句容市高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载

句容市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案

句容市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案

句容市第三中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力. 2. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(3. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .04. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24 C .30 D .365. 某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.6. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .157. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A1 B1-C. 1 D1 8. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4B.1[8 C .31[,)162 D .3[,3)89. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x << 10.在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°11.已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2,则()=2016f ( )A 、-12B 、-16C 、-20D 、0 12.为了得到函数的图象,只需把函数y=sin3x 的图象( )A.向右平移个单位长度 B.向左平移个单位长度 C.向右平移个单位长度D.向左平移个单位长度二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .14.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 15.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.16.若函数63e ()()32ex x bf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.三、解答题(本大共6小题,共70分。

2018年最新 江苏省句容高级中学2018届高三第一次月考数学试题-人教版 精品

2018年最新 江苏省句容高级中学2018届高三第一次月考数学试题-人教版 精品

江苏省句容高级中学2018届高三第一次月考数学试题一、选择题:(12×5=60分)(1) 某地区高中分三类,A 类学校共有学生4000人,B 类学校共有学生2000人,C 类学校共有学生3000人,现欲抽样分析某次考试的情况,若抽取900份试卷进行分析,则从A 类学校抽取的试卷份数应为( ) A 、450 B 、400 C 、300 D 、200(2) 一条直线与一个平面的一条斜线在这个平面内的射影垂直 是这条直线与这条斜线垂直的( )A 、 充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分又不必要条件(3) 101x x ⎛⎫- ⎪⎝⎭在的展开式中,系数最大的项是 ( )A 、第5、7项B 、第6项C 、第5、6项D 、第6、7项 (4) 5127除以的余数是 ( )A 、0B 、1C 、2D 、6(5) 甲、乙独立地解决 同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的概率是0.6,那么其中至少有1人解决这个问题的概率是( )A 、0.48B 、0.52C 、0.8D 、0.92(6) 正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是 ( )2222233a a A B C a D a ∏∏∏∏、、、、2(7) 函数y=1+3x-x 3有 ( )A 、极小值-2,极大值2B 、极小值-2,极大值3C 、极小值-1,极大值1D 、极小值-1,极大值3(8) 有2n 个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和为偶数的概率是 ( )A 、12 B 、12n C 、121n n -- D 、121n n ++ (9)棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,则直线AM 与CN 所成角的余弦值是 ( )A B C 、35 D 、25(10)函数y=ax 2+2(a-3)x+1在区间[)2,-+∞上单调递减,则a 的取值范围是 ( )A 、[]3,0-B 、(],3-∞-C 、[)3,0-D 、[]2,0-(11) 知识竞赛中给一个代表队的4人出了2道必答题和4道选答题,要求4人各答一题,共答4题,此代表队可选择的答题方案种数是 ( )A 、46AB 、24AC 、2444C AD 、2244C A(12) 设α-l-β是直二面角,直线a ⊂α, ,直线b ⊂β,且a 不与l 垂直, b 不与l 垂直,那么a与b ( )A 、可能垂直,不可能平行B 、可能垂直,也可能平行C 、不可能垂直,可能平行D 、不可能垂直,也不可能平行二、填空题:(6×4=24分)(13)若()7767610,12731............_x a x a x a x a a a a -=+++++++=则[]322312102y x x x =+--(14) 函数在区间,上,其递增区间是——,递减区间是——, 最大值是——,最小值是——(15) 抛物线y=x 2在点_____处的切线平行于直线y=4x-5(16) 从集合{1,2,3,……20}中选3个不同的数,使这3个数成递增等差数列,这样的数列共有____个(17) 有一个三角尺ABC,∠A=300,∠C=900,BC 是贴于桌面上,当三角尺与桌面成450角时,AB 边与桌面所成角的正弦值是_______(18) 某中学的一个研究性学习小组共有10名同学,其中男生x 名(3≤x ≤9),现从中选出3人参加一项调查活动,若至少有一名女生去参加的概率为f(x),则f(x)max =______高三数学试题答卷二、填空题:13、_____________________________________14、____________、___________、____________、____________15、________________________16、________________________17、________________________18、________________________三、解答题:(19)(本小题满分12分)从5名男生,3名女生中选5名担任5门不同学科的课代表,求符合下列条件的方法数:①女生必须少于男生②女生甲担任语文课代表③男生乙必须是课代表,但不任数学课代表④女生甲必须担任语文课代表,男生乙必须是课代表,但不任数学课代表(20)(本小题满分12分)为了支持三峡工程建设,某市某镇决定接受一批三峡移民,其中有3户互为亲戚关系,将这3户移民随意安置到5个村民组 ① 求这3户恰好安置到同一村民组的概率② 求这3户中恰好有2户安置到同一村民组的概率 `(21)(本小题满分14分)已知n的展开式中的前三项的二项式系数和为37,求展开式中① 所有x 的有理数项② 系数最大的项(22)(本小题满分14分)如图,在棱柱ABC —A 1B 1C 1中,四边形A 1ABB 1是菱形,四边形BCC 1B 1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=600①求证:平面CA1B⊥平面A1ABB1②求直线A1C与平面BCC1B1所成角的正切值③求点C1到平面A1CB的距离A1 B1C1A BC(23)(本小题满分14分)设函数3221()23,(01)3f x x ax a x b a =-+-+,① 求函数f(x)的单调区间、极值② 若当x ∈[a+1,a+2]时,恒有/()f x a ≤,试确定a 的取值范围高三第一次月考数学试题答案BDABD BDCDA CC(13)129 (14)[1,2],[0,1],3,-8 (15)(2,4) (16)90 (17(18)119120(19)5520种;840种;3360种;360种(20)①3户任意分配到5个村民组,共有53种不同分法,3户都在同一村民组共有5种方法,3户都在同一村民组的概率为350.045=,∴3户都在同一村民组的概率为0.18 ②恰有2户分到同一村民组的结果有2235,C A 种∴223530.485C A =∴恰有2户分到同一村民组的概率为0.48(21) 由已知:01237n n n C C C ++=,用组合数公式得:n 2+n-72=0,解得n=8或者n= -9(舍)①∵348418812rrrrrr r T C C x ---+==, 3408,0,4,84r Z r r Z r -∈≤≤∈=且知 ∴展开式中x 的有理数项为42159351,,8256T x T x T x -=== ②设第r+1项的系数a r+1最大,则112r rr r a a a a +++≥⎧⎨≥⎩展开整理得r ≥2且r ≤3∴r=2或3∴∴系数最大的项为:5724347,7T x T x ==(22)∵①四边形BCC 1B 1是矩形, ∴BC ⊥BB 1,又AB ⊥BC ∴BC ⊥平面A 1ABB 1, ∵CB ⊂平面CA 1B, ∴平面CA 1B ⊥平面A 1ABB 1② 过A 1作A 1D ⊥BB 1于D,连接DC, ∵BC ⊥平面A 1ABB 1, ∴BC ⊥A 1D, ∴A 1D ⊥平面BCC 1B 1,故∠A 1CD 为直线A 1C 与平面BCC 1B 1所成角.在矩形BCC 1B 1中四边形A 1ABB 1是菱形, ∠A 1AB=600, CB=3,AB=4, ∴A 1D=,∴tan ∠A 1CD=113A D CD ==③C 1B 1∥BC, ∴C 1B 1∥平AB 面CA 1B ∴C 1到平面A 1CB 的距离即为B 1到平面A 1CB 的距离,连接AB 1,AB 1与A 1B 交于点O ,∵四边形A 1ABB 1是菱形,∴B 1O ⊥A 1B , ∵ 平面CA 1B ⊥平面A 1ABB 1,∴B 1O ⊥平面CA 1B ,∴B 1O 即为C 1到平面A 1CB 的距离,∵B 1O=C 1到平面A 1CB的距离为(23)①∵3221()23,(01)3f x x ax a x b a =-+-+∴f /(x)=-x 2+4ax-3a 2,令f /(x)=0得x=a 或x=3a ,列表∴增区间为( a,3a ),减区间为(-∞,a)和(3 a ,+∞)x=a 时,极小值为343a b -+,x=3a 时,极大值为b ②∵/()f x a ≤,∴2243a x ax a a -≤-+-≤又f /(x)= -(x-2a )2+a 2 ∵0<a <1,∴a+1>2a, ∴f /(x)在[a+1,a+2]上为减函数∴f /(x)max = f /(a+1)=2a-1, f /(x)min = f /(a+2)=4a-4∴214401a aa a a -≤⎧⎪-≥-⎨⎪⎩415a ⇒≤。

句容市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

句容市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

11.已知数列{an}中,a1=1,an+1=an+n,若利用如图所示的程序框图计算该数列的第 10 项,则判断框内的条件
A.n≤8?
B.n≤9?
C.n≤10?
D.n≤11? )
12.已知 x,y 满足 A.1 B. C.
,且目标函数 z=2x+y 的最小值为 1,则实数 a 的值是( D.
二、填空题
22.解关于 x 的不等式 12x2﹣ax>a2(a∈R).
23.已知定义在 3, 2 的一次函数 f ( x) 为单调增函数,且值域为 2, 7 . (1)求 f ( x) 的解析式; (2)求函数 f [ f ( x)] 的解析式并确定其定义域.
24.已知函数 f(x)=sinx﹣2 (1)求 f(x)的最小正周期; (2)求 f(x)在区间[0,
16.已知 x , y 为实数,代数式 1 ( y 2) 2 9 (3 x) 2
x 2 y 2 的最小值是
.
第 2 页,共 14 页
【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 17.如图,在矩形 ABCD 中, AB 则 ED 的长=____________ 18.在复平面内,复数 与 对应的点关于虚轴对称,且 ,则 ____.
A.若 m∥α,n∥α,则 m∥n B.若 α⊥γ,β⊥γ,则 α∥β

D. 3 )
6. 已知 m、n 是两条不重合的直线,α、β、γ 是三个互不重合的平面,则下列命题中 正确的是( C.若 m⊥α,n⊥α,则 m∥n D.若 m∥α,m∥β,则 α∥β 7. 已知 A. C. A. x y 2 0 C. x 1 或 y 1 表示数列 的前 项和,若对任意的 B. D. ) B. x y 1 0 D. x y 2 0 或 x y 0 满足 ,且 ,则 (

句容市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

句容市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

句容市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离 B .相交 C .内切 D .外切2. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O是坐标原点,且,那么实数a 的取值范围是( ) A.B.C .D.3. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 4. 已知直线a ,b 都与平面α相交,则a ,b 的位置关系是( ) A .平行 B .相交 C .异面 D .以上都有可能5. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40C .60D .206. 若cos(﹣α)=,则cos(+α)的值是( )A.B.﹣ C.D.﹣7. 已知集合A={0,m ,m 2﹣3m+2},且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可8. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.9. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150° 10.若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)11.直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .312.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0(二、填空题13.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .14.设x ,y 满足的约束条件,则z=x+2y 的最大值为 .15.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.16.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .17.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .18.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .三、解答题19.如图,F 1,F 2是椭圆C : +y 2=1的左、右焦点,A ,B 是椭圆C 上的两个动点,且线段AB 的中点M在直线l :x=﹣上.(1)若B 的坐标为(0,1),求点M 的坐标;(2)求•的取值范围.20.已知函数f(x)=xlnx,求函数f(x)的最小值.21.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.22.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0.(1)求顶点C的坐标;(2)求△ABC的面积.23.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合A∪B,A∩B.24.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.句容市第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D【解析】解:由圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16得: 圆C 1:圆心坐标为(﹣2,2),半径r=1;圆C 2:圆心坐标为(2,5),半径R=4. 两个圆心之间的距离d==5,而d=R+r ,所以两圆的位置关系是外切.故选D2. 【答案】A【解析】解:设AB 的中点为C ,则因为,所以|OC|≥|AC|, 因为|OC|=,|AC|2=1﹣|OC|2, 所以2()2≥1,所以a ≤﹣1或a ≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A .【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.3. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=, 解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质. 4. 【答案】D【解析】解:如图,在正方体ABCD ﹣A 1B 1C 1D 1中, AA 1∩平面ABCD=A ,BB 1∩平面ABCD=B ,AA 1∥BB 1; AA 1∩平面ABCD=A ,AB 1∩平面ABCD=A ,AA 1与AB 1相交; AA 1∩平面ABCD=A ,CD 1∩平面ABCD=C ,AA 1与CD 1异面.∴直线a ,b 都与平面α相交,则a ,b 的位置关系是相交、平行或异面. 故选:D .5.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.6.【答案】B【解析】解:∵cos(﹣α)=,∴cos(+α)=﹣cos=﹣cos(﹣α)=﹣.故选:B.7.【答案】B【解析】解:∵A={0,m,m2﹣3m+2},且2∈A,∴m=2或m2﹣3m+2=2,解得m=2或m=0或m=3.当m=0时,集合A={0,0,2}不成立.当m=2时,集合A={0,0,2}不成立.当m=3时,集合A={0,3,2}成立.故m=3.故选:B.【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.8.【答案】B9.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.10.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.11.【答案】B【解析】解:∵直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”,∴命题P是真命题,∴命题P的逆否命题是真命题;¬P:“若直线m不垂直于α,则m不垂直于l”,∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.故选:B.12.【答案】B【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10aa ,解得:330<<a 故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.二、填空题13.【答案】.【解析】解:由题意画出几何体的图形如图由于面SAB ⊥面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球体的对称性可知,当S 在“最高点”,也就是说H 为AB 中点时,SH 最大,棱锥S ﹣ABC 的体积最大. ∵△ABC 是边长为2的正三角形,所以球的半径r=OC=CH=.在RT △SHO 中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1, ∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.14.【答案】7.【解析】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B时,直线y=﹣的截距最大,此时z最大.由,得,即B(3,2),此时z的最大值为z=1+2×3=1+6=7,故答案为:7.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.15.【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:16.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.17.【答案】60°.【解析】解:∵|﹣|=,∴∴=3,∴cos<>==∵∴与的夹角为60°.故答案为:60°【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.18.【答案】.【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.三、解答题19.【答案】【解析】解:(1)∵B的坐标为(0,1),且线段AB的中点M在直线l:x=﹣上,∴A点的横坐标为﹣1,代入椭圆方程+y2=1,解得y=±,故点A(﹣1,)或点A(﹣1,﹣).∴线段AB的中点M(﹣,+)或(﹣,﹣).(2)由于F1(﹣1,0),F2(1,0),当AB垂直于x轴时,AB的方程为x=﹣,点A(﹣,﹣)、B(﹣,),求得•=.当AB不垂直于x轴时,设AB的斜率为k,M(﹣,m),A(x1,y1),B (x2,y2),由可得(x1+x2)+2(y1+y2)•=0,∴﹣1=﹣4mk,即k=,故AB的方程为y﹣m=(x+),即y=x+①.再把①代入椭圆方程+y2=1,可得x2+x+•=0.由判别式△=1﹣>0,可得0<m2<.∴x1+x2=﹣1,x1•x2=,y1•y2=(•x1+)(x2+),∴•=(x1﹣1,y1)•(x2﹣1,y2)=x1•x2+y1•y2﹣(x1+x2)+1=.令t=1+8m2,则1<t<8,∴•==[3t+].再根据[3t+]在(1,)上单调递减,在(,8)上单调递增求得[3t+]的范围为[,).综上可得,[3t+]的范围为[,).【点评】本题主要考查本题主要考查椭圆的定义、标准方程,以及简单性质的应用,两个向量的数量积公式的应用,直线和二次曲线的关系,考查计算能力,属于难题.20.【答案】【解析】解:函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得∴0<x<时,f′(x)<0,x>时,f′(x)>0∴时,函数取得极小值,也是函数的最小值∴f(x)min===﹣.【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题.21.【答案】【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,即有(ax﹣1)(x﹣1)>0,当a=0时,即有1﹣x>0,解得x<1;当a<0时,即有(x﹣1)(x﹣)<0,由1>可得<x<1;当a=1时,(x﹣1)2>0,即有x∈R,x≠1;当a>1时,1>,可得x>1或x<;当0<a<1时,1<,可得x<1或x>.综上可得,a=0时,解集为{x|x<1};a<0时,解集为{x|<x<1};a=1时,解集为{x|x∈R,x≠1};a>1时,解集为{x|x>1或x<};0<a<1时,解集为{x|x<1或x>}.(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,即为ax2﹣(a+1)x+1>0,即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].则g(﹣1)>0,且g(1)>0,即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,即(x﹣1)(x+2)<0,且x(x﹣1)>0,解得﹣2<x<1,且x>1或x<0.可得﹣2<x<0.故x的取值范围是(﹣2,0).22.【答案】【解析】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴=﹣2.∵直线AC⊥BH,∴k AC k BH=﹣1.∴,直线AC的方程为,联立∴点C的坐标C(1,1).(2),∴直线BC的方程为,联立,即.点B到直线AC:x﹣2y+1=0的距离为.又,∴.【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.23.【答案】【解析】解:(1)由x2﹣5x+6>0,即(x﹣2)(x﹣3)>0,解得:x>3或x<2,即A={x|x>3或x<2},由g(x)=,得到﹣1≥0,当x>0时,整理得:4﹣x≥0,即x≤4;当x<0时,整理得:4﹣x≤0,无解,综上,不等式的解集为0<x≤4,即B={x|0<x≤4};(2)∵A={x|x>3或x<2},B={x|0<x≤4},∴A∪B=R,A∩B={x|0<x<2或3<x≤4}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.24.【答案】【解析】解:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,所以A1O⊥AC.又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O⊂平面AA1C1C,所以A1O⊥平面ABC.(Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系.由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴,所以得:则有:.设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以..因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(Ⅲ)设,即,得所以,得,令OE∥平面A1AB,得,即﹣1+λ+2λ﹣λ=0,得,即存在这样的点E,E为BC1的中点.【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力。

句容市第三中学2018-2019学年高三上学期11月月考数学试卷含答案

句容市第三中学2018-2019学年高三上学期11月月考数学试卷含答案

21.如图,已知五面体 ABCDE,其中△ABC 内接于圆 O,AB 是圆 O 的直径,四边形 DCBE 为平行四边形, 且 DC⊥平面 ABC. (Ⅰ)证明:AD⊥BC (Ⅱ)若 AB=4,BC=2,且二面角 A﹣BD﹣C 所成角 θ 的正切值是 2,试求该几何体 ABCDE 的体积.
第 4 页,共 17 页
第 9 页,共 17 页
所以 故选:A.
,解得 m=﹣7.
【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力. 12.【答案】D 【解析】 【分析】由于长为 2 的线段 MN 的一个端点 M 在棱 OA 上运动,另一个端点 N 在△BCO 内运动(含边界), 有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,故 MN 的中点 P 的轨迹与三棱 锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可. 【解答】 解 : 因为长为 2 的线段 MN 的一个端点 M 在棱 OA 上运动, 另一个端点 N 在△BCO 内运动 (含边界) , 有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,则 MN 的中点 P 的轨迹与 三棱锥的面所围成的几何体可能为该球体的 或该三棱锥减去此球体的 ,即: . 故选 D 或
第 6 页,共 17 页
句容市第三中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】A 【解析】 试题分析: f x f x 所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与 f x 不相同,D 为非 奇非偶函数,故选 A. 考点:函数的单调性与奇偶性. 2. 【答案】B 【解析】解:由 f(x)图象单调性可得 f′(x)在(﹣∞,﹣1)∪(0,+∞)大于 0, 在(﹣1,0)上小于 0, ∴f(x)f′(x)<0 的解集为(﹣∞,﹣2)∪(﹣1,0). 故选 B. 3. 【答案】D 【解析】解:若 a=0,则函数 f(x)=﹣3x2+1,有两个零点,不满足条件. 若 a≠0,函数的 f(x)的导数 f′(x)=6ax2﹣6x=6ax(x﹣ ), 若 f(x)存在唯一的零点 x0,且 x0>0, 若 a>0,由 f′(x)>0 得 x> 或 x<0,此时函数单调递增, 由 f′(x)<0 得 0<x< ,此时函数单调递减, 故函数在 x=0 处取得极大值 f(0)=1>0,在 x= 处取得极小值 f( ),若 x0>0,此时还存在一个小于 0 的 零点,此时函数有两个零点,不满足条件. 若 a<0,由 f′(x)>0 得 <x<0,此时函数递增, 由 f′(x)<0 得 x< 或 x>0,此时函数单调递减, 即函数在 x=0 处取得极大值 f(0)=1>0,在 x= 处取得极小值 f( ), 若存在唯一的零点 x0,且 x0>0, 则 f( )>0,即 2a( )3﹣3( )2+1>0, ( )2<1,即﹣1< <0, 解得 a<﹣1, 故选:D

句容市高级中学2018-2019学年上学期高三数学10月月考试题

句容市高级中学2018-2019学年上学期高三数学10月月考试题

句容市高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 如图,空间四边形OABC 中,,,,点M 在OA上,且,点N 为BC 中点,则等于( )A. B. C. D.2. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.3. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( ) A .2+B .1+C.D.4. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形5. 下列结论正确的是( )A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α6. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<7. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )8. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件9. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .410.a=﹣1是直线4x ﹣(a+1)y+9=0与直线(a 2﹣1)x ﹣ay+6=0垂直的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.12.定义运算:,,a a ba b b a b ≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .22⎡-⎢⎣⎦B .[]1,1-C .2⎤⎥⎣⎦D .1,2⎡-⎢⎣⎦ 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在数列中,则实数a= ,b= .14.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)15.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .16.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.三、解答题(本大共6小题,共70分。

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(3)

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C . D.(ln y x =+2y x =tan y x =xy e =3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个4. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D . 6. 已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ +=u u u r u u u r r OPQ ∆的面积等于()A .B .CD7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .48. 已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝9. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .211.下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )12.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.函数y=lgx 的定义域为 .17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.三、解答题19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.20.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线.(2)若,求的值.23.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 24.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值;(Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A DDCCCCCB题号1112答案DC二、填空题13. (,) .14. . 15.  .16. {x|x >0} .17. ③ .18. ①④⑤ 三、解答题19. 20. 21. 22.23.(1);(2).122n n b +=-222(4)n n S n n +=-++24.。

句容市第一中学2018-2019学年高三上学期11月月考数学试卷含答案


【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.
三、解答题
19.【答案】 【解析】解:(1)ρ2﹣4 化为:x2+y2﹣4x﹣4y+6=0. (2)由 x2+y2﹣4x﹣4y+6=0 可得:(x﹣2)2+(y﹣2)2=2. 圆心 C(2,2),半径 r= |OP|= 最小值为 2 20.【答案】 【解析】解:设点 A(3,﹣2)关于直线 l:2x﹣y﹣1=0 的对称点 A′的坐标为(m,n), 则线段 A′A 的中点 B( , ), ﹣ ﹣1=0 ①. × =﹣1 ②, =2 ﹣ = . + =3 . . ∴线段 OP 的最大值为 2 . ρcos(θ﹣ )+6=0,展开为:ρ2﹣4 × ρ(cosθ+sinθ)+6=0.
第 6 页,共 12 页
故选 B. 【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题. 9. 【答案】A 【解析】解:A.复合命题 p∧q 为假命题,则 p,q 至少有一个命题为假命题,因此不正确; B.由 x2﹣3x+2=0,解得 x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确; C.对于命题 p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确; D.命题“若 x2﹣3x+2=0,则 x=1”的逆否命题为:“若 x≠1,则 x2﹣3x+2≠0”,正确. 故选:A. 10.【答案】D 【解析】解:∵等比数列{an}中 a4=2,a5=5, ∴a4•a5=2×5=10, ∴数列{lgan}的前 8 项和 S=lga1+lga2+…+lga8 =lg(a1•a2…a8)=lg(a4•a5)4 =4lg(a4•a5)=4lg10=4 故选:D. 【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查. 11.【答案】A 【解析】解:∵函数 g(x)是偶函数,函数 f(x)=g(x﹣m), ∴函数 f(x)关于 x=m 对称, 若 φ ∈( , ),

句容市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

句容市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3} B .{1,3,5} C .{1,4,5}D .{2,3,4}2. 函数y=+的定义域是( )A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}3.已知平面向量=(1,2),=(﹣2,m),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)4. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 计算log 25log 53log 32的值为( )A .1B .2C .4D .86. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( ) A .6 B .5 C .3 D .47. 设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( ) A .T=π, B .T=π,A=2C .T=2π,D .T=2π,A=28. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A. B .18 C. D.9. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 10.设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q11.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________的污染物,则需要()小时.A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.12.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B.C.D.3二、填空题13.命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.14.已知实数x,y满足约束条,则z=的最小值为.15.已知sinα+cosα=,且<α<,则sinα﹣cosα的值为.16.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为.17.设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f (x)>0成立的x的取值范围是.18.已知双曲线的一条渐近线方程为y=x,则实数m等于.三、解答题19.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.20.如图所示,在边长为的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.21.已知△ABC的顶点A(3,2),∠C的平分线CD所在直线方程为y﹣1=0,AC边上的高BH所在直线方程为4x+2y﹣9=0.(1)求顶点C的坐标;(2)求△ABC的面积.22.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.23.已知函数f (x )=log 2(x ﹣3), (1)求f (51)﹣f (6)的值; (2)若f (x )≤0,求x 的取值范围.24.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?句容市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,∴集合M,N对应的韦恩图为所以N={1,3,5}故选B2.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.3.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.4.【答案】D【解析】考点:1.斜率;2.两点间距离.5.【答案】A【解析】解:log25log53log32==1.故选:A.【点评】本题考查对数的运算法则的应用,考查计算能力.6. 【答案】D【解析】解:∵等比数列{a n }中a 4=2,a 5=5, ∴a 4•a 5=2×5=10,∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8 =lg (a 1•a 2…a 8)=lg (a 4•a 5)4 =4lg (a 4•a 5)=4lg10=4 故选:D .【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.7. 【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos +cos2xsin)=2sin (2x+),∴T==π,A=2故选:B8. 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D .9. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 10.【答案】 C【解析】解:在长方体ABCD ﹣A 1B 1C 1D 1中命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足α∥β,l ⊂α,m ⊂β,而m 与l 异面,故命题p 不正确;﹣p 正确;命题q :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.11.【答案】15【解析】12.【答案】D【解析】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.【点评】由三视图正确恢复原几何体是解题的关键.二、填空题13.【答案】﹣2≤a≤2【解析】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:﹣2≤a≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.14.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.15.【答案】.【解析】解:∵sinα+cosα=,<α<,∴sin2α+2sinαcosα+cos2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.16.【答案】.【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则BE=B1F=,EF=1∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.17.【答案】(﹣2,0)∪(2,+∞).【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)>0成立,即当x>0时,g′(x)>0,∴当x>0时,函数g(x)为增函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是减函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).故答案为:(﹣2,0)∪(2,+∞).18.【答案】4.【解析】解:∵双曲线的渐近线方程为y=x,又已知一条渐近线方程为y=x,∴=2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.三、解答题19.【答案】【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,可化为直角坐标方程x2+y2﹣2x+4y+4=0,即圆(x﹣1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.20.【答案】【解析】解:设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件,解得,,,∴S=πrl+πr 2=10π,∴21.【答案】【解析】解:(1)由高BH 所在直线方程为4x+2y ﹣9=0,∴ =﹣2.∵直线AC ⊥BH ,∴k AC k BH =﹣1.∴,直线AC 的方程为,联立∴点C 的坐标C (1,1).(2),∴直线BC 的方程为,联立,即.点B 到直线AC :x ﹣2y+1=0的距离为.又,∴.【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.22.【答案】(1)详见解析;(2【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分∵AB 为圆O 的直径,∴AC BC ⊥,…………4分 又∵VC ⊥圆O ,∴VC AC ⊥,…………6分 ∴DE BC ⊥,DE VC ⊥,又∵VCBC C =,∴DE VBC ⊥面;…………7分(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得1133BCE BCD DE S d S ∆∆⨯⨯=⨯⨯,解得2d =12分 设BE 与平面BCD 所成角为θ,∵8BC ==,BE =,则sin 146d BE θ==.…………15分 23.【答案】【解析】解:(1)∵函数f (x )=log 2(x ﹣3),∴f (51)﹣f (6)=log 248﹣log 23=log 216=4; (2)若f (x )≤0,则0<x ﹣3≤1,解得:x ∈(3,4] 【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.24.【答案】 【解析】解:(1)(x ∈N *) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.。

句容市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案


第 1 页,共 16 页
12.江岸边有一炮台高 30 米,江中有两条船,由炮台顶部测得俯角分别为 45°和 30°,而且两条船与炮台底部
连线成 30°角,则两条船相距( )
A.10 米
B.100 米
C.30 米
D.20 米
二、填空题
13.设 O 为坐标原点,抛物线 C:y2=2px(p>0)的准线为 l,焦点为 F,过 F 斜率为 的直线与抛物线 C 相
抽取的 2 名学生中,至少有 1 人体育成绩在
的概率;
(Ⅲ)假设甲、乙、丙三人的体育成绩分别为
,且分别在


三组中,其中
.当数据
Байду номын сангаас
的方差 最大时,写出
的值.(结论不要求证明)
(注:
,其中 为数据
的平均数)
23.已知函数 f x x2 bx a ln x .
(1)当函数 f x 在点 1, f 1 处的切线方程为 y 5x 5 0 ,求函数 f x 的解析式;
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养. 7. 【答案】A
【解析】解:25÷2=12…1 12÷2=6…0 6÷2=3…0 3÷2=1…1 1÷2=0…1
第 8 页,共 16 页
故 25(10)=11001(2)故选 A. 【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除 k 取余法”的方法步骤是解答本
= ,则高一、高二、高三年级抽取的人数分别为
第 9 页,共 16 页
故选 B. 【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的 个体数,属于基础题. 12.【答案】C 【解析】解:如图,过炮台顶部 A 作水平面的垂线,垂足为 B,设 A 处观测小船 C 的俯角为 45°, 设 A 处观测小船 D 的俯角为 30°,连接 BC、BD Rt△ABC 中,∠ACB=45°,可得 BC=AB=30 米 Rt△ABD 中,∠ADB=30°,可得 BD= AB=30 米 在△BCD 中,BC=30 米,BD=30 米,∠CBD=30°, 由余弦定理可得: CD2=BC2+BD2﹣2BCBDcos30°=900 ∴CD=30 米(负值舍去) 故选:C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

句容市高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且
=0,
tan ∠PF 1F 2=
,则此椭圆的离心率为( )
A .
B .
C .
D .
2. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )
A .36种
B .38种
C .108种
D .114种
 3
. 是首项
,公差的等差数列,如果
,则序号等于( )
A .667
B .668
C .669
D .670
4. 已知函数,则( )
1)1(')(2
++=x x f x f =⎰
dx x f 1
)(A . B .
C .
D .6
7-
6
7656
5-
【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.
5. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( )
A .[﹣9,+∞)
B .[0,+∞)
C .(﹣9,1)
D .[﹣9,1)
6. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )
A .
B .ln (x 2+1)>ln (y 2+1)
C .x 3>y 3
D .sinx >siny
7. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )
A .A
B ⊂α
B .AB ⊄α
C .由线段AB 的长短而定
D .以上都不对
8. 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .11
B .11.5
C .12
D .12.5
9. 函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为( )
A .f (x )=3﹣x
B .f (x )=x ﹣3
C .f (x )=1﹣x
D .f (x )=x+1
10.在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]
A .(0,
6
π
B .[
,)6
π
π C. (0,
]3
π
D .[
,)
3
π
π11.已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )
A .(﹣∞,]
B .(﹣∞,)
C .(﹣∞,0]
D .(﹣∞,0)
 12.不等式恒成立的条件是( )
A .m >2
B .m <2
C .m <0或m >2
D .0<m <2
二、填空题
13.给出下列命题:①把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣


②若α,β是第一象限角且α<β,则cos α>cos β;③x=﹣
是函数y=cos (2x+π)的一条对称轴;
④函数y=4sin (2x+)与函数y=4cos (2x ﹣
)相同;
⑤y=2sin (2x ﹣
)在是增函数;
则正确命题的序号 . 
14.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 . 
15.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .16.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为
(用数字作答) 
17.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)18.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .
三、解答题
19.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a 的钢条2根,长度为b 的钢条1根;
第二种方式可截成长度为a的钢条1根,长度为b的钢条3根.现长度为a的钢条至少需要15根,长度为b 的钢条至少需要27根.
问:如何切割可使钢条用量最省?
20.设数列的前项和为,且满足,数列满足,且
(1)求数列和的通项公式
(2)设,数列的前项和为,求证:
(3)设数列满足(),若数列是递增数列,求实数的取值范围。

21.已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上

(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.
22.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)一个周期内的一系列对应值如表:
x0
y10﹣1
(1)求f(x)的解析式;
(2)求函数g(x)=f(x)+sin2x的单调递增区间.
23.在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。

(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(2)设点是曲线上的一个动点,求它到直线的距离的最小值。

24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.
(1)求M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.
句容市高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
题号12345678910
答案A A C B D C A C A C
题号1112
答案B D
二、填空题
13.
14. (﹣3,21) .
15. 8 .
16. 15 
17.必要而不充分
18. ﹣1054 .
三、解答题
19.
20.
21.
22.
23.(1)点P在直线上
(2)
24.。

相关文档
最新文档