第七节 空间向量的应用(一) 平行与垂直

合集下载

《新高考》理科数学高考大一轮总复习课件:第9章 第7讲 空间向量的应用(一)——证明平行与垂直

《新高考》理科数学高考大一轮总复习课件:第9章 第7讲 空间向量的应用(一)——证明平行与垂直

间直角坐标系.设正方体的棱长为 1,
则可得 M(0,1,12),N(21,1,1),D(0,0,0),A1(1,0,1),B(1,1,0).
于是
uuuur MN
=(21,0,21),
uuuur DA1
=(1,0,1),
uuuur DB1
=(1,1,0).
设平面 A1BD 的法向量是 n=(x,y,z).
34
(2)由 PA⊥平面 ABCD,所以 PA⊥CD,又 AD⊥CD,所以 CD⊥平面 PAD,
又 AF⊂平面 PAD,所以 CD⊥AF, 又△PAD 为等腰直角三角形,F 为 PD 中点, 所以 AF⊥PD,所以 AF⊥平面 PCD. 由(1)EG∥AF,所以 EG⊥平面 PCD, 又 EG⊂平面 PEC,所以,平面 PCD⊥平面 PEC.
则 λ 等于( B )
2
9
A.3
B.2
C.-29
D.-32
5
解析:因为 a∥b,所以-13=-λ32=-25125,
解得 λ=92,故选 B.
6
3.若直线 l 的方向向量为 a,平面 α 的法向量为 n,能使
l∥α 的是( D )
A.a=(1,0,0),n=(-2,0,0) B.a=(1,3,5),n=(1,0,1) C.a=(0,2,1),n=(-1,0,-1) D.a=(1,-1,3),n=(0,3,1)
26
【温馨提示】 证明线面平行和垂直问题,可以用几何 法,也可以用空间向量法.用向量法的关键在于构造向量, 再用共线向量定理或共面向量定理及两向量垂直的判定定 理,对于易建立空间直角坐标系的题,这种方法很方便.
27
【跟踪训练 2】 如图,正方体 ABCD-A1B1C1D1 的棱长为 4, E,F 分别是 BC,CD 上的点,且 BE=CF=3.

空间几何中的平行与垂直

空间几何中的平行与垂直

空间几何中的平行与垂直在空间几何中,平行和垂直是两个重要的概念。

它们用来描述线、面和空间中的关系,帮助我们理解和解决各种几何问题。

本文将介绍平行和垂直的定义、判定方法,以及它们在空间几何中的应用。

一、平行的定义和判定在平面几何中,我们知道两条直线要想平行,它们的斜率必须相等。

但是在空间几何中,直线不再只有斜率这一个属性,因此平行的定义也有所不同。

在空间中,我们把两条直线称为平行线,当且仅当它们处于不同平面上,且不相交。

也就是说,两条平行线可以看作是两个相互平行且不相交的平面上的交线。

判定平行的方法有以下几种:1. 通过判断两条直线的方向向量是否平行。

如果两条直线的方向向量相等或成比例,那么它们是平行的。

2. 通过判断两条直线上的一点到另一条直线的垂足距离是否为0。

如果两条直线上的所有垂足距离都为0,那么它们是平行的。

3. 通过判断两个平面的法向量是否平行。

如果两个平面的法向量相等或成比例,那么它们是平行的。

二、垂直的定义和判定在空间几何中,垂直用来描述直线、平面和空间中的相互关系。

两条直线、两个平面或一条直线与一个平面之间的垂直关系都具有重要意义。

在空间中,我们把两条直线称为垂直线,当且仅当它们在某个平面上相交,并且互相垂直。

也就是说,两条垂直线可以看作是相互垂直的平面上的交线。

判定垂直的方法有以下几种:1. 通过判断两条直线的方向向量的数量积是否为0。

如果两条直线的方向向量的数量积为0,那么它们是垂直的。

2. 通过判断直线上的一点到另一条直线的垂足是否在另一条直线上。

如果两条直线上的所有垂足都在另一条直线上,那么它们是垂直的。

3. 通过判断一条直线的方向向量是否与一个平面的法向量垂直。

如果一条直线的方向向量与一个平面的法向量垂直,那么它们是垂直的。

三、平行和垂直的应用平行和垂直在空间几何中有着广泛的应用。

以下是一些常见的应用场景:1. 平行线的应用:平行线可用于构建平行四边形、矩形等各种图形。

空间向量的平行与垂直定理

空间向量的平行与垂直定理

空间向量的平行与垂直定理空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。

在研究物理、几何和力学等领域时,我们经常需要判断两个向量之间的关系,这个定理就为我们提供了一个有力的工具。

我们来研究两个向量的平行性。

如果两个向量的方向相同或相反,那么它们是平行的。

也就是说,如果向量A和向量B的方向相同或相反,我们可以写成A∥B。

这种平行关系可以用向量的数量积来判断。

具体来说,如果两个向量A和B的数量积等于它们的模长的乘积,即A·B=|A||B|,那么向量A和向量B是平行的。

接下来,我们来研究两个向量的垂直性。

如果两个向量的数量积等于0,那么它们是垂直的。

也就是说,如果向量A和向量B的数量积为0,我们可以写成A⊥B。

这种垂直关系可以用向量的数量积来判断。

具体来说,如果两个向量A和B的数量积等于0,即A·B=0,那么向量A和向量B是垂直的。

空间向量的平行与垂直定理在几何和物理问题中有广泛的应用。

例如,在平面几何中,我们经常需要判断两条线段的平行性或垂直性。

根据空间向量的平行与垂直定理,我们可以通过计算两个向量的数量积来判断它们之间的关系。

这样,我们就可以得到准确的结论,避免了繁琐的几何证明过程。

在物理学中,空间向量的平行与垂直定理也具有重要的应用价值。

例如,在力学中,我们经常需要计算物体受力的情况。

如果两个力的方向相同或相反,那么它们是平行的;如果两个力的数量积为0,那么它们是垂直的。

根据空间向量的平行与垂直定理,我们可以通过计算向量的数量积来判断力的方向和性质,从而进行精确的力学分析。

除了在几何和物理中的应用,空间向量的平行与垂直定理还可以应用于其他领域。

例如,在计算机图形学中,我们经常需要计算向量的平行和垂直关系,以确定图形的方向和位置。

在工程学中,空间向量的平行与垂直定理可以应用于结构分析和力学设计等方面。

空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。

利用空间向量证明平行、垂直问题PPT精品课件

利用空间向量证明平行、垂直问题PPT精品课件

②∵u=(0,3,0),v=(0,-5,0),∴u=-
3 5
v,
∴u∥v,∴α∥β.
③∵u=(2,-3,4),v=(4,-2,1),
∴u与v不共线,也不垂直,
∴α与β相交但不垂直.
(3)①∵u=(2,2,-1),a=(-3,4,2),
∴u·a=-6+8-2=0,
∴u⊥a,∴l⊂α或l∥α.
②∵u=(0,2,-3),a=(0,-8,12),∴u=-
贝 多 芬
你知道托尔斯泰哪些 文学代表作?
它们在俄国历史上起 过什么作用?
托尔斯泰晚年为什么 选择“平民化”的道
“我要扼住命运的咽喉,它决不能使我 完全屈服”
——贝多芬
1.当时贝多芬遇到了怎样的厄 运?
2.他是怎样“扼住命运的咽 喉”?
《吃土豆的人》
哪一首乐曲标志着贝多芬在艺术 上和思想上的成熟?
b,∴a∥b,∴l1∥l2.
②∵a=(5,0,2),b=(0,4,0),
∴a·b=0,∴a⊥b,
∴l1⊥l2.
③∵a=(-2,1,4),b=(6,3,3),
∴a与b不共线,也不垂直,∴l1与l2相交或异面.
(2)①u=(1,-1,2),v=3,2,-12 ,
∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.
A.(2,3,1)
B.(1,-1,2)
C.(1,2,1)
D.(1,0,3)
解析:A→D=xA→B+yA→C=(x+y,x+2y,x-y), 对四个选项逐个检验,只有当(x+y,x+2y,x-y)=
(1,0,3)时有解xy= =2-1 . 答案:D
1.注意用向量中的有关公式及变形,借助建立直角坐 标系将复杂的几何问题化为简单的代数问题.

空间向量与平行、垂直关系课件

空间向量与平行、垂直关系课件
则nn11··AA→→11FB1==00⇒y-1=x10+,y1-12z1=0.
栏目 导引
第三章 空间向量与立体几何
所 以 平 面 A1B1F 的 一 个 法 向 量 为 n1 =
-21,0,1.(5 分)
设平面 C1DE 的一个法向量为 n2=(x2,y2,z2),
则nn22··DD→→EC1==00⇒12y2x+2+z2y=2=0 0,∴xz22==--y22y2,
(1,1,0),
栏目 导引
第三章 空间向量与立体几何
设平面 A1BD 的法向量 n=(x,y,z), 则 n·D→A1=0 且 n·D→B=0, 得xx+ +zy==00,, 取 x=1,得 y=-1,z=-1. ∴n=(1,-1,-1).
栏目 导引
第三章 空间向量与立体几何
∴M→N·n=21,0,12·(1,-1,-1)=0,
栏目 导引
第三章 空间向量与立体几何
【思路点拨】 (1)证明面面垂直即证它们的
法 向 量 垂 直 ; (2) 证 C1P ⊥ 平 面 A1DE , 只 要 证 C1P的方向向量和平面A1DE的法向量平行.
栏目 导引
第三章 空间向量与立体几何
【解】 如图,建立空间直角坐标系. 设正方体的棱长为 1, 则 A1(1,0,1),B1(1,1,1),
栏目 导引
第三章 空间向量与立体几何
∴O→A=(1,-1,0), O→P=(-1,-1,1), B→Q=(-2,0,c), B→D1=(-2,-2,2). 设平面 PAO 的法向量为 n1=(x,y,z),
栏目 导引
第三章 空间向量与立体几何
变式训练
3. 如图,在直三棱柱ABC­A1B1C1中,AB⊥BC ,AB=BC=2,BB1=1,E为BB1的中点,求证 :平面AEC1⊥平面AA1C1C.

8.7.1 利用空间向量证明平行与垂直关系

8.7.1 利用空间向量证明平行与垂直关系

B.-13,23,-23 D.23,13,-23
解析:验证4个选项,可知C正确.
第8章 第1节 第1课时
第19页
名师伴你行 ·高考一轮总复习 ·数学(理)
(2)若平面α,β的法向量分别为n1=(2,-3,5),n2=(-

告 一
3,1,4),则(
C
)
A.α∥β

B.α⊥β

u2=(a2,b2,c2).
课 时
若α1⊥α2,则u1⊥u2⇔u1·u2=0⇔ a1a2+b1b2+c1c2=0 .
作 业

若α1∥α2,则u1∥u2⇔u1=ku2⇔
告 二
__(_a_1_,__b_1,__c_1_)_=__k_(a_2_,__b_2_,__c_2)__.
第8章 第1节 第1课时
第10页
第8章 第1节 第1课时
第32页
名师伴你行 ·高考一轮总复习 ·数学(理)
(3)借助棱锥的高线建系等.对于正棱锥,利用顶点在底面
报 的射影为底面的中心,可确定z轴,然后在底面确定互相垂直
告 一
的直线分别为x,y轴.如图4.




报 告 二
第8章 第1节 第1课时

〈D→A,B→C〉,
作 业
报 告
解得cos〈D→A,B→C〉= 22,所以〈D→A,B→C〉=45°.

所以所成二面角的大小为135°.
第8章 第1节 第1课时
第23页
名师伴你行 ·高考一轮总复习 ·数学(理)




报告二 名校备考方案调研
时 作 业
报 告 二
第8章 第1节 第1课时

空间向量的平行与垂直关系解析

空间向量的平行与垂直关系解析

空间向量的平行与垂直关系解析在三维空间中,向量是常用来表示大小和方向的物理量。

当我们研究向量时,经常会遇到它们之间的平行与垂直关系。

本文将对空间向量的平行与垂直关系进行解析,并介绍相关的概念和性质。

一、向量的定义与表示在三维空间中,一个向量可以由它的起点和终点表示。

一个向量通常用字母加箭头来表示,如向量AB记作→AB。

向量的起点和终点可以是任意两个点,向量的长度可以用有向线段的长度来表示。

在直角坐标系中,一个三维向量可以表示为一个有序三元组(a, b, c),其中a、b、c是向量在x轴、y轴和z轴上的投影。

二、向量的平行关系1. 定义当两个非零向量的方向相同或相反时,这两个向量被称为平行向量。

简而言之,如果两个向量的方向相同或相反,则它们是平行的。

使用数学符号表示,则有向量→AB ∥向量→CD,或者写作向量→AB || 向量→CD。

2. 判断方法有几种方法可以判断两个向量是否平行,以下是两种常用方法:- 方法一:比较向量的方向比率。

如果两个向量的两个分量的比例相同,则这两个向量是平行的。

例如,向量A(1, 2, 3)与向量B(2, 4, 6)的三个分量的比例都是1:2:3,因此向量A与向量B是平行的。

- 方法二:比较向量的法向量。

如果两个向量的法向量是平行的,那么这两个向量是平行的。

法向量是指将向量的分量进行交换,并改变其中一个分量的符号得到的新向量。

例如,向量A(1, 2, 3)的法向量是向量(-3, 1, -2)。

如果向量A和向量B的法向量平行,那么向量A和向量B是平行的。

三、向量的垂直关系1. 定义当两个非零向量的夹角为直角(90度)时,这两个向量被称为垂直向量。

使用数学符号表示,则有向量→AB ⊥向量→CD,或者写作向量→AB⊥向量→CD。

2. 判断方法有几种方法可以判断两个向量是否垂直,以下是两种常用方法:- 方法一:通过向量的点乘运算。

如果两个向量的点乘结果为0,则这两个向量是垂直的。

高中数学-空间向量的应用

高中数学-空间向量的应用

第4讲空间向量的应用知识梳理1.空间中任意一条直线l的位置可以由l上一个定点以及一个向量确定,这个向量叫做直线的方向向量.2.若直线l垂直于平面α,取直线l的方向向量a,则a⊥α,则a叫做平面α的法向量.3.(1)线线垂直:设直线l,m的方向向量分别为a,b,则l⊥m⇔a⊥b⇔a·b=0.(2)线面垂直:设直线l的方向向量为a,平面α的法向量为u,则l⊥α⇔a∥u⇔a=k u,k∈R.(3)面面垂直:若平面α的法向量为u,平面β的法向量为ν,则α⊥β⇔u⊥ν⇔u·ν=0.4.设两异面直线所成的角为θ,它们的方向向量分别为a,b,则cos θ=|a·b||a||b|.5.设直线l与平面α所成的角为θ,直线l的方向向量为a,平面α的法向量为n,则sin θ=|cos〈a,n〉|=|a·n||a||n|.6.设二面角α-l-β的平面角为θ,平面α,β的法向量分别为n1,n2,则|cos θ|=|n1·n2| |n1||n2|.考点题型知识点1 直线的方向向量与平面的法向量【例1-1】(焦作期末)若点,在直线l上,则直线l的一个方向向量为A. B. C. D.【例1-2】(广州期末)设是直线l的方向向量,是平面的法向量,则A. B. C. 或 D. 或【变式训练1-1】(沙坪坝区校级模拟)若直线l的方向向量为,平面的法向量为,则能使的是A. B.C. D.【变式训练1-2】(东阳市模拟)已知,,分别是平面,,的法向量,则,,三个平面中互相垂直的有A. 3对B. 2对C. 1对D. 0对知识点2 用空间向量研究直线、平面的平行关系【例2-1】(浙江模拟)已知在正四棱柱中,,,点E为的中点,点F为的中点.求证:.【例2-2】(柯城区校级模拟)如图,在底面为平行四边形的四棱锥中,,平面ABCD,且,点E是PD的中点.求证:平面AEC.【例2-3】(金华期末)如图,已知棱长为4的正方体中,M,N,E,F分别是棱,,,的中点,求证:平面平面EFBD.【变式训练2-1】(宿迁期末)如图,在长方体中,,,,点P在棱上,且,点S在棱上,且,点Q、R分别是棱、AE的中点.求证:.【变式训练2-2】(朝阳区期末)已知正方体的棱长为2,E,F分别是,的中点,求证:平面ADE;平面平面F.知识点3 用空间向量研究直线、平面的垂直关系【例3-1】(扬州期末)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,且,M为PC的中点.求证:【例3-2】(上城区校级模拟)如图所示,在正方体中,E,F分别是,DC的中点,求证:平面F.【例3-3】(点军区校级月考)如图,在五面体ABCDEF中,平面ABCD,,,M为EC的中点,求证:平面平面CDE.【变式训练3-1】(三明模拟)已知空间四边形ABCD中,,,求证:.【变式训练3-2】(镇海区校级模拟)如图,在四棱锥中,底面ABCD是矩形且,,底面ABCD,E是AD的中点,F在PC上.F在何处时,平面PBC?【变式训练3-3】(未央区校级月考)在四面体ABCD中,平面BCD,,,,E,F分别是AC,AD的中点,求证:平面平面ABC.知识点4 用空间向量研究空间中的距离问题【例4-1】(海淀区校级期末)如图,已知正方形ABCD的边长为1,平面ABCD,且,E,F分别为AB,BC的中点.求点D到平面PEF的距离;求直线AC到平面PEF的距离.(房山区期末)如图,在四棱锥中,平面ABCD,,【变式训练4-1】,,.求点D到平面PBC的距离;求点A到平面PBC的距离.知识点5 用空间向量研究空间中的夹角问题【例5-1】(宝山区校级期末)如图,ABCD为矩形,AB=2,AD=4,P A⊥面ABCD,P A=3,求异面直线PB与AC所成角的余弦值.【例5-2】(常州期末)已知在正三棱柱ABC-A1B1C1中,侧棱长与底面边长相等,求AB1与侧面ACC1A1所成角的正弦值.【例5-3】(漳州三模)已知,P A⊥平面ABC,AC⊥BC,P A=AC=1,BC= 2.求二面角A-PB-C的余弦值.【变式训练5-1】(沭阳县期中)如图,在正四棱柱中,,,点M是BC 的中点.求异面直线与DM所成角的余弦值求直线与平面所成角的正弦值求平面与平面ABCD所成角的正弦值.A组-[应知应会]1.(杨浦区校级期中)若直线l的方向向量为0,,平面的法向量为0,,则A. B. C. D. l与斜交2. (安徽模拟)已知,,,则向量与向量的夹角为A. B. C. D.3. (闵行区校级模拟)已知四边形ABCD是直角梯形,,平面ABCD,,则SC与平面ABCD所成的角的余弦值为A. B. C. D.4. (贵阳模拟)在正方体中,棱长为a,M,N分别为和AC上的点,,则MN与平面的位置关系是A. 垂直B. 相交C. 平行D. 不能确定5.(温州期末)如图,在长方体中,,E为CD的中点,点P在棱上,且平面,则AP的长为A.B.C. 1D. 与AB的长有关6.(鼓楼区校级模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,,则该二面角的大小为A. B. C. D.7.(和平区校级二模)如图所示,在正方体中,点P是棱AB上的动点点可以运动到端点A和B,设在运动过程中,平面与平面所成的最小角为,则A.B.C.D.8. (多选)(东阳市模拟)已知点P是平行四边形ABCD所在的平面外一点,如果,2,,2,,下列结论正确的有A. B.C. 是平面ABCD的一个法向量D.9.(江苏模拟)已知,,若,,且平面ABC,则y,等于________.10.(南通模拟)已知正三棱柱的各条棱长都相等,M是侧棱的中点,则向量与所成角的大小是.11.(清江浦区校级模拟)在四棱锥中,底面ABCD,底面ABCD是正方形,且,G为的重心,则PG与底面ABCD所成角的正弦值为.12.(沭阳县期中)在四棱锥中,底面ABCD为矩形,侧棱底面ABCD,,E为PD的中点,点N在面PAC内,且平面PAC,则点N到AB的距离为__________13.(滨海新区模拟)如图,在四棱锥中,底面ABCD为平行四边形,,,底面ABCD,,则二面角的余弦值为________.14.(浦东新区校级月考)如图,在正方体中,E为的中点,求异面直线CE 与BD所成的角.15.(江宁区校级月考)如图,四边形ABCD是正方形,平面ABCD,,,,F为PD的中点.求证:;求证:平面PEC.16.(临泉县校级月考)正方体中,E,F分别是,CD的中点.求证:平面平面;在AE上求一点M,使得平面DAE.17. (兴宁区校级期末)如图,在四棱锥中,底面ABCD为直角梯形,,且,平面ABCD.求直线PB与平面PCD所成角的正弦值;在棱PD上是否存在一点E使得?若存在,求AE的长;若不存在,请说明理由.18. (沙坪坝区校级期末)如图,正三棱柱的底面边长是2,侧棱长是,D是AC的中点.求二面角的大小.在线段上是否存在一点E,使得平面平面若存在,求出AE的长若不存在,说明理由.1.(齐齐哈尔期末)如图,在圆锥SO中,A,B是上的动点,是的直径,M,N是SB的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是A. B. C. D.2.(如皋市期末)如图,在长方体中,E是的中点,点F是AD上一点,,,,动点P在上底面上,且满足三棱锥的体积等于1,则直线CP与所成角的正切值的最小值为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节 空间向量的应用(一) 平行与垂直高考概览:1.理解直线的方向向量与平面的法向量;2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;3.能用向量方法证明有关直线和平面位置关系的一些定理.[知识梳理]1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.2.空间位置关系的向量表示[辨识巧记]1.确定平面的法向量的两种方法(1)直接法:观察是否有垂直于平面的法向量,若有可直接确定.(2)待定系数法:取平面的两条相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·a =0,n ·b =0解方程组求得.2.方向向量和法向量均不为零向量且不唯一.[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线的方向向量是唯一确定的.( )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若直线a 的方向向量与平面α的法向量垂直,则a ∥α.( )[答案] (1)× (2)× (3)× (4)×2.(选修2-1P 104练习2改编)已知平面α,β的法向量分别为n 1=(2,3,5),n 2=(-3,1,-4),则( )A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不对[解析] 不能确定唯一的实数λ,使n 1=λn 2,所以n 1与n 2不平行,故α与β不平行;n 1·n 2=-6+3-20=-23,故α与β不垂直.所以α与β相交但不垂直.故选C.[答案] C3.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( )A .(-1,1,1)B .(1,-1,1) C.⎝ ⎛⎭⎪⎫-33,-33,-33 D.⎝ ⎛⎭⎪⎫33,33,-33 [解析] 设n =(x ,y ,z )为平面ABC 的法向量,则⎩⎨⎧ n ·AB →=0,n ·AC→=0,化简得⎩⎪⎨⎪⎧ -x +y =0,-x +z =0, ∴x =y =z .故选C.[答案] C4.(2019·陕西黄陵模拟)若两点A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB →|取最小值时,x 的值等于( )A .19B .-87 C.87 D.1914[解析] ∵A (x,5-x,2x -1),B (1,x +2,2-x ),∴|AB→|=(x -1)2+(3-2x )2+(3x -3)2 =14x 2-32x +19=14⎝ ⎛⎭⎪⎫x -872+57, ∴当|AB →|取最小值时,x =87.故选C.[答案] C5.(2019·潍坊摸底)已知点P 是平行四边形ABCD 所在的平面外一点,如果AB→=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论: ①AP ⊥AB ;②AP ⊥AD ;③AP→是平面ABCD 的法向量;④AP→∥BD →.其中正确的是________. [解析] ∵AB →·AP →=0,AD →·AP→=0, ∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB→与AD →不平行, ∴AP→是平面ABCD 的法向量,则③正确. ∵BD→=AD →-AB →=(2,3,4),AP →=(-1,2,-1), ∴BD→与AP →不平行,故④错误. [答案] ①②③考点一 证明平行关系【例1】如图,在四面体ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.证明:PQ∥平面BCD.[证明]证法一:如图,取BD的中点O,以O为原点,OD,OP所在射线分别为y,z轴的正半轴,建立空间直角坐标系O-xyz.由题意知,A(0,2,2),B(0,-2,0),D(0,2,0).设点C的坐标为(x0,y0,0).因为AQ→=3QC →, 所以Q 34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1).又P 为BM 的中点,故P 0,0,12,所以PQ →=34x 0,24+34y 0,0.又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0.又PQ ⊄平面BCD ,所以PQ ∥平面BCD .证法二:在线段CD 上取点F ,使得DF =3FC ,连接OF ,同证法一建立空间直角坐标系,写出点A ,B ,D 的坐标,设点C 坐标为(x 0,y 0,0).∵CF →=14CD →,设点F 坐标为(x ,y,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0),∴⎩⎨⎧x =34x 0,y =24+34y 0,∴OF →=34x 0,24+34y 0,0又由证法一知PQ →=34x 0,24+34y 0,0,∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD ,∴PQ ∥平面BCD .(1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.[对点训练]已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为AB ,AD ,AA 1的中点,求证:平面EFG ∥平面B 1CD 1.[证明]建立如图所示的空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),D 1(0,0,1).得E 1,12,0,F 12,0,0,G 1,0,12,EF →=-12,-12,0,EG →=0,-12,12. 设n 1=(x 1,y 1,z 1)为平面EFG 的法向量,n 2=(x 2,y 2,z 2)为平面B 1CD 1的法向量.则⎩⎨⎧ n 1·EF →=0,n 1·EG →=0,即⎩⎪⎨⎪⎧ -12x 1-12y 1=0,-12y 1+12z 1=0.令x 1=1,可得y 1=-1,z 1=-1,同理可得x 2=1,y 2=-1,z 2=-1.则n 1=(1,-1,-1),n 2=(1,-1,-1).由n 1=n 2,得平面EFG ∥平面B 1CD 1.考点二 证明垂直关系【例2】如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .[思路引导](1)建立坐标系→设出相关点的坐标→证P A →·BD→=0 (2)取P A 的中点M →证明DM →⊥PB →,DM →⊥P A →→DM ⊥平面P AB[证明] (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC ,△PBC 为等边三角形,即PO ⊥BC ,∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3).∴BD →=(-2,-1,0),P A →=(1,-2,-3).∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M 12,-1,32.∵DM →=32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB . ∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .用向量证明垂直的方法(1)线线垂直:证明两直线的方向向量互相垂直,即证它们的数量积为零.(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.[对点训练]如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB =AA 1= 2.证明:A 1C ⊥平面BB 1D 1D .[证明] 由题设易知OA ,OB ,OA 1两两垂直,以O 为原点建立如图所示的空间直角坐标系.因为AB =AA 1=2,所以OA =OB =OA 1=1,所以A (1,0,0),B (0,1,0),C (-1,0,0),D (0,-1,0),A 1(0,0,1).由A 1B 1→=AB →,易得B 1(-1,1,1).因为A 1C →=(-1,0,-1),BD →=(0,-2,0),BB 1→=(-1,0,1),所以A 1C →·BD →=0,A 1C →·BB 1→=0, 所以A 1C ⊥BD ,A 1C ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D ,所以A 1C ⊥平面BB 1D 1D .考点三 探究性问题【例3】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直.已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出BP PE 的值;若不存在,请说明理由.[解] (1)证明:∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF ,∴AF ⊥平面ABCD .又AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3,∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB ,∵AB ∩AF =A ,AB ,AF ⊂平面F AB ,∴AC ⊥平面F AB ,∵BF ⊂平面F AB ,∴AC ⊥BF .(2)存在.由(1)知,AF ,AB ,AC 两两垂直,以A 为坐标原点,AB→,AC→,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合,设BP→=λPE →,则λ>0,P 2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ). 由AP →=2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎪⎨⎪⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC→=23y =0,即⎩⎨⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ,所以m =⎝⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量.当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF , 故存在满足题意的点P ,此时BP PE =23.向量法解决与垂直、平行有关的探究性问题的思维流程 (1)根据题设条件中的垂直、平行关系,建立适当的空间直角坐标系,将相关点、向量用坐标表示.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.[对点训练](2018·桂林模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD . (1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.[解] (1)证明:设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos60°=3, ∴AO 2+A 1O 2=AA 21,∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0,∴BD →⊥AA 1→,即BD ⊥AA 1. (2)假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ).设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3),则⎩⎨⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎪⎨⎪⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1), 因为BP ∥平面DA 1C 1,则n 3⊥BP →,即n 3·BP →=-3-3λ=0, 得λ=-1,即点P 在C 1C 的延长线上,且C 1C =CP .课后跟踪训练(五十一)基础巩固练一、选择题1.在空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直[解析] 由题意得,AB→=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点.∴AB ∥CD .[答案] B2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面内D .平行或在平面内[解析] 由AB→=λCD →+μCE →可知AB →,CD →,CE →共面,所以AB ∥平面CDE 或AB ⊂平面CDE .故选D.[答案] D3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)[解析] 经计算,P (2,3,3)满足MP →·n =0. [答案] A 4.(2018·郑州月考)如图,F 是正方体ABCD -A 1B 1C 1D 1的棱CD 的中点.E 是BB 1上一点,若D 1F ⊥DE ,则有( )A .B 1E =EB B .B 1E =2EBC .B 1E =12EBD .E 与B 重合[解析] 以D 为原点,DA ,DC →,DD 1→所在直线分别为x ,y ,z轴建立空间直角坐标系,令AB =1,则B (1,1,0),B 1(1,1,1),F 0,12,0,D 1(0,0,1).设E (1,1,a )(0≤a ≤1),则D 1F →=0,12,-1,DE →=(1,1,a ). ∵D 1F ⊥DE ,∴D 1F →·DE →=0. ∴12-a =0,得a =12. 故E 为BB 1中点.选A. [答案] A 5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .斜交B .平行C .垂直D .MN 在平面BB 1C 1C 内 [解析]建立如图所示的空间直角坐标系, 由于A 1M =AN =2a3,则Ma ,2a 3,a3, N 2a 3,2a3,a , MN →=-a 3,0,2a 3. 又C 1D 1⊥平面BB 1C 1C ,所以C 1D 1→=(0,a,0)为平面BB 1C 1C 的一个法向量. 因为MN →·C 1D 1→=0,所以MN →⊥C 1D 1→,又MN ⊄平面BB 1C 1C , 所以MN ∥平面BB 1C 1C . [答案] B 二、填空题6.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 的值为__________.[解析] ∵α∥β,∴(-2,-4,k )=λ(1,2,-2), ∴-2=λ,k =-2λ,∴k =4. [答案] 47.(2018·武汉调研)已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.[解析] 设平面α的法向量为m =(x ,y ,z ),由m ·AB →=0,得x ·0+y -z =0⇒y =z ,由m ·AC →=0,得x -z =0⇒x =z ,取x =1, ∴m =(1,1,1),m =-n ,∴m ∥n ,∴α∥β. [答案] α∥β8.(2019·西安调研)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x +y =________.[解析]由条件得⎩⎪⎨⎪⎧3+5-2z =0,x -1+5y +6=0,3(x -1)+y -3z =0,解得x =407,y =-157,z =4,∴x+y =407-157=257. [答案] 257 三、解答题 9.如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .[证明] ∵平面P AD ⊥平面ABCD ,且ABCD 为正方形, ∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).证法一:∴EF→=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·EF→=0,n ·EG→=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量,∵PB→=(2,0,-2),∴PB→·n=0.∴n⊥PB→,∵PB⊄平面EFG,∴PB∥平面EFG.证法二:PB→=(2,0,-2),FE→=(0,-1,0),FG→=(1,1,-1).设PB→=sFE→+tFG→,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),∴⎩⎪⎨⎪⎧t=2,t-s=0,-t=-2,解得s=t=2.∴PB→=2FE→+2FG→,又∵FE→与FG→不共线,∴PB→,FE→与FG→共面.∵PB⊄平面EFG,∴PB∥平面EFG.10.如图正方形ABCD的边长为22,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=3,且FO⊥平面ABCD.(1)求证:AE∥平面BCF;(2)求证:CF⊥平面AEF.[证明]取BC中点H,连接OH,则OH∥BD,又四边形ABCD为正方形,∴AC⊥BD,∴OH⊥AC,故以O为原点,建立如图所示的直角坐标系,则A(3,0,0),C(-1,0,0),D(1,-2,0),F(0,0,3),B(1,2,0).BC→=(-2,-2,0),CF→=(1,0,3),BF→=(-1,-2,3).(1)设平面BCF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE→=BF →=(-1,-2,3), ∴AE→=AD →+DE →=BC →+BF → =(-2,-2,0)+(-1,-2,3) =(-3,-4,3),∴AE →·n =33-43+3=0, ∴AE→⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0,∴CF→⊥AF →,CF →⊥AE →, 又AE ∩AF =A ,AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .能力提升练11.已知A (1,-1,3),B (0,2,0),C (-1,0,1),若点D 在z 轴上,且AD→⊥BC →,则|AD →|等于( ) A .1 B. 2 C. 3 D .2[解析] ∵点D 在z 轴上,∴可设D 点坐标为(0,0,m ),则AD →=(-1,1,m -3),BC →=(-1,-2,1),由AD →⊥BC →,得AD →·BC →=m -4=0,∴m =4,AD→=(-1,1,1),|AD →|=1+1+1= 3. [答案] C 12.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线NO 、AM 的位置关系是( )A .平行B .相交C .异面垂直D .异面不垂直[解析] 建立坐标系如图,设正方体的棱长为2,则A (2,0,0),M (0,0,1),O (1,1,0),N (2,1,2),NO →=(-1,0,-2),AM →=(-2,0,1),NO →·AM →=0,则直线NO 、AM 的位置关系是异面垂直.[答案] C13.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5)及向量a =(x ,y,1),若向量a 分别与AB→,AC →垂直,则向量a =__________. [解析] AB→=(-2,-1,3),AC →=(1,-3,2),因为向量a 分别与AB→,AC →垂直,所以⎩⎨⎧a ·AB →=0,a ·AC→=0,即⎩⎪⎨⎪⎧ -2x -y +3=0,x -3y +2=0,解得⎩⎪⎨⎪⎧x =1,y =1,所以a =(1,1,1). [答案] (1,1,1) 14.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BD BC 1的值. [证明] (1)因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,AA 1⊂平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AB ,AA 1⊥AC .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A -xyz .则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设D (x ,y ,z )是直线BC 1上的一点,且BD →=λBC 1→, 所以(x ,y -3,z )=λ(4,-3,4),解得x =4λ,y =3-3λ,z =4λ,所以AD→=(4λ,3-3λ,4λ). 由AD →·A 1B →=0,A 1B →=(0,3,-4),则9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B ,此时,BDBC1=λ=925.拓展延伸练15.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=2,AF=1,M在EF上,且AM∥平面BDE.则M点的坐标为()A.(1,1,1) B.23,23,1C.22,22,1 D.24,24,1[解析]设AC与BD相交于O点,连接OE,由AM∥平面BDE,且AM ⊂平面ACEF,平面ACEF∩平面BDE=OE,∴AM∥EO,又O是正方形ABCD对角线交点,∴M为线段EF的中点.在空间坐标系中,E(0,0,1),F(2,2,1).由中点坐标公式,知点M的坐标为22,22,1.[答案] C 16.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的长度之和为________.[解析] 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ), 由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1. [答案] 1。

相关文档
最新文档