电力电子变压器的原理介绍
电力机车牵引用电力电子变压器概述

Engineering Equipment and Materials | 工程设备与材料 |·131·2017年2月电力机车牵引用电力电子变压器概述王 韬(中车株洲电机有限公司,湖南 株洲 412001)摘 要:随着现代高功率半导体器件的发展以及磁性材料性能的不断改善,设计一种全新的采用中高频转换的变流装置结构来实现供电,该装置结构称为电力电子变压器,其完全有可能取代现有笨重的工频变压器。
虽然仍然面临许多技术上的难点,但经过不断探索研究,技术上已经取得了丰富的成果。
电力机车牵引供电领域被认为是电力电子变压器最有可能实现技术应用的领域之一。
在机车牵引领域,电力电子变压器不但可以实现重量和体积的大幅度减小,同时还能改善供电电能质量。
文章概括了近年来电力电子变压器在电力机车牵引领域应用所取得的研究成果。
关键词:电力电子变压器;电力机车;中高频变压器;电能质量中图分类号:U264 文献标志码:A 文章编号:2096-2789(2017)02-0131-03 目前,传统的工频变压器广泛分布在电力系统中,发挥电压隔离和电压转换等基本功能。
通常,在中高压环境下要解决电能质量问题(如跌落、骤升、闪变和谐波)需要外加多种形式的高开关频率的电力电子变换器,这就导致了整个设备安装体积的增大。
然而在机车车辆、风力发电机、船舶、飞行器等安装空间有限的场合运用受到了限制。
在低电压应用领域,已经成功采用中高频变压器代替工频变压器,变压器频率的增加其整体的体积大幅减小,使得电力电子转换器设计更紧凑。
这种采用中高频变压器环节的电力电子变换器装置即为电力电子变压器(PET )。
基于技术原理的可行性,从低压环境的成功应用完全有可能推广到高电压高功率领域应用,特别是对空间尺寸、重量要求高的场合。
文章主要介绍电力电子变压器在铁路机车车辆牵引单相供电领域的应用。
研究学者普遍认为,PET 这一新技术最有可能在铁路机车车辆牵引供电领域实现成功应用。
电力系统中的电力电子变压器技术研究

电力系统中的电力电子变压器技术研究引言:近年来,随着电力需求的不断增长,电力系统的稳定性和效率成为了重要关注的领域。
在电力系统中,变压器是一个不可或缺的核心组件。
传统的变压器在能量传递和调节方面存在一些限制,于是电力电子变压器技术应运而生,为电力系统的进一步发展提供了新的解决方案。
本文将重点研究电力电子变压器技术在电力系统中的应用与发展。
一、电力电子变压器的概述电力电子变压器(Power Electronic Transformer,PET)是一种依靠电力电子器件进行功率变换和调节的新型变压器。
与传统变压器相比,PET具有更大的灵活性和可控性。
不仅能够实现电力系统中的能量传递和电压调节,还能够对电流进行精确控制。
PET的主要组成部分包括变压器核心、电力电子开关和控制器等。
二、电力电子变压器的工作原理电力电子变压器的工作原理基于电力电子开关的控制和调节。
电力电子开关根据输入信号实现对电压和电流的精确控制,从而改变了能量传递和调节方式。
PET通过改变开关器件的通断状态和导电周期,可以实现电流的高频调制和升降变换,从而改变输出电压的倍数和频率。
三、电力电子变压器在电力系统中的应用1. 新能源接入和分布式发电随着新能源技术的快速发展,如风能和太阳能等,电力系统中新能源的接入始终是一个挑战。
传统变压器往往无法适应新能源的动态变化和多样化输出特性,而电力电子变压器则可以通过其精确的控制能力实现对新能源的有效管理和平稳接入。
2. 智能电网和能量存储电力电子变压器在智能电网中的应用也日益增多。
智能电网需要对多种能源进行管理和优化调度,而PET可以通过其可调节的电流输出和高效能量变换能力,实现对能量的高效存储和传输。
此外,PET还能通过电力电子开关的频率变换,将直流储能系统转换为交流输出,实现了不同储能系统之间的互联互通。
3. 电动汽车充电设备随着电动汽车的普及,电动汽车充电设备也成为电力系统中的关键环节。
传统的充电设备对电压的调节和电流的稳定性要求较高,而电力电子变压器可以通过高频调制和变换实现对电动汽车的精确充电,提高充电效率和充电速度。
电力电子技术中的电力电子变压器有什么特点

电力电子技术中的电力电子变压器有什么特点电力电子技术是电力系统中的重要组成部分,其应用范围广泛,其中电力电子变压器作为电力电子技术中的重要组成部分,具备着一些独特的特点。
本文将从变压器的基本原理、应用领域和特点等方面进行论述。
一、基本原理变压器是通过电磁感应原理实现电能的传输和变换的一种电气装置。
电力电子变压器是在变压器的基础上应用了电力电子技术的产物。
基于变压器的原理,电力电子变压器将交流电能通过开关管等电力电子元器件进行调节和控制,实现变换、调整和控制电能的功能。
相比传统的变压器,电力电子变压器具有更灵活的控制特性,能够满足不同的电力系统需求。
二、应用领域电力电子变压器在电力系统中得到了广泛的应用,主要包括以下几个领域:1. 电力传输与分配:电力电子变压器可以在电力系统中实现高效率的能量传输和分配。
通过控制电力电子变压器的工作方式和参数,可以实现电能的变压、变频、调整等功能,确保电力系统的稳定运行。
2. 可再生能源发电系统:电力电子变压器在可再生能源发电系统中起到了重要的作用。
例如,光伏发电系统、风力发电系统等,通过电力电子变压器的调节和控制,将可再生能源转化为交流电,并实现与电网的连接。
3. 智能电网与微电网:随着电力系统向智能化和可靠性更高的方向发展,电力电子变压器在智能电网与微电网中的应用越来越广泛。
通过电力电子变压器的运行和控制,实现电能的调度和优化,提高电力系统的供电质量和可靠性。
三、特点分析1. 高效性:电力电子变压器能够实现高效率的能量传输和变换,相比传统的变压器具有更低的传输损耗和更高的能量转换效率。
这主要得益于电力电子器件的高效率和灵活控制的特点。
2. 灵活性:电力电子变压器具有灵活控制的特点,能够根据需求实现电能的变压、变频、调整等功能。
可以通过控制电力电子变压器的工作方式和参数,实现对电力系统的精细调节和控制。
3. 高可靠性:电力电子变压器采用了先进的电力电子器件和控制策略,具有较高的可靠性。
变压器的原理是什么

变压器的原理是什么
变压器的原理是利用电磁感应现象改变交流电的电压大小。
变压器由一个主线圈和一个副线圈组成,两个线圈通过铁芯(通常是铁心)连接。
当交流电通过主线圈时,线圈中产生一个交变的磁场。
这个交变的磁场会在铁芯中产生磁通量的变化。
根据法拉第电磁感应定律,磁通量的变化会在副线圈中产生感应电动势。
如果副线圈的匝数比主线圈少,那么感应电动势的大小就会下降,从而降低输出电压;如果副线圈的匝数比主线圈多,那么感应电动势的大小就会增加,从而提高输出电压。
由于变压器的工作原理是利用交流电的特点,所以只对交流电起作用,而对直流电无效。
变压器的效率一般很高,损耗很少,因此被广泛用于电力输送与变换、电子设备等领域。
需要注意的是,变压器的原理仅改变电压大小,不改变电的功率。
根据功率守恒定律,输入功率与输出功率相等,即电压越高,电流越小;电压越低,电流越大。
电子变压器在微电网中的有源配电网应用

电子变压器在微电网中的有源配电网应用随着可再生能源的快速发展和应用,微电网成为解决能源供应稳定和可持续发展的重要手段之一。
而有源配电网作为微电网的关键组成部分,起着实时调节电能负荷和供应的重要作用。
在有源配电网中,电子变压器作为电能转换的核心设备,广泛应用于微电网中,并发挥着重要的作用。
一、电子变压器的基本原理及特点电子变压器是一种能够将电能进行高效转换并实现电能的调节和控制的电力装置。
与传统的电力变压器相比,电子变压器具有以下几个特点:1. 高效率:电子变压器采用先进的功率电子器件进行能量转换,具有高效率和低能量损耗的特点。
相比之下,传统变压器存在能量损耗,从而影响电力转换的效率。
2. 精密控制:电子变压器具有精准调节和控制电能的能力。
通过电子变压器,可以根据实际电力需求进行灵活调节,实现优化供电。
3. 快速响应:电子变压器有较快的响应速度,能够及时应对电力需求的变化。
在微电网中,电力请求可能会发生剧烈的变化,电子变压器能够迅速响应并进行相应调节,保证可靠供电。
4. 紧凑结构:电子变压器的体积较小,可以方便地集成到微电网中,减少系统占地面积。
二、电子变压器在微电网中的应用电子变压器在微电网中的应用主要体现在以下几个方面:1. 高效能量转换微电网中,可再生能源如太阳能和风能通过电子变压器进行高效能量转换,并与传统电力网进行互联。
通过电子变压器的精密控制和调节,可再生能源的电能可以按需输出,实现对电力负荷的精确供应。
2. 稳定电能调节微电网中的电子变压器能够实时监测电力需求的变化,并根据实际需求快速、精确地调节电能输出。
当电力负荷突然增大或减小时,电子变压器能够迅速响应,并调节输出电力,确保微电网的稳定供电。
3. 智能能源管理电子变压器作为微电网中的智能能源管理系统的重要组成部分,能够通过精确的电能调度和能量管理,提高能源的利用效率和供电质量。
通过电子变压器的监测和控制,微电网可以实现对电能的精确分配和优化利用,减少能量浪费。
电力电子器件工作原理及在电力变压器中的应用

电力电子器件工作原理及在电力变压器中的应用电力电子器件是以半导体材料为基础的电子器件,用于控制和转换电能。
它们在电力系统中起到了至关重要的作用,其中在电力变压器中的应用更为广泛。
本文将从电力电子器件工作原理和在电力变压器中的应用两方面进行探讨。
一、电力电子器件的工作原理电力电子器件的工作原理涉及多个专业领域,如电路理论、能量转换理论等。
1. 二极管二极管是最基础的电力电子器件之一,由P型和N型半导体材料构成。
其工作原理利用PN结特性,当正向偏置时,电流可以通过二极管;当反向偏置时,二极管处于截止状态,电流无法通过。
2. 可控硅可控硅是一种常见的电力电子器件,具有控制性。
在正向偏置时,只有施加足够的触发电压,可控硅才能导通。
一旦导通,当电流超过可控硅的保持电流时,它将一直导通,直到电流降低至可控硅的关断电流。
3. 器件保护和驱动电路在电力电子器件的实际应用中,为了确保其正常工作并提高其性能,通常还需要配备保护和驱动电路。
保护电路可用于监测电流、电压等参数,并通过合适的控制信号来保证器件不会过载或受损。
驱动电路则负责提供合适的触发信号,使器件能够按需工作。
二、电力电子器件在电力变压器中的应用电力变压器是电力系统中必不可少的设备,其工作原理是通过电磁感应将输入电压转换为所需的输出电压。
1. 可控硅在电力变压器中的应用可控硅在电力变压器中可用作变压器的控制部分。
通过控制可控硅的导通和关断,可以控制变压器的输出电压和电流。
这种方法常用于变压器的调压和调流。
2. 功率开关在电力变压器中的应用功率开关是一种高频开关器件,可以实现快速开关。
在电力变压器中,功率开关常用于调整变压器的输出功率。
通过调整开关频率和占空比,可以实现输出电压和电流的精确控制。
3. 变频器在电力变压器中的应用变频器是一种能将输入电源频率转换为不同输出频率的电力电子设备。
在电力变压器中,变频器可以用来改变交流电源的频率,以适应不同需求。
这在一些特殊应用中非常重要,比如交流电动机的调速。
变压器ppt课件

变压器分ቤተ መጻሕፍቲ ባይዱ及应用领域
分类方式
根据用途、结构、相数、冷却方式等不同分类标准,变压器可 分为多种类型,如电力变压器、特种变压器、单相变压器、三 相变压器等。
应用领域
变压器在电力系统、工业、交通、通信等领域都有广泛应用。 例如,在电力系统中,变压器用于升压或降压,以满足不同电 压等级的输电和配电需求;在工业领域,变压器用于提供设备 所需的特定电压和电流。
设计原则及步骤
3. 设计线圈匝数、导 线截面积和绝缘方式;
5. 考虑变压器的短路 阻抗和空载损耗等性 能指标。
4. 确定冷却方式和温 升限值;
关键参数计算与选择
01
02
容量计算
根据负载的功率因数、 效率及未来扩展需求, 选择合适的变压器容 量。
电压等级选择
依据电力系统电压等 级和负载要求,确定 变压器的输入/输出电 压等级。
02
变压器主要参数与性能指标
Chapter
额定电压和额定电流
额定电压
指变压器在正常运行时,原、副边绕 组所允许施加的最大电压值。对于电 力变压器而言,额定电压通常指线电 压。
额定电流
指变压器在额定电压下,原、副边绕组 允许通过的最大电流值。该值通常根据 变压器的容量和额定电压计算得出。
额定功率和效率
根据负载特性和运 行环境,选择合适 的冷却方式和温升 限值。
04
了解变压器的生产 厂家和产品质量, 选择有信誉和经验 的厂家进行合作。
04
变压器制造工艺与质量控制
Chapter
制造工艺流程简介
工艺流程概述
简要介绍变压器的制造工艺流程,包 括铁芯制作、线圈绕制、绝缘处理、 装配等主要环节。
工艺流程图
电力电子变压器解读

与传统的变压器相比,PET不仅具有体积小、 重量轻、无污染的优点,还可以实现以下功能: (1)系统侧功率因数可调,且电流不受负载 电流质量影响。 (2)负载侧电压输出恒定,不随负载的改变 而变化,并不受系统侧电压畸变的影响。 (3)可以实现过流保护。
二、电力电子变压器的发展状况
• PET概念的提出最早可以追溯到1970年,美国 GE公司的W McMurray提出了一种具有高频链接的 AC/AC变换电路,这种高频变换的原理成为后来 PET发展的基本思路。1996年,日本学者Koosuke Harada将相位调制技术应用到这种拓扑中,实现 了恒压、恒流和功率因数校正,称之为智能变压 器(Intelligent Transformer)。这些研究成果在 200V,3kVA的实验装置上得到了验证,开关频率达 到了16.7kHz,效率约为80%-90%。
拓扑结构2:
如图所示,结构2的三级型PET是具有三相自 平衡能力的PET。其中右图是其中单相的详细结构。
传统型变压器:
传统变压器具有成本低、效率高、可靠性好等 优点,已经广泛应用于输配电系统中。如今随着 智能电网的不断开发和建设,更多的分布式发电 系统需要有效、可靠地融入电力系统中,用户对 供电的可靠性、灵活性与电网负荷的品质也都提 出了更高的要求。仅实现电压变换、隔离和能量 传输功能的传统变压器己经不能满足智能电网的 需求,其固有缺点,如饱和、直流偏磁、波形畸 变、空载损耗大等,也变得越来越突出。随着大 功率电力电子技术的不断发展,一种基于电力电 子变换技术的新型变压器—电力电子变压器 ( Power Electronic Transformer ,PET)得到了广泛关 注。
三、电力电子变压器的拓扑结构及分类
• PET的拓扑结构可以根据电能变换的次数分为三类: 单级型、双级型和三级型,其中双级型结构又可 分为具有高压直流环节和具有低压直流环节两种。 下文将对每类PET的典型结构进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。