别代入抛物线的解析式,求出a、b的值,即可解答。
2010中考数学试题分类汇编-相似

年中考数学试题分类汇编——相似(哈尔滨)1.已知:在△中=,点为边的中点,点是边上一点,点在线段的延长线上,∠=∠,点在线段上,∠=∠.()如图,当∠=°时,求证:=2;()如图,当∠=°时,则线段、之间的数量关系为: 。
()在()的条件下延长到,使=,连接,若=,=72, 求∠的值.(珠海)2.如图,在平行四边形中,过点作⊥,垂足为, 连接,为线段上一点,且∠=∠. (1) 求证:△∽△(2) 若==3=,求的长. ()证明:∵四边形是平行四边形 ∴∥ ∥∴∠∠ ∠∠° ∵∠∠ ∠∠ ∴∠∠ ∴△∽△()解:∵四边形是平行四边形 ∴∥又∵⊥ ∴ ⊥ 在△中,63)33(2222=+=+AE AD∵△∽△ ∴ CDAFDE AD =∴4633AF = 32(珠海)3。
一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子 恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为米,由此可推断出树高是米.(桂林).如图,已知△与△的相似比为:,则△ 与△的面积比为( ).. : . :. : . :(年兰州). 如图,上体育课,甲、乙两名同学分别站在、的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距米.甲身高米,乙身高米,则甲的影长是 米. 答案(宁波市).如图,在平面直角坐标系中,是坐标原点,□的顶点的坐标为(-,),点的坐标为(,),点在轴的正半轴上,点为线段的中点,过点的直线与轴交于点,与射线交于点. ()求∠的度数;()当点的坐标为(-,),求点的坐标;()连结,以所在直线为对称轴,△经轴对称变换后得到△′,记直线′与射线的交点为.① 如图,当点在点的左侧时,求证:△≌△; ② △若的面积为,请你直接写出点的坐标. (年金华)(本题分)AD E B C如图,把含有°角的三角板置入平面直角坐标系中,,两点坐标分别为(,)和(,.(长度单位秒)﹒一直尺的上边缘从轴的位置开始以 (长度单位秒)的速度向上平行移动(即移动过程中保持∥轴),且分别与,交于,两点﹒设动点与动直线同时出发,运动时间为秒,当点沿折线运动一周时,直线和动点同时停止运动. 请解答下列问题:()过,两点的直线解析式是 ▲ ;()当﹦时,点的坐标为 ▲ ;当 ﹦ ▲ ,点与点重合; ()① 作点关于直线的对称点′. 在运动过程中,若形成的四边形′为 菱形,则的值是多少?② 当﹦时,是否存在着点,使得△请说明理由.解:()333+-=x y ;………分 ()(,3()①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G 为垂足(如图) ∵FG OE =,FP EP =,∠=EOP ∠=FGP ° ∴△EOP ≌△FGP ,∴PG OP =﹒又∵t FG OE 33==,∠=A °,∴t FG AG 3160tan 0== (图)而t AP =,∴t OP -=3,t AG AP PG 32=-=由t t 323=-得 59=t ;………………………………………………………………分当点在线段OB 上时,形成的是三角形,不存在菱形;当点在线段BA 上时, 过作PH ⊥EF ,PM ⊥OB ,H 、M∵t OE 33=,∴t BE 3333-=,∴3360tan 0t BE EF -== ∴6921tEF EH MP -===, 又∵)6(2-=t BP 在△BMP 中,MP BP =⋅060cos 即6921)6(2tt -=⋅-,解得745=t .…………………………………………………分 ②存在﹒理由如下:∵2=t ,∴332=OE ,2=AP ,1=OP 将△BEP 绕点E 顺时针方向旋转°,得到 △EC B '(如图)∵OB ⊥EF ,∴点B '在直线EF 上, 点坐标为(332,332-)过F 作FQ ∥C B ',交EC 于点,则△FEQ ∽△EC B '由3=='=QE CE FE E B FE BE ,可得的坐标为(-32,33)………………………分 根据对称性可得,关于直线的对称点Q '(-32,3)也符合条件.……分.(年长沙)如图,在平面直角坐标系中,矩形的两边分别在轴和轴上,OA =, ,现的速度匀速运动,在线段上沿方向以每秒 的速度匀速运动.设运动时间为秒. ()用的式子表示△的面积;()求证:四边形的面积是一个定值,并求出这个定值;()当△与△和△相似时,抛物线214y x bx c =++经过、两点,过线段上一动点作y 轴的平行线交抛物线于,当线段的长取最大值时,求直线把四边形分成两部分的面积之比.(图)解:()∴-∴△=21(8)22t t -=-+(<<)…………………分 () ∵四边形=矩形-△-△=1188)22⨯⨯-⨯⨯………… 分 …………分()当△与△和△相似时, △必须是一个直角三角形,依题意只能是∠=°又∵与不平行∴∠不可能等于∠,∠不可能等于∠∴根据相似三角形的对应关系只能是△∽△∽△………………分 8=解得:=经检验:=是方程的解且符合题意(从边长关系和速度) 此时(,)∵(214y x bx c =++经过、两点, ∴抛物线是2184y x =-+,直线是:8y =- …………………分 设(8-)、(,2184m -+)∵在上运动∴m ≤≤∵21184y x =-+与28y-交于、两点且抛物线的顶点是 ∴当m ≤≤时,12y y > ………………………………分∴12MN y y =-=21(24m --+∴当m = 第题图∴设与交于点则M、H ∴△=132⨯⨯∴△ :五边形==∴当取最大值时两部分面积之比是:. …………………分(年湖南郴州市).如图,已知平行四边形ABCD ,E 是AB 延长线上一点,连结DE 交BC 于点F ,在不添加任何辅助线的情况下,请补充一个条件,使CDF BEF △≌△,这个条件是 .(只要填一个)答案DC EB =或CF BF =或DF EF = 或为的中点或为的中点或AB BE =或为的中点(湖北省荆门市).(本题满分分)如图,圆的直径为,在圆上位于直径的异侧有定点和动点,已知∶=∶,点在半圆弧上运动(不与、重合),过作的垂线交的延长线于点 ()求证:·=·;()当点运动到弧中点时,求的长;()当点运动到什么位置时,△的面积最大?并求这个最大面积.答案.解:()∵为直径,∴∠=°.又∵⊥,∴∠=°. 而∠=∠,∴△∽△.∴AC BCCP CD=.∴·=·;………………………………………………………………………分第题图第题FEC BB'C'()当点运动到弧中点时,过点作⊥于点. ∵是中点,∴∠=°.又∠=∠,∴∠=∠=43.∴=tan BE CPB ∠=3)4.由()得=43()当点在上运动时,△=12·.由()可知,=43. ∴△=23.故最大时,△取得最大值; 而为直径时最大,∴△的最大值=23×=503.………………………………分(年眉山).如图,△ ' ' 是由△绕点顺时针旋转得到的,连结 ' 交斜边于点, ' 的延长线交' 于点.()证明:△∽△;()设∠α,∠ ' β,试探索α、β满足什么关系时,△与△是全等三角形,并说明理由.答案:.()证明:∵△ ' ' 是由△绕点顺时针旋转得到的, ∴ ', ',∠∠ ' ' ………………(分) ∴∠ '∠ '∴∠ '∠ ' ……………………………………(分) 又∠∠∴△∽△ ……………………………………(分)()解:当2βα=时,△≌△. …………………(分) 在△'中,∵ ', ∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- ………(分)在△中,第题图FEC BAB'C' ∠'∠°,即9090BCE α︒-+∠=︒, ∴∠α. ∵∠α,∴∠∠ ……………………(分) ∴由()知:△∽△,∴△≌△.………………………(分).(重庆潼南县)△与△的相似比为:,则△与△的周长比为.:、(年杭州市)如图, , ,又∥,点,,在同一条直线上.() 求证:△∽△;() 如果 , 22,设 ,求的长.答案:() ∵ ∥,点,,在同一条直线上, ∴ ∠ ∠, 又∵3==AEBDAC AB , ∴ △∽△. () ∵ , 2 , ∴ , ∴∠ °, 由()得 ∠ ∠ °, ∵31 , 31232, , ∴在△中, ( ) (31 ) (322) 9108 ,∴ 32 .(陕西省)、如图在△中是边上一点,连接,要使△与△相似,应添加的条件是 ∠∠ ∠∠AD ACAC AB=(年天津市)()如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G , 则AGAF的值为.(山西.在 △中,∠=º,若将各边长度都扩大为原来的倍,则∠的正弦值() .扩大倍 .缩小倍 .扩大倍 .不变(宁夏.关于对位似图形的表述,下列命题正确的是 ②③ .(只填序号)2. 相似图形一定是位似图形,位似图形一定是相似图形; 3. 位似图形一定有位似中心;4. 如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;5. 位似图形上任意两点与位似中心的距离之比等于位似比. (宁夏.(分)已知:正方形中,、分别是边、上的点,且,与交于点. ()求证:△≌△;()找出图中与△相似的所有三角形(不添加任何辅助线)..()证明:在正方形中: , 且∠∠090 ∵∴ 即: 在△与△中⎪⎩⎪⎨⎧=∠=∠=已证)已证)已证)(((DE AF ADE BAF DA AB ∴△≌△()分()与△相似的三角形有:△; △; △分(山西.在直角梯形中,∥,∠=º,=,=,=.分别以、边所在直线为轴、轴建立如图(第题) MFE D CBAM FE D C BA第()题所示的平面直角坐标系.()求点的坐标;()已知、分别为线段、上的点,=,=,直线交轴于点.求直线的解析式;()点是()中直线上的一个动点,在轴上方的平面内是否存在另一个点.使以、、、为顶点的四边形是菱形?若存在,请求出点的坐标;若不存在,请说明理由..(四川宜宾)如图,在△中,∠°,∠°,⊥于点.则△与△的周长之比为( ) .︰ .︰ .︰ .︰答案:(年安徽).如图,已知△∽△111C B A ,相似比为k (1>k ),且△的三边长分别为a 、b 、c (c b a >>),△111C B A 的三边长分别为1a 、1b 、1c 。
全国中考数学圆与相似的综合中考真题分类汇总及详细答案

全国中考数学圆与相似的综合中考真题分类汇总及详细答案一、相似1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【答案】(1)解:由题意得:,解得:a= ,b=(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,且∠ACB=90°.∵AE=2t,AF= t,∴ .又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE= AB= t= ÷2= ;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE= ,∴t= ;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= ,DH=2m,∴DB= .∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:.【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。
2010年中考数学真题分类汇编(150套)专题40--圆的有关性质

2010年全国中考试题分类---圆综合练习一、选择题1. (2010南昌)如图.⊙O 中,AB 、AC 是弦,O 在∠ABO 的内部,α=∠ABO ,β=∠ACO ,θ=∠BOC ,则下列关系中,正确的是 ( )A.βαθ+=B. βαθ22+= C .︒=++180θβα D. ︒=++360θβα 2.(2010甘肃兰州) 已知两圆的半径R 、r 分别为方程0652=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是A .外离B .内切C .相交D .外切 3.(2010 山东德州)已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是(A)0,1,2,3 (B)0,1,2,4 (C)0,1,2,3,4 (D)0,1,2,4,5 4. (2010 福建三明)如图,在平面直角坐标系中,点P 在第一象限,⊙P 与x 轴相切于点Q ,与y 轴交于M (0,2), N (0,8)两点, 则点P 的坐标是 A .(5,3) B .(3,5) C .(5,4) D .(4,5) 5. (2010湖北襄樊)已知⊙O 的半径为13cm ,弦AB//CD ,AB =24cm ,CD =10cm ,则AB 、CD 之间的距离为( )A .17cmB .7 cmC .12 cmD .17 cm 或7 cm 6. (2010 四川绵阳)如图,等腰梯形ABCD 内接于半圆D ,且AB = 1,BC = 2,则OA =( ).A .231+ B .2 C .323+ D .251+7.(2010湖南衡阳)如图,已知⊙O 的两条弦AC ,BD相交于点E ,∠A=70o,∠c=50o, 那么sin ∠AEB 的值为( ) A. 21 B. 33 C.22 D. 238.(2010 山东淄博)如图,D 是半径为R 的 ⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列四个条件:①AD =CD ; ②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有 A. ①② B. ①③④ C. ②③④ D. ①②③④ 9.(2010 湖北咸宁)如图,两圆相交于A ,B 两点,小圆经过 大圆的圆心O ,点C ,D 分别在两圆上,若100ADB ∠=︒,则ACB ∠的度数为 A .35︒ B .40︒ C .50︒ D .80︒10.(2010湖北鄂州)如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,连结AC ,过点C 作直线CD ⊥AB 交AB 于点D,E是O B上的一点,直线CE 与⊙O 交于点F ,连结AF 交直线CD 于点G ,AC =22, 则AG ·AF 是A.10 B.12 C.16 D.8MO BOBA D C ADC N N MCB AODGFD O AB C EODCBA(第8题)二、填空题11.(2010山东威海)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 . 12.(2010湖南怀化)如图6,已知直线AB 是⊙O 的切线, A 为切点,OB 交⊙O 于点C ,点D 在⊙O 上,且∠OBA=40°, 则∠ADC= . 13.(2010山东聊城)如图,小圆的圆心在原点,半径为3, 大圆的圆心坐标为(a ,0),半径为5,如果两圆内含, 那么a 的取值范围是_________. 14.(2010内蒙呼和浩特)如图,AB 是⊙O 1的直径, AO 1是⊙O 2的直径,弦MN ∥AB ,且MN 与⊙O 2相切于C 点,若⊙O 1的半径为2,则O 1B 、BN ⌒ 、 NC 与CO 1⌒ 所围成的阴影部分的面积是 . 15.(2010湖北鄂州)已知⊙O 的半径为10,弦AB 的长为103, 点C 在⊙O 上,且C 点到弦AB 所在的直线的距离为5,则以O 、A 、B 、C 为顶点的四边形的面积是 . 16.(2010 湖北孝感)P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、 B ,∠APB=50°,点C 为⊙O 上一点(不与A 、B )重合, 则∠ACB 的度数为 . 17.(2010浙江杭州)如图, 已知△ABC ,6==BC AC ,︒=∠90C .O 是AB 的中点,⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交 CB 的延长线于点G . 则CG = .18.(2010 四川巴中)如图7所示,⊙O 的两弦AB 、CD 交于点P ,连接AC 、BD ,得S △ACP :S △DBP=16:9,则AC :BD 19.(2010四川达州)如图,一个宽为2 cm 的刻度尺在 圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边 与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ), 那么该光盘的直径是 cm. 20.(2010江西)如图,以点P 为圆心的圆弧与X 轴 交于A ,B ;两点,点P 的坐标为(4,2)点A 的 坐标为(2,0)则点B 的坐标为 . 21.(2010北京)如图,AB 为⊙O 的直径,弦CD ⊥ AB , 垂足为点E ,连结OC ,若OC =5,CD =8,则AE = . 22.(2010江苏徐州)如图,在以O 为圆心的两个同心圆中, 大圆的弦AB 与小圆相切于点C ,若大圆的半径为5 cm , 小圆的半径为3 cm ,则弦AB 的长为_______cm .23.(2010云南昆明)半径为r 的圆内接正三角形的边长为 .(结果可保留根号) 24.(2010 山东东营)将一直径为17cm第13题yx53(a ,0)O O 1O 2的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为cm3.25.(2010 山东淄博)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O与x轴交于A,B两点,与y轴交于C,D两点.E为⊙O上在第一象限的某一点,直线BF交⊙O于点F,且∠ABF=∠AEC,则直线BF对应的函数表达式为.三、解答题26.(2010广东中山)如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.27.(2010蚌埠)已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.⑴求HAO∠sin的值;⑵如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若DEF∆是以EF为底的等腰三角形,试探索CGO∠sin的大小怎样变化,请说明理由.(第24题图)①②③EBOAyxCDxyHADO OCPFyGDE xB28.(2010 嵊州市)(1)请在图①的正方形ABCD 内,画出使∠APB =90°的一个点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使∠APB =60°的所有的点P ,并说明理由.(3)如图③,现在一块矩形钢板ABCD ,AB =4,BC =3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP 'D 钢板,且∠APB =∠CP 'D =60°,请你在图③中画出符合要求的点P 和P '.图① 图② 图③29.(2010甘肃兰州)(本题满分10分)如图,已知AB 是⊙O 的直径, 点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC , ∠COB=2∠PCB.(1)求证:PC 是⊙O 的切线;(2)求证:BC=21AB ; (3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN ·MC 的值. 30.(2010山东日照)如图,在△ABC 中,AB =AC ,以AB 为直径的 ⊙O 交AC 与E ,交BC 与D .求证:(1)D 是BC 的中点; (2)△BE C ∽△ADC ; (3)BC 2=2AB ·CE .31.(2010浙江嘉兴)如图,已知⊙O 的半径为1,PQ 是⊙O 的直径, n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称, 其中第一个111C B A △的顶点1A 与点P 重合,第二个222C B A △的顶点2A 是11C B 与PQ 的交点,…,最后一个n n n C B A △的顶点n B 、n C 在圆上. (1)如图1,当1=n 时,求正三角形的边长1a ; (2)如图2,当2=n 时,求正三角形的边长2a ; (3)如题图,求正三角形的边长n a (用含n 的代数式表示).)(1A P 1B 1C (第31题 图1)11B 1C 2A )(1A P 1B 1C nA 2B 2C 2A参考答案一、选择题 1—10. BBCDD ADDBD 二、填空题11. 105°; 12.25; 13. 3<a <7;14.23112++π(或121236++π); 15. 503; 16. ︒︒11565或 17. 332+;18. 4:3 ;19.10;20. )0,6(;21.2; 22.8 ;23. 3 r ;24. 1717;25. 1-=x y ,1+-=x y 三、解答题26.解:(1)∵PA 与⊙O 相切于A 点,∴∠PAO=090 在Rt ΔPAO 中,OA=2,OP=4 ∴∠POA=060(2)∵AB ⊥OP ∴AC=BC ,∠OCA=090在Rt ΔAOC 中,OA=2,∠AOC=060 ∴AC=3 ∴AB=2327. ⑴ (2)解:当E 、F 两点在OP 上运动时(与点P 不重合),CGO ∠sin 的值不变过点D 作EF DM ⊥于M ,并延长DM 交O Θ于N , 连接ON ,交BC 于T .因为DEF ∆为等腰三角形, EF DM ⊥,所以DN 平分BDC ∠ 所以弧BN=弧CN ,所以BC OT ⊥, 所以MNO CGO ∠=∠所以CGO ∠sin =53sin ==∠ON OM MNO 即当E 、F 两点在OP 上运动时(与点P 不重合),CGO ∠sin 的值不变.28. (1)如图①,点P 为所求(2)如图②,圆上实线部分弧EF 为所求②③ (3)如图③,点p 、'p 为所求29. 解:(1)∵OA=OC,∴∠A=∠ACO∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB ……………1分∵AB 是⊙O 的直径∴∠ACO+∠OCB=90° …………………………………………………2分∴∠PCB+∠OCB=90°,即OC ⊥CP …………………………………………3分∵OC 是⊙O 的半径 ∴PC 是⊙O 的切线 ……………4分(2)∵PC=AC ∴∠A=∠P∴∠A=∠ACO=∠PCB=∠P ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB∴∠CBO=∠COB ……………5分 ∴BC=OC ∴BC=21AB ………………6分 (3)连接MA,MB ∵点M 是弧AB 的中点∴弧AM=弧BM ∴∠ACM=∠BCM ………7分 ∵∠ACM=∠ABM ∴∠BCM=∠ABM∵∠BMC=∠BMNBO CP FyGDE xMNT53sin ==∠AO HO HAO∴△MBN ∽△MCB ∴BM MNMC BM =∴BM 2=MC ·MN ……………………8分∵AB 是⊙O 的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM∵AB=4 ∴BM=22 ………………………………………………………9分∴MC ·MN=BM 2=8 ……………………………………………………10分30. (1)证明:∵AB 是⊙O 的直径,∴∠ADB =90° ,即AD 是底边BC 上的高. 1分又∵AB =AC ,∴△ABC 是等腰三角形,∴D 是BC 的中点;………… ……………………………………………3分 (2) 证明:∵∠CBE 与∠CAD 是同弧所对的圆周角,∴ ∠CBE =∠CAD .…………………………………………………5分 又∵ ∠BCE =∠ACD ,∴△BEC ∽△ADC ;…………………………………………………6分 (3)证明:由△BEC ∽△ADC ,知BCCEAC CD =, 即CD ·BC =AC ·CE . …………………………………………………8分 ∵D 是BC 的中点,∴CD=21BC . 又 ∵AB =AC ,∴CD ·BC =AC ·CE =21BC ·BC=AB ·CE 即BC 2=2AB ·CE .……………………………………………………10分 31. (1)设PQ 与11C B 交于点D ,连结1OB ,则123111-=-=a OA D A OD ,在D OB 1Rt △中,22121OD D B OB +=,即21212)123()21(1-+=a a , 解得31=a . …4分(2)设PQ 与22C B 交于点E ,连结2OB ,则1322121-=-=a OA A A OE ,在E OB 2Rt △中22222OE E B OB +=,即22222)13()21(1-+=a a ,解得13382=a . …4分 (3)设PQ 与n n C B 交于点F ,连结n OB ,则123-=n na OF , 在F OB n △Rt 中222OF F B OB n n +=,即222)123()21(1-+=n n na a ,解得13342+=n n a n . …4分Q(第31题 图2)Q nn(第31题)1(第31题 图1)。
2010中考数学试题分类汇编--相似

2010中考数学试题分类汇编--相似(2010哈尔滨)1.已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE=2MD(2)如图2,当∠ABC=60°时,则线段AE、MD(3)在(2)的条件下延长BM到P,使MP=BM求tan∠ACP的值.(2010珠海)2.如图,在平行四边形ABCD中,过点A作连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(=6(2010珠海)3。
一天,小青在校园内发现:旁边一颗树在阳光下 的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子 恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65_______米. 3.3 (桂林2010)6.如图,已知△ADE 与△ABC 的相似比为1与△ABC 的面积比为( B ). A . 1:2 B . 1:4C . 2:1D . 4:1(2010年兰州)19. 如图,上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是 米. 答案 6(2010宁波市)26.如图1,在平面直角坐标系中,O 是坐标原点,□ABCD 的顶点A 的坐标为(-2,0),点D 的坐标为(0,23),点B 在x 轴的正半轴上,点E 为线段AD 的中点,过点E 的直线l 与x 轴交于点F ,与射线DC 交于点G . (1)求∠DCB 的度数;(2)当点F 的坐标为(-4,0),求点的坐标;(3)连结OE ,以OE 所在直线为对称轴,△OEF 经轴对称变换后得到△OEF ′,记直线EF ′与射线DC 的交点为H .① 如图2,当点G 在点H 的左侧时,求证:△DEG ≌△DHE ; ② △若EHG 的面积为33,请你直接写出点F 的坐标24A ,B 两点坐标分别为(3,P 在AO ,OB ,BA 上运动从x 轴的位置开始以33(长度单OB ,AB 交于E ,F 两P 沿折线AO -OB -BA 运动一周(1)过A ,B 两点的直线解析式是 ▲ ;(2)当t ﹦4时,点P 的坐标为 ▲ ;当t ﹦ ▲ ,点P 与点E 重合; (3)① 作点P 关于直线EF 的对称点P′. 在运动过程中,若形成的四边形PEP′F 为 菱形,则t 的值是多少?1∴6921tEF EH MP -===, 又∵)6(2-=t BP 在Rt △BMP 中,MP BP =⋅060cos 即6921)6(2t t -=⋅-,解得745=t .…………………………………………………1分26解:(1) ∵CQ=t,OPt,CO=8 ∴OQ=8-t∴S△OPQ=21(8)22t t-=-+(0<t<8)…………………3分…………5分…………6分必须是一个直角三角形,依题意,∠APB不可能等于∠PBQABP………………7分∴抛物线是2184y x=-+,直线BP是:8y=-…………………8分设M(m8-)、N(m,2184m-+)第26题图∵M 在BP 上运动∴m ≤≤∵21184y x =-+与28y =-交于P 、B 两点且抛物线的顶点是P∴当m ≤≤时,12y y > ………………………………9分(2010年湖南郴州市)13.如图,已知平行四边形交BC 于点F ,在不添加任何辅助线的情况下,请补充一个条件,使个条件是.(只要填一个)DC EB =或CF BF =或DF 或B AE 的中点(2010湖北省荆门市)23.(本题满分10分)如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC ∶CA =4∶3,点P 在半圆弧AB 上运动(不与A 、B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点 (1)求证:AC ·CD =PC ·BC ;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.△PCD 23503(2010年眉山)25.如图,Rt△AB 'C '是由Rt△ABC绕点A顺时针旋转得到的,连结CC '交斜边于点E,CC '的延长线交BB '于点F.(1)证明:△ACE∽△FBE;(2)设∠ABC=α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE与△FBE是全FECBB'C'等三角形,并说明理由.答案:25.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的, ∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ………………(1分) ∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' ……………………………………(3分) 又∠AEC =∠FEB∴△ACE ∽△FBE ……………………………………(4分) …………………(5分) (6分)12与△DEF 的周长比为______.3:41、(2010年杭州市)如图,AB = 3AC ,BD = 3AE ,又BD ∥AC ,点B ,A ,E 在同一条直线上.(1) 求证:△ABD ∽△CAE ;(2) 如果AC =BD ,AD =22BD ,设BD = a ,求BC 的长.答案:(1) ∵ BD ∥AC ,点B ,A ,E 在同一条直线上, ∴ ∠DBA = ∠CAE , 又∵3==AEBDAC AB , ∴ △ABD ∽△CAE . (2) ∵AB = 3AC = 3BD ,AD =22BD ,∴ AD 2 + BD 2 = 8BD 2 + BD 2 = 9BD 2 =AB 2, ∴∠D =90°, ((2010年天津市)(17)如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G ,C FE则AGAF的值为.(2010山西5.在R t △ABC 中,∠C =90º,若将各边长度都扩大为原来的2倍,则∠A 的正弦值()DA .扩大2倍B .缩小2倍C .扩大4倍D .不变M .⎪⎩⎨=∠=∠已证)已证)((DE AF ADE BAF ∴△ABF ≌△DAE (SAS )----------------------------------------------------------------------------3分 (2)与△ABM 相似的三角形有:△FAM; △FBA; △EAD----------------------------------6分E(2010山西26.在直角梯形OABC中,CB∥OA,∠CO A=90º,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2E B,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使以1=30°,CD⊥AB于点D.则△BCDAC A图15-2AD O BC 21MN图15-1AB N1 D O2MO答案: A(2010年安徽)23.如图,已知△ABC ∽△111C B A ,相似比为k (1>k ),且△ABC 的三边长分别为a 、b 、c (c b a >>),△111C B A 的三边长分别为1a 、1b 、1c 。
精选备战中考数学易错题专题复习圆与相似含答案

精选备战中考数学易错题专题复习圆与相似含答案一、相似1.如图,抛物线y=x2+bx+c经过B(-1,0),D(-2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q、P.(1)求抛物线的解析式;(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?【答案】(1)解:把B(﹣1,0),D(﹣2,5)代入,得:,解得:,∴抛物线的解析式为:(2)解:存在点P,使∠APB=90°.当y=0时,即x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴OB=1,OA=3.设P(m,m2﹣2m﹣3),则﹣1≤m≤3,PH=﹣(m2﹣2m﹣3),BH=1+m,AH=3﹣m,∵∠APB=90°,PH⊥AB,∴∠PAH=∠BPH=90°﹣∠APH,∠AHP=∠PHB,∴△AHP∽△PHB,∴,∴PH2=BH•AH,∴[﹣(m2﹣2m﹣3)]2=(1+m)(3﹣m),解得m1= ,m2= ,∴点P的横坐标为:或(3)解:如图,过点D作DN⊥x轴于点N,则DN=5,ON=2,AN=3+2=5,∴tan∠DAB= =1,∴∠DAB=45°.过点D作DK∥x 轴,则∠KDQ=∠DAB=45°,DQ= QG.由题意,动点M运动的路径为折线BQ+QD,运动时间:t=BQ+ DQ,∴t=BQ+QG,即运动的时间值等于折线BQ+QG的长度值.由垂线段最短可知,折线BQ+QG的长度的最小值为DK与x轴之间的垂线段.过点B作BH⊥DK于点H,则t最小=BH,BH与直线AD的交点,即为所求之Q点.∵A(3,0),D(﹣2,5),∴直线AD的解析式为:y=﹣x+3,∵B点横坐标为﹣1,∴y=1+3=4,∴Q(﹣1,4).【解析】【分析】(1)把点B,D的坐标代入二次函数中组成二元一次方程组,解方程组即可得到抛物线的解析式;(2)先按照存在点P使∠APB=90°,先根据抛物线的解析式求得点A,B的坐标,设出点P的坐标,根据点P的位置确定m的取值范围,再证△AHP∽△PHB,从而得到PH2=BH•AH,即可列出关于m的方程,解方程即可得到m即点P的横坐标,且横坐标在所求范围内,从而说明满足条件的点P存在;(3)先证明∠DAB=45°,从而证得DQ= 2 QG,那么运动时间t值等于折线BQ+QG的长度值,再结合垂线段最短确定点Q的位置,再求得点Q的坐标即可.2.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。
2010年部分省市中考数学试题分类汇编-图形的相似与位似(含答案)
20XX 年部分省市中考数学试题分类汇编图形的相似与位似1. (20XX 年福建省德化县)如图,小“鱼”与大“鱼”是位似图形,如果小“鱼”(a, b),那么大“鱼”上对( )E 、( 2a , b) D 、(2b, 2a)【关键词】位似中心是原点的坐标之间的关系(若相似比为 则坐标之比同侧为 k 异侧为-k ) 【答案】C2.( 2010江苏泰州,)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A.0种B. 1 种C. 2 种D. 3 种 【答案】B【关键词】相似三角形的判定3. (20XX 年宁德市)如图,在 口 ABCD 中,AE = EB AF = 2,贝U FC 等于 ______ .【答案4】5.(2010福建泉州市惠安县)两个相似三角形的面积比是 9:16,则这两个三角形的相似比是( )A.9:16B. 3:4C.9: 4D.3:16【关键词】相似三角形的性质 【答案】B6. (20XX 年兰州市)如图,上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边, 的影长是 米.【关键词】图形的相似上一个"顶点”的4. (20XX 年台湾省)图(一)表示D 、E 、F 、G 四点在△ABC 三边上的位置,其中 交于H 点。
若 ABC= 一组三角形相似?(A ) △ BDG , △ CEF (C ) △ ABC , △ BDG 【关键词】相似 【答案】BEFC=70 , (B) △ ABC , △ CEF (D) △ FGH , △ ABC 。
DG 与 EFB【答案】6已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲7. (2010辽宁省丹东市)如图,△ ABC与厶ABC是位似图形,且位似比是1: 2,若AB=2cm,则A B cm并在图中画出位似中心O.【关键词】位似【答案】.4 (填空2分,画图1分)& (20XX年安徽省芜湖市)如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD , AB// CD, AB = 2m, CD = 6m,点P至U CD的距离是2.7m,贝U AB与CD间的距离是 _________ m ./ \tZ ----------------------- D筒13世圏【关键词】投影相似三角形【答案】1.89. (2010重庆市)已知△ ABC与厶DEF相似且对应中线的比为2:3,则△ ABC与厶DEF的周长比为_______________ .解析:由相似三角形的对应线段比等于相似比知,△ABC与厶DEF的周长比为2:3答案:2: 3.10. (2010山东德州)如图,小明在A时测得某树的影长为2m, B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________ m.第14题图【关键词】三角形相似【答案】411. (2010重庆潼南县)12. △ ABC与厶DEF的相似比为3: 4,则厶ABC与厶DEF的周长第11题图比为____________ .答案:3: 412. (2010重庆市潼南县)△ ABC 与厶DEF 的相似比为 3: 4,则△ ABC 与厶DEF 的周长比答案:3:4.13.. (2010浙江衢州)如图,方格纸中每个小正方形的边长为 〔,△ ABC 和厶DEF的顶点都在方格纸的格点上.(1) 判断△ ABC 和厶DEF 是否相似,并说明理由;(2) P 1 , P 2, P 3, P 4, P 5, D , F 是厶DEF 边上的7个格点,请在这 7个格点中选取 3 个点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由 )•14. (2010江西)图1所示的遮阳伞,伞炳垂直于水平地面,起示意图如图2•当伞收紧时,点P 与点A 重合;当三慢慢撑开时,动点 P 由A 向B 移动;当点P 到达点B 时,伞张 得最开。
2010中考数学试题分类汇编--相似
2010中考数学试题分类汇编--相似(2010哈尔滨)1 .已知:在△ ABC中AB = AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF 的延长线上,/ BAE =Z BDF,点M在线段DF上,/ ABE = Z DBM .(1)如图1,当/ ABC = 45° 时,求证:AE = 2 MD ;(2)如图2,当/ ABC = 60°时,则线段AE、MD之间的数量关系为: _____________________ 。
(3)在(2)的条件下延长BM到P,使MP= BM,连接CP,若AB = 7, AE = 2 7 ,求tan/ ACP的值.(2010珠海)2 .如图,在平行四边形ABCD中,过点A作AE丄BC垂足为E,连接DE, F为线段DE上一点,且/ AFE=/ B.(1) 求证:△ ADF^A DEC(2) 若AB= 4,AD = 3 .3,AE = 3,求AF 的长.(1) 证明:•••四边形ABCD是平行四边形••• AD// BC AB // CD•••/ ADF=/ CED / B+/ C=180°•// AFE+/ AFD=180 / AFE=/ B•••/ AFD=/ C• △ADF^A DEC⑵解:•••四边形ABCD是平行四边形• AD// BC CD=AB=4又••• AE丄BC • AE 丄AD在Rt △ ADE中, DE=.、AD2 AE2二,(3 .. 3)2 32 =6•/△ADF^A DECAD AF.3、.3 _ AF—rtr—z. v aDE CD64C旁边一颗树在阳光下”十青(2010珠海)3。
一天,小青在校园内发现:的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示)•如果小青的峰高为1.65米,由此可推断出树高是____________ 米.3.3(2010年兰州)19.如图,上体育课,甲、乙两名同学分别站在 C D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是____________ 米.答案6(2010宁波市)26.如图1,在平面直角坐标系中,0是坐标原点,口ABCD的顶点A的坐标为(一2, 0), 点D的坐标为(0, 2羽),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线I与x轴交于点F,与射线DC交于点G.(1)求/ DCB的度数;(2)当点F的坐标为(一4, 0),求点的坐标;(3)连结0E,以0E所在直线为对称轴,△ OEF经轴对称变换后得到△ OEF ',记直线EF '与射线DC 的交点为H.①如图2,当点G在点H的左侧时,求证:△ DEG DHE ;②△若EHG的面积为3 ,3,请你直接写出点F的坐标24. (2010年金华)(本题12分)与厶ABC的面积比为(BA . 1: 2B.1:C. 2: 1D. 4:(桂林2010)6.如图,已知△(罠"【件厠图)如图,把含有30。
中考数学易错题精选-圆与相似练习题附答案
中考数学易错题精选-圆与相似练习题附答案一、相似1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。
中考数学《图形的相似》真题汇编含解析
图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年中考数学试题分类汇编图形的相似与位似1. (2010年福建省德化县)如图,小“鱼”与大“鱼”是位似图形,如果小“鱼”上一个“顶点”的坐标为,那么大“鱼”上对应“顶点”的坐标为()A、B、C、D、【关键词】位似中心是原点的坐标之间的关系(若相似比为k,则坐标之比同侧为k异侧为-k)【答案】C2.(2010江苏泰州,)一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种B. 1种C. 2种D. 3种【答案】B【关键词】相似三角形的判定3.(2010年宁德市)如图,在□ABCD中,AE=EB,AF=2,则FC等于_____.【答案4】1.(2010年台湾省)图(一)表示D、E、F、G四点在△ABC三边上的位置,其中与交于H点。
若∠ABC=∠EFC=70︒,∠ACB=60︒,∠DGB=40︒,则下列哪一组三角形相似?(A) △BDG,△CEF (B) △ABC,△CEF(C) △ABC,△BDG (D) △FGH,△ABC。
【关键词】相似【答案】B3.(2010福建泉州市惠安县)两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A.9:16B. 3:4C.9:4D.3:16 【关键词】相似三角形的性质 【答案】B4. (2010年兰州市) 如图,上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是 米. 【关键词】图形的相似 【答案】65.(2010辽宁省丹东市)如图,与是位似图形,且位似比是,若AB =2cm ,则 cm ,并在图中画出位似中心O . 【关键词】位似【答案】.4(填空2分,画图1分)6.(2010年安徽省芜湖市)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2m ,CD =6m ,点P 到CD 的距离是2.7m ,则AB 与CD 间的距离是__________m .【关键词】投影相似三角形【答案】7.(2010重庆市)已知△ABC与△DEF相似且对应中线的比为2:3,则△ABC与△DEF的周长比为_____________.解析:由相似三角形的对应线段比等于相似比知,△ABC与△DEF的周长比为2:3答案:2:3.8.(2010山东德州)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.【关键词】三角形相似【答案】49.(2010重庆潼南县)12. △ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为.答案:3:410. (2010重庆市潼南县)△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为.答案:3:4.11.(2010年浙江省金华). 如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,以OE为半径画弧EF.P 是上的一个动点,连结OP,并延长OP交线段BC于点K,过点P作⊙O的切线,分别交射线AB于点M,交直线BC于点G.若,则BK﹦.【关键词】正方形、相似、切线定理【答案】或12.一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的峰高为1.65米,由此可推断出树高是_______米. 3.313..(2010浙江衢州)如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).解:(1)△ABC和△DEF相似.……2分根据勾股定理,得,,BC=5 ;,,.∵,……3分∴△ABC∽△DEF.……1分(2)答案不唯一,下面6个三角形中的任意2个均可.……4分△P2P5D,△P4P5F,△P2P4D,△P4P5D,△P2P4 P5,△P1FD.14.(2010江西)图1所示的遮阳伞,伞炳垂直于水平地面,起示意图如图2.当伞收紧时,点P与点A重合;当三慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开。
已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米.BC=2.0分米。
设AP=x分米.(1)求x的取值范围;(2)若∠CPN=60度,求x的值;(3)设阳光直射下伞的阴影(假定为圆面)面积为y,求y与x的关系式(结构保留)【关键词】菱形、圆、等边三角形、相似三角形的性质与判定、勾股定理、二次函数、动手操作等【答案】23.解(1)因为BC=2,AC=CN+PN=12,所以AB=12-2=10所以x的取值范围是(2)因为CN=PN,∠CPN=60°,所以三角形PCN是等边三角形.所以C P=6 所以AP=AC-PC=12-6=6即当∠CPN=60°时,x=6分米(3)连接MN、EF,分别交AC与0、H,因为PM=PN=CM=CN,所以四边形PNCM是菱形。
所以MN与PC互相垂直平分,AC是∠ECF的平分线在中,PM=6,又因为CE=CF,AC是∠ECF的平分线,所以EH=HF,EF垂直AC。
因为∠ECH=∠MCO,∠EHC=∠MOC=90°,所以,所以MO/EH=CM/CE所以所以所以15.(2010珠海)19.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的长.(1)证明:∵四边形ABCD是平行四边形∴AD∥BC AB∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180 ∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四边形ABCD是平行四边形∴AD∥BC CD=AB=4又∵AE⊥BC ∴ AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴ AF=16.(2010年滨州)本题满分8分)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)写出图中两对相似三角形(不得添加辅助线);(2)请分别说明两对三角形相似的理由.解:(1) △ABC∽△ADE, △ABD∽△ACE(2)①证△ABC∽△ADE.∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE又∵∠ABC=∠ADE,∴△ABC∽△ADE.②证△ABD∽△ACE.∵△ABC∽△ADE,∴又∵∠BAD=∠CAE,∴△ABD∽△ACE(2010年滨州)15.如图,A、B两点被池塘隔开,在AB外取一点C,连结AC、BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于N,量得MN=38cm,则AB的长为【答案】15217.(2010日照市)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:(1)D是BC的中点;(2)△BE C∽△ADC;(3)BC2=2AB·CE.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,即AD是底边BC上的高.又∵AB=AC,∴△ABC是等腰三角形,∴D是BC的中点(2) 证明:∵∠CBE与∠CAD是同弧所对的圆周角,∴∠CBE=∠CAD.又∵∠BCE=∠ACD,∴△BEC∽△ADC;(3)证明:由△BEC∽△ADC,知,即CD·BC=AC·CE.∵D是BC的中点,∴CD=BC.又∵AB=AC,∴CD·BC=AC·CE=BC·BC=AB·CE即BC=2AB·CE.18.(8分)(2010年浙江省东阳市)如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.(1)求证: ~;(2) 求的值;(3)延长BC至F,连接FD,使的面积等于,求的度数.【关键词】图形相似三角函数【答案】(1)∵点A是弧BC的中点∴∠ABC=∠ADB又∵∠BAE=∠BAE∴△ABE∽△ABD........................3分(2)∵△ABE∽△ABD∴AB2=2×6=12∴AB=2在Rt△ADB中,tan∠ADB=..........................3分(3)连接CD,可得BF=8,BE=4,则EF=4,△DEF是正三角形,∠EDF=6°......................................19.(2010年四川省眉山市).如图,Rt△AB 'C '是由Rt△ABC绕点A顺时针旋转得到的,连结CC '交斜边于点E,CC '的延长线交BB '于点F.(1)证明:△ACE∽△FBE;(2)设∠ABC=,∠CAC ' =,试探索、满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.【关键词】图形的旋转、相似三角形的判定、全等三角形的判定【答案】(1)证明:∵Rt△AB 'C '是由Rt△ABC绕点A顺时针旋转得到的,∴AC=AC ',AB=AB ',∠CAB=∠C 'AB '∴∠CAC '=∠BAB '∴∠ACC '=∠ABB '又∠AEC=∠FEB∴△ACE∽△FBE(2)解:当时,△ACE≌△FBE.在△ACC'中,∵AC=AC ',∴在Rt△ABC中,∠ACC'+∠BCE=90°,即,∴∠BCE=.∵∠ABC=,∴∠ABC=∠BCE∴CE=BE由(1)知:△ACE∽△FBE,∴△ACE≌△FBE.20. (2010年安徽中考)如图,已知△ABC∽△,相似比为(),且△ABC的三边长分别为、、(),△的三边长分别为、、。
⑴若,求证:;⑵若,试给出符合条件的一对△ABC和△,使得、、和、、进都是正整数,并加以说明;⑶若,,是否存在△ABC和△使得?请说明理由。
【关键词】三角形相似【答案】(1)证明:∵△ABC∽△,且相似比为(),∴∴又∵,所以(2)取a=8,b=6,c=4,同时取此时∴(1)不存在这样的△ABC和△,理由如下:若k=2,则又∵,,∴∴b=2c∴b+c=2c+c<4c=a,而b+c>a故不存在这样的△ABC和△使得。