空间向量与垂直关系
2利用空间向量证明平行垂直关系(学生版)

利用空间向量证明平行垂直关系(讲案)【教学目标】一、方向向量与法向量概念【知识点】1.直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量。
注:(1)在直线上取有向线段表示的向量,或在与它平行的直线上取有向线段表示的向量,均为直线的方向向量。
(2)在解具体立体几何题时,直线的方向向量一般不再叙述而直接应用,在直线上任取两点,所形成的向量即为该直线的方向向量,可参与向量运算或向量的坐标运算。
(3)直线的方向向量是非零向量且不唯一。
⊥,取直线l的方向向量a,则向量a叫做平面α的法向量。
2.平面的法向量:直线l a(注意:平面的法向量是非零向量且不唯一)3.确定平面的法向量的方法(1)直接法:几何体中有具体的直线与平面垂直,只需证明线面垂直,取该垂线的方向向量即得平面的法向量,即观察是否有垂直于平面的向量,若有,则此向量就是法向量。
(2)待定系数法:几何体中没有具体的直线,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:(i )设出平面的法向量为(,,)n x y z =(ii )找出(求出)平面内的两个不共线的向量的坐标a 111(,,)a b c =,222,,)(b a b c =(iii )根据法向量的定义建立关于,,x y z 的方程0n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ;(iv )解方程组,取其中的一个解,即得法向量.由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量. 4. 空间位置关系的向量表示12,n n2l 1212//(n n n kn k R ⇔=∈2l ⊥12120n n n n ⊥⇔⋅=n , 的法向量为m l α0n m n m ⊥⇔⋅=α⊥//()n m n km k R ⇔=∈的法向量分别为,n mβ //()n m n km k R ⇔=∈β⊥0n m n m ⊥⇔⋅=【例题讲解】★☆☆例题1.(2020•和平区)若(1A -,0,1),(1B ,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3) D .(3,2,1)★☆☆练习1.已知直线1l 的方向向量(2,,1)m m =,2l 的方向向量1(1,,2)2n =,且21l l ⊥,则(m = )A .8B .8-C .1D .1-★☆☆练习2.直线1l 、2l 的方向向量分别为(1a =,2,2)-,(2b =-,3,2),则( ) A .12//l l B .1l 与2l 相交,但不垂直C .12l l ⊥D .不能确定★☆☆练习3.若直线l 的方向向量为(2v =,1,3),且直线l 过(0A ,y ,3),(1B -,2-,)z 两点.则y = ,z = .★☆☆练习4.已知点(1A ,2-,0)和向量(3,4,6)a =-,||2||AB a =,且AB 与a 方向相反,则点B 坐标为( )A .(7-,6,12)B .(7,10-,12)-C .(7,6-,12)D .(7-,10,12)★☆☆例题2.已知(2AB =,2,1),(4AC =,5,3),则下列向量中是平面ABC 的法向量的是( ) A .(1,2,6)-B .(2-,1,1)C .(1,2-,2)D .(4,2-,1)★☆☆练习1.(2020•聊城)若直线l 的方向向量为m ,平面α的法向量为n ,则能使//l α的是( ) A .(1m =,2,1),(1n =,0,1) B .(0m =,1,0),(0n =,3,0)C .(1m =,2-,3),(2n =-,2,2)D .(0m =,2,1),(1n =-,0,1)-★☆☆练习2.(2020秋•和平区)如图,在单位正方体1111ABCD A B C D -中,以D 为原点,DA ,DC ,1DD 为坐标向量建立空间直角坐标系,则平面11A BC 的法向量是( )A .(1,1,1)B .(1-,1,1)C .(1,1-,1)D .(1,1,1)-★★☆练习3.(2020•辽宁)已知平面α上三点(3A ,2,1),(1B -,2,0),(4C ,2-,1)-,则平面α的一个法向量为( )A .(4,9-,16)-B .(4,9,16)-C .(16-,9,4)-D .(16,9,4)-★☆☆例题3.直线l 的方向向量(1a =,3-,5),平面α的法向量(1n =-,3,5)-,则有( ) A .//l α B .l α⊥C .l 与α斜交D .l α⊂或//l α★★☆练习1.(2019•杨浦区)空间直角坐标系中,两平面α与β分别以1(2n =,1,1)与2(0n =,2,1)为其法向量,若l αβ=,则直线l 的一个方向向量为 (写出一个方向向量的坐标)★☆☆练习2.若直线l 的方向向量为(4,2,)m ,平面α的法向量为(2,1,1)-,且l α⊥,则m = . ★☆☆练习3.(2020•菏泽)设平面α的法向量为(1,2-,)λ,平面β的法向量为(2,μ,4),若//αβ,则(λμ+= ) A .2 B .4C .2-D .4-二、利用空间向量证明平行关系【知识点】(1)线线平行:若空间不重合两条直线,a b 的方向向量分别为,a b ,则////a b a b ⇔⇔()a b R λλ=∈; (2)线面平行:若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=;(3)面面平行:若空间不重合的两个平面,αβ的法向量分别为a b ,,则////a b αβ⇔⇔a b λ=.【例题讲解】★☆☆例题1.如图,在长方体1111OAEB O A E B -中,||3OA =,||4OB =,1||2OO =,点在棱1AA 上,且12AP PA =,点S 在棱1BB 上,且12SB BS =,点Q 、R 分别是11O B 、AE 的中点,求证://PQ RS .★☆☆例题2.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .建立适当的空间直角坐标系,利用空间向量方法解答以下问题: 求证://PA 平面EDB .★☆☆练习1. 如图,在长方体1111ABCD A B C D -中,12AD AA ==,6AB =,E 、F 分别为11A D 、11D C 的中点.分别以DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -. (1)求点E 、F 的坐标; (2)求证:1//EF ACD 平面.P★★☆练习2. 如图,在四棱锥P ABCD -中,PB ⊥平面ABCD ,AB AD ⊥,//AB CD ,且1AB =,2AD CD ==,E 在线段PD 上.若E 是PD 的中点,试证明://AE 平面PBC .★☆☆例题3.如图,在正方体1111ABCD A B C D -中,求证:平面11//AB D 平面1BDC .★☆☆练习1. 已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别是1BB ,1DD 的中点,求证: (1)1//FC 平面ADE ; (2)平面//ADE 平面11B C F .★★☆练习2. 如图,已知棱长为4的正方体1111ABCD A B C D -中,M ,N ,E ,F 分别是棱11A D ,11A B ,11D C ,11B C 的中点,求证:平面//AMN 平面EFBD .三、利用空间向量证明垂直关系【知识点】(1)线线垂直:设直线,的方向向量分别为,,则要证明,只需证明,即。
空间向量平行公式和垂直公式

空间向量平行公式和垂直公式
1、向量垂直公式
向量a=(a1,a2),向量b=(b1,b2)。
a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb(λ是一个常数)。
a垂直b:a1b1+a2b2=0。
2、向量平行公式
向量a=(x1,y1),向量b=(x2,y2)。
x1y2-x2y1=0。
a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。
相关信息:
空间中具有大小和方向的量叫做空间向量。
向量的大小叫做向量的长度或模(modulus)。
规定,长度为0的向量叫做零向量,记为0。
模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。
记为-a方向相等且模相等的向量称为相等向量。
1、共线向量定理
两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。
任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。
第一课时 空间向量与平行、垂直关系

向量线性表示
(1)转化为相应的线线平行或线面平行;
面面平行 (2)求出平面 α,β 的法向量 u,v,证明 u∥v
即可说明 α∥β
1:已知直线 l 的方向向量 u=(2,0,1,-4),则 l 与 α 的位置关系
为
.
解析:∵u·v=(2,0,-1)·(-2,1,-4)=-4+0+4=0. ∴l∥α 或 l α. 答案:平行或 l 在平面 α 内
立体几何中的
向量方法
第一课时 空间向量与平行、垂直关系
【课标要求】
1.理解直线的方向向量与平面的法向量,并能 运用它们证明平行问题和垂直问题. 2.能用向量语言表述线线,线面,面面的平行关 系和垂直关系.
栏
课前预习
目 导
航
课堂探究
课前预习
【实例】 (1)如图(1)所示,直线 l∥m,在直线 l 上取两点 A,B,在直线 m 上取两点 C,D. (2)如图(2)所示,直线 l⊥平面 α,直线 l∥m,在 直线 m 上取向量 n.
图(1)
图(2)
(3)如图(3)所示,直线 l∥平面 α,直线 l 的方 向向量为 a,平面 α 的法向量为 n. (4)如图(4)所示,平面 α∥平面 β,平面 α 的 法向量为 m,平面 β 的法向量为 n.
图(3)
图(4)
(5)如图(5)所示,直线 l⊥平面 α,直线 l 的方向向 量为 a,平面 α 的法向量为 n. (6)如图(6)所示,平面 α⊥平面 β,平面 α 的法向 量为 n,平面 β 的法向量为 m.
) (1)用向量法证线面
a·u=0;
平行时,需说明直线
线面平行
(2)根据线面平行判定定理在平面内找一个向 不在平面内;
空间向量的垂直与平行解析几何的几何关系

空间向量的垂直与平行解析几何的几何关系空间向量在解析几何中具有广泛的应用,它们可以描述物体在空间中的位置、方向和运动等属性。
在学习空间向量时,了解其垂直与平行的几何关系是非常重要的。
本文将通过几何解析的方式,深入探讨空间向量垂直与平行的性质及其应用。
一、垂直向量在空间中,当两个向量的数量积为零时,我们称这两个向量是垂直的。
数学上可以表达为:两个向量的数量积等于零,则它们垂直。
设有两个向量a和b,它们的坐标分别表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b垂直的条件可以表示为:a1 * b1 + a2 * b2 + a3 * b3 = 0这个条件求解出的结果就是两个向量垂直的充要条件。
垂直向量在几何上有许多重要的应用。
例如在平面几何中,两条直线互相垂直,则它们的方向向量必然垂直;在立体几何中,两个平面互相垂直,其法向量也必然垂直。
因此,熟练掌握垂直向量的性质对于解析几何的应用非常重要。
二、平行向量在空间中,当两个向量之间存在倍数关系时,我们称这两个向量是平行的。
数学上可以表达为:两个向量之间存在倍数关系,则它们平行。
设有两个向量a和b,它们的坐标表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b平行的条件可以表示为:a1/b1 = a2/b2 = a3/b3 = k (k为常数)其中k为两个向量平行的倍数关系。
平行向量的性质可以应用于线段、直线和平面的平行关系的判断。
例如,在平面几何中,两个直线互相平行,则它们的方向向量之间必然存在倍数关系;在立体几何中,平面与直线平行,则平面的法向量与直线的方向向量必然平行。
三、垂直与平行向量的应用举例1. 垂直向量的应用考虑一个示例问题:已知一条直线L的向量方程为(r - r1) · n = 0,其中r1为已知点,n为已知向量。
求直线L上与已知点A垂直的点B 的坐标。
解析:根据向量方程可以得知,L上的任意点P满足向量n与r - r1垂直的关系。
3.2.2 利用向量证明空间中的垂直关系

垂直关系
一、基础知识
1、立体几何中如何证明两条直线垂直?
①利用定义:证明两直线所成角为 900; ②利用线面垂直的性质来证明线线垂直.
线面垂直的性质:如果一条直线垂直一个平面,那么这条直线 垂直该平面内的任一直线.
αA
l B
Q C
lα AB α
l
BB1,CD 的中点,求证:D1F⊥平面 ADE.
【解析】如图,以 O 为原点建立空间直角
z
D1
C1 坐标系.设棱长为 2,由题意可得
A1
D(0,0,0),D1(0,0,2),F(0,1,0),A(2,0,0),
B1
E(2,2,1)
D xA
E C
y
D1F (0,1,2),DE (2,2,1),DA (2,0,0)
C.l1⊥l2
D.不能确定
2.设平面α的法向量为a (1,2,2) ,平面β的法向量为
b (2,4,k),若α⊥β,则 k=( B )
A.2
B.-5
C.4
D.-2
3.已知平面α内的两个向量a (2,2,1),b (2,0,0),则平面的一个
法向量是( A )
A.(0,1,2) B.(1,0,2) C.(1, 2, 1) D.(0,0, 2)
(1)l⊥m
(2)l//m
答案: (1)α β
(2)α //β
设两个平面α,β的法向量分别为a ,b ,则
α β ab ab0
二、自我检测
C 1、直线 l1,l2 的方向向量分别为a (1,2,2),b (2,3,2) ,则( )
空间向量与垂直关系

空间向量与垂直关系——用空间向量解决平面与平面垂直问题【考纲要求】用空间向量方法解决立体几何中的面面垂直问题.【学习目标】1、用空间向量方法解决立体几何中的面面垂直问题,体会向量运算的几何意义;2、掌握利用向量运算解几何题的方法,并能解简单的立体几何问题;3、引导学生用联系与转化的观点看问题,体验在探索问题的过程中的受挫感和成功感,培养合作意识和创新精神,同时感受数学的形式美与简洁美,从而激发学习兴趣.【评价任务】1、完成复习回顾,检测目标2;2、完成新课讲授,检测目标1;3、完成例1、课堂练习,检测目标2、目标3;4、完成巩固提高,检测目标2、目标3.【学习过程】一、复习回顾1、平面 的法向量n 的定义:2、求平面法向量的步骤:3、证明线线垂直证明线面垂直二、讲授新课利用向量证明平面⊥α平面β(平面βα、的法向量分别为1n、2n ),三、例题讲解例1、在四棱锥P -ABCD 中,PD ⊥平面ABCD ,又四边形ABCD 是矩形AD =2,DC =1,PD =1,M ,N 分别是AD ,PB 的中点.⑴求证:P B ⊥MN ; ⑵求证:平面MNC ⊥平面PBC .ABCD PNM练习:1、四边形ABCD为菱形,︒E,是平面ABCDABC,F∠120=同一侧的两点,⊥BE平面ABCD,⊥DF平面ABCD,=,BE⊥2ECAEDF(1)证明:平面⊥AEC平面AFC;(2)求直线AE和CF所成角的余弦值。
例2、在正方体1111D C B A ABCD -中,点E 是棱BC 的中点,试在棱1CC 上求一点P ,使得平面⊥P B A 11平面DE C 1四、巩固提升1、直四棱柱1111D C B A ABCD -中,四边形ABCD 为菱形,︒=∠60ABC ,点E 是1CC 的中点,且D A B A 11⊥,求证:平面⊥BD A 1平面BDE2、在棱长为2的正方体1111D C B A ABCD -中,P N M F E 、、、、分别是棱11111DD D A B A AD AB 、、、、的中点,(1)证明:1BC ∥平面EFP ;(2)在线段1BB 上是否存在点Q ,使得平面⊥EFQ 平面MNQ 若存在,请确定点Q 的位置,若不存在,请说明理由。
数学选修2-1学案 空间向量与垂直关系(教师案)

课
题
课型 新课型
教学目标:1.能利用平面法向量证明两个平面垂直. 2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系 教学重、难点:平面的法向量
利用方向向量和法向量处理线线、线面、面面间的垂直问题 教学方法:讲练结合
学习内容及过程:
认真阅读教材104页,回答下列问答:
1设直线l 的方向向量为a =(a 1,1b , 1c ),直线m
的方向向量为b =(b 1, b 2,b 3),则l ⊥m ⇔a ⊥b ⇔a·b
=0⇔
2设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法
向量是v =(a 2,b 2,c 2),则l ⊥α⇔
( )
3设平面β的方向向量是u =(a 1,b 1,c 1),平面α的
法向量是v = (a 2,b 2,c 2),则β⊥α⇔
( )
【例题精讲】
例1 已知正三棱柱ABCA 1B 1C 1的各棱长都为1,M 是
底面上BC 边的中点,N 是侧
CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN . 教学流程:
【目标检测】
如图所示,在正方体ABCDA1B1C1D1中,E、F分别是BB1、D1B1的中点.
求证:EF⊥平面B1AC.。
空间向量与平行、垂直关系

第三章
空间向量与立体几何
1 1 → ∴MN· n= 2, 0, 2 · (1,- 1,- 1)=0,
→ ∴MN⊥ n. 又 MN 不在平面 A1BD 内, ∴ MN∥平面 A1BD.
栏目 导引
第三章
空间向量与立体几何
1 → 1→ 1 → → → 法二:∵ MN = C1N - C1M = C1B1 - C1C = 2 2 2 1→ → → → → (D1A1-D1D)= DA1,∴MN∥DA1, 2 又 MN 不在平面 A1BD 内, ∴ MN∥平面 A1BD.
则有 D(0, 0, 0), A(2, 0,0), C(0, 2, 0), C1(0,2,2),E(2,2,1),F(0,0,1),B1(2, 2,2), → 所以FC1 = (0, 2, 1), → → DA= (2,0,0),AE= (0, 2, 1).
栏目 导引
第三章
空间向量与立体几何
(1)设 n1= (x1, y1, z1)是平面 ADE 的法向量, → → 则 n1⊥DA, n1⊥AE, → n1· DA= 2x1= 0 即 ,得 → n1·AE= 2y1+ z1=0
(-3,-9,0).
栏目 导引
第三章
空间向量与立体几何
解:(1)a· b= 1× 8+ (- 3)×2+ (- 1)× 2=0, ∴直线 l1, l2 垂直. 1 (2)∵ u=- v,∴ u∥ v,即平面 α, β 平行. 3
栏目 导引
第三章
空间向量与立体几何
典题例证技法归纳
题型探究 求平面的法向量
栏目 导引
第三章
空间向量与立体几何
z3=-2 令 x3= 2,∴ ,∴ n3= (2,- 1,- 2).(10 y3=- 1