变压器工作原理及详细介绍

合集下载

变压器的工作原理及常见的连接方式

变压器的工作原理及常见的连接方式

变压器的工作原理及常见的连接方式变压器是一种电磁设备,用于改变交流电的电压和电流大小。

它通常由两个或更多的线圈组成,通过磁耦合将电能从一个电路传递到另一个电路,从而改变电压和电流的大小。

变压器的工作原理可以概括为电磁感应定律。

当一根导线中通过交流电流时,会产生一个变化的磁场。

当有另一根导线靠近时,这个变化的磁场会引起导线中的电流变化。

在变压器中,有一个主线圈(称为初级线圈)和一个次级线圈。

当通过初级线圈中的交流电流时,会产生一个交变的磁场。

次级线圈靠近这个磁场,并在其上感应出一个电流。

这样,变压器将电能从初级线圈传递到次级线圈,从而改变电压和电流的比例。

变压器的工作原理可以通过下面的公式来描述:Vp / Np = Vs / NsVp是初级线圈的电压,Np是初级线圈的匝数,Vs是次级线圈的电压,Ns是次级线圈的匝数。

这个公式表明电压和匝数之间存在一个反比关系。

如果次级线圈的匝数比初级线圈的匝数多,那么次级线圈的电压将会低于初级线圈的电压。

反之亦然。

变压器有很多不同的连接方式,根据实际应用的需要选择不同的连接方式。

下面是一些常见的变压器连接方式:1. 单相变压器连接方式:- 变压器的初级线圈和次级线圈都是单相线圈,它们之间通过磁耦合作用传递电能。

这是最常见的变压器连接方式。

2. 三相变压器连接方式:- Y--Y连接方式:变压器的初级线圈和次级线圈都是星形连接,每个线圈中心点都接地。

- Δ--Δ连接方式:变压器的初级线圈和次级线圈都是三角形连接。

- Δ--Y连接方式:变压器的初级线圈是三角形连接,而次级线圈是星形连接。

- Y--Δ连接方式:变压器的初级线圈是星形连接,而次级线圈是三角形连接。

3. 自耦变压器连接方式:- 自耦变压器只有一个线圈,它的一部分用作初级线圈,另一部分用作次级线圈。

这种连接方式常用于电压调节器和变频器中。

除了上述常见的连接方式外,还有一些其他特殊的连接方式,如相移变压器、分接变压器、联络变压器等。

简述变压器的工作原理

简述变压器的工作原理

简述变压器的工作原理
变压器是一种电气设备,它能够根据需要改变交流电的电压大小。

它主要由两个线圈(即输入线圈和输出线圈)和一个磁性铁芯组成。

变压器的工作原理基于电磁感应定律。

当交流电通过输入线圈时,会在铁芯中产生一个交变磁场。

这个交变磁场会穿过输出线圈,引起输出线圈中的电流发生变化。

根据电磁感应定律,当磁通量改变时,导线中就会产生感应电动势,从而产生电流。

根据变压器的原理,变压器是通过改变输入线圈和输出线圈的绕组数来改变电压的。

当输入线圈的绕组数比输出线圈多时,所得到的是步压变压器,即输出电压小于输入电压。

反之,当输出线圈的绕组数比输入线圈多时,所得到的是升压变压器,即输出电压大于输入电压。

在实际应用中,变压器还具有提高或降低电压的功率特性。

当输入功率大于输出功率时,变压器会起到升压或降压的作用。

反之,当输入功率小于输出功率时,变压器会起到降压或升压的作用。

总之,变压器是一种利用电磁感应原理来改变交流电电压大小的装置。

通过改变输入输出线圈的绕组数,可以实现不同的升压或降压效果。

这使得变压器广泛应用于各种电力系统和电子设备中。

变压器的工作原理

变压器的工作原理

变压器的工作原理引言概述:变压器是电力系统中常见的电气设备,它起着改变电压大小的重要作用。

本文将详细介绍变压器的工作原理,包括一、变压器的基本构造;二、变压器的工作原理;三、变压器的主要应用领域;四、变压器的维护与保养;五、变压器的未来发展方向。

一、变压器的基本构造1.1 主要构件:变压器由铁芯、一次绕组和二次绕组组成。

铁芯通常由硅钢片叠压而成,以减小磁阻和磁损耗。

1.2 绕组:一次绕组和二次绕组分别绕在铁芯上。

一次绕组与电源相连,二次绕组与负载相连。

1.3 绝缘材料:绕组之间和绕组与铁芯之间采用绝缘材料进行绝缘,以防止电路短路和绝缘击穿。

二、变压器的工作原理2.1 磁感应定律:当一次绕组中有交流电流通过时,产生的磁场会感应到二次绕组中,从而在二次绕组中产生感应电动势。

2.2 变压器原理:根据磁感应定律,当一次绕组中的匝数与二次绕组中的匝数不同时,可以实现电压的升降。

2.3 能量传递:变压器通过磁场的耦合,将一次绕组中的电能传递到二次绕组,实现电压的变换。

三、变压器的主要应用领域3.1 电力系统:变压器广泛应用于电力系统中,用于升压和降压,以适应不同电压等级的输电和配电需求。

3.2 电子设备:变压器也被应用于各类电子设备中,用于提供适宜的电压和电流,以满足设备的工作要求。

3.3 工业领域:在工业生产中,变压器被用于控制机电的启动和运行,以及供应各种设备所需的电能。

四、变压器的维护与保养4.1 温度控制:变压器在工作过程中会产生热量,需要通过散热器进行散热,保持合适的工作温度。

4.2 油浸绝缘:变压器通常采用油浸绝缘,需要定期检查绝缘油的质量和绝缘材料的状态,以确保变压器的正常运行。

4.3 维护记录:及时记录变压器的运行状况、维护情况和故障处理过程,为后续的维护工作提供参考和依据。

五、变压器的未来发展方向5.1 高效节能:未来的变压器将更加注重能源的高效利用,减少能量损耗和环境污染。

5.2 智能化控制:随着科技的发展,变压器将逐渐实现智能化控制,提高运行的稳定性和可靠性。

变压器的工作原理

变压器的工作原理

变压器的工作原理一、引言变压器是电力系统中常见的电气设备,用于改变交流电的电压和电流。

本文将详细介绍变压器的工作原理,包括基本原理、结构和工作过程。

二、基本原理1. 电磁感应定律根据法拉第电磁感应定律,当一个导体在磁场中运动或者磁场变化时,会在导体中产生感应电动势。

变压器利用这一原理实现电压的转换。

2. 互感现象互感现象是指两个或者多个线圈通过磁场相互耦合时,其中一个线圈中的电流变化会在其他线圈中产生感应电动势。

变压器中的两个线圈分别称为主线圈和副线圈。

三、变压器的结构1. 铁心变压器的铁心是由硅钢片叠压而成,主要作用是提高磁通的传导性能,并减少铁损耗。

2. 主线圈主线圈是变压器的输入线圈,通常由较粗的导线绕制而成。

当主线圈中通过交流电流时,会在铁心中产生磁场。

3. 副线圈副线圈是变压器的输出线圈,通常由较细的导线绕制而成。

副线圈通过互感现象与主线圈相连,将主线圈中的磁场转换为感应电动势。

四、变压器的工作过程1. 变压器的工作原理可以分为两个阶段:磁场建立和磁场消失。

2. 磁场建立阶段当交流电通过主线圈时,产生的交变电流会在主线圈中产生交变磁场。

由于主线圈和副线圈之间的互感作用,副线圈中也会产生交变电动势。

3. 磁场消失阶段当交流电的方向改变时,主线圈中的交变磁场也会改变方向。

这个变化的磁场会在副线圈中产生感应电动势,导致副线圈中的电流方向发生变化。

4. 变压器的电压转换根据互感现象,变压器中主线圈和副线圈的匝数比可以决定输出电压与输入电压的比例关系。

当主线圈匝数较大时,输出电压相对较低;当主线圈匝数较小时,输出电压相对较高。

五、总结变压器是一种基于电磁感应和互感现象的电气设备,用于改变交流电的电压和电流。

它由铁心、主线圈和副线圈组成。

变压器的工作过程包括磁场建立和磁场消失两个阶段,通过互感现象实现电压的转换。

变压器在电力系统中起到了重要的作用,广泛应用于输电、配电和电子设备中。

变压器的结构及工作原理

变压器的结构及工作原理

变压器的结构及工作原理变压器是一种用于将电能从一种电压转换为另一种电压的电气设备。

它是电力系统中非常常见的设备之一,被广泛应用于发电厂、变电站、工业生产和民用电力系统中。

变压器的结构和工作原理十分重要,下面详细介绍。

一、变压器的结构变压器由两个或更多的线圈通过铁芯相互连接而成。

主要包括以下部分:1.铁芯:变压器的铁芯由硅钢片组成,可有效减小磁滞和涡流损耗。

铁芯的形状包括E型、I型和C型等,用于支撑和保护线圈。

2.一次线圈(主绕组):也称为原线圈或输入线圈,接收电源端的输入电能。

一次线圈一般由较粗的导线绕制而成。

3.二次线圈(副绕组):也称为输出线圈,输出变压器转换后的电能。

二次线圈一般由较细的导线绕制而成。

4.绝缘材料:用于在不同线圈之间提供电气绝缘,避免相互之间的短路。

5.冷却装置:用于散热,以保证变压器的工作温度不超过允许范围。

常见的冷却方式包括自然冷却(静风冷却)和强制冷却(风扇冷却、冷水冷却等)。

二、变压器的工作原理变压器基于电磁感应的原理工作,其主要过程是通过变化的磁场引起线圈中的电压变化。

1.变流原理:根据法拉第电磁感应定律,当一次线圈中的电流变化时,会在铁芯中产生一个变化的磁场。

这个磁场穿过二次线圈,并在其中引起电动势的产生。

根据电磁感应定律,产生的电动势与变化的磁场强度成正比。

2.变压原理:根据楞次定律,一次线圈和二次线圈中的电流方向是相互反的。

当一次线圈接通电源时,通过它的电流会在铁芯中产生一个磁场。

这个磁场会在二次线圈中引起电动势的产生,并使得二次线圈中的电流流动。

变压器的输入电压和输出电压之比等于输入线圈的匝数和输出线圈的匝数之比。

即:输入电压/输出电压=输入线圈匝数/输出线圈匝数3.近似理想性:在实际的变压器中,我们可以近似认为主线圈和副线圈之间没有电阻,也没有电感。

这样,变压器的损耗可以忽略不计,输出电压会完全等于输入电压。

4.变压器的效率:实际的变压器会有一定的损耗,主要包括铁损耗和铜损耗。

变压器的工作原理、用途及分类介绍

变压器的工作原理、用途及分类介绍

变压器的工作原理、用途及分类介绍变压器的工作原理、用途及分类变压器的基本工作原理变压器是一种利用电磁感应原理将一种数值的交变电压变换为同一频率的另一种数值的交变电压。

一、变压器的基本工作原理变压器是一种利用电磁感应原理将一种数值的交变电压变换为同一频率的另一种数值的交变电压。

1.变压器是静止的电器,它可以根据需要将交流电压升高或降低。

2.在改变电压的同时,电压的频率保持不变。

3.工作原理:根据电磁感应定律U1=-e1=N1dΦ/dt U2=e2=-N2dΦ/d t U1/U2=e1/e2=N1/N2=KU 即:变压器一、二次绕组的电压比就等于一、二次绕组的匝数比。

二、变压器的用途在生产、输送、分配和使用电能的整个电力系统中,变压器是一个重要的电器设备。

1.高压输电:变压器是电能传输的主要设备,当输送电能的容量一定时,电压越高,输电线上的电流越小,输电导线面积越小,线路损耗越小。

2.低压配电:在用户侧,为了安全和绝缘方便,要求逐步把输电电压降到配电电压。

3.测量、阻抗变换等其他特殊用途。

输电时,把交流电功率P= √3UIcosø从电厂输送到用户,当P和cosø一定时,U愈高,I愈小,这可以节省输电线材料,减小线路损耗。

三、变压器的分类1、按相数的不同:变压器可分为单相变压器、三相变压器和多相变压器;2、按绕组数目不同:变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器;3、按冷却方式不同:变压器可分为油浸式变压器、充气式变压器和干式变压器。

油浸式变压器又可分为:油浸自冷式、油浸风冷式和强迫油循环变压器。

4、按用途不同:变压器可分为电力变压器、特种变压器、仪用互感器、试验用的高压变压器等。

变压器的构造及工作原理

变压器的构造及工作原理

变压器的构造及工作原理
变压器是一种电力设备,由磁芯、一组或多组线圈、绝缘材料等构成。

它的主要作用是将高电压的电能通过电感作用转换成低电压的电能或者通过电感耦合将一个电路的信号传递到另一个电路中。

因此,在电力传输、变换及调整电压等方面有着非常广泛的应用。

以下为变压器的构造及工作原理相关参考内容:
一、变压器的构造
1. 磁芯:通常是由硅钢片粘合而成,用来提高磁通量和磁导率,减小铁损和磁损。

2. 线圈:通常分为高压侧和低压侧线圈,线圈上绕有N1和
N2匝导线。

高压侧的匝数一般较低压侧的匝数少数倍。

3. 绝缘材料:它主要用于绝缘变压器各部分的元件彼此之间,以及元件和地之间的电连接,以保证变压器内部不会发生短路,确保变压器的安全运行。

4. 冷却系统:变压器一般分为自然冷却和强制冷却两种方式。

二、变压器的工作原理
变压器工作基于电磁感应现象,即变化的磁场会产生电动势,而电动势的大小与磁场变化的速率成正比。

当变压器的高压侧供给电流时,磁场就被引入变压器的磁芯中,
流向低压侧。

这个变化的磁场会感应电动势,在低压侧线圈中产生电流。

因此,变压器将电能从高压侧传递到低压侧,并通过电容将电压调整到需要的水平。

变压器的电压比取决于高压侧与低压侧线圈的匝数比。

因此,如果变压器的高压侧线圈的匝数是低压线圈的3倍,那么低压线圈的电压就是高压线圈电压的1/3。

总之,变压器是一种重要的电力设备,通过电磁感应的原理起到电能转换和电压调整等作用。

了解变压器的构造及工作原理对于电气领域的学习和实践都非常重要。

变压器的构造及工作原理

变压器的构造及工作原理

变压器的构造及工作原理一、引言变压器是一种电气设备,主要是为了改变交流电(AC)电压的大小而存在的。

在当今的现代生活中,变压器无处不在,其广泛应用于各种电力转换、电子通讯、钢铁冶炼、化学冶炼等领域。

本文将会探讨变压器的构造及工作原理。

二、构造变压器的构造包括磁路、绕组、绝缘料、冷却装置、油箱、控制装置等五个部分。

1. 磁路磁路是变压器的主要构造。

主要由铁芯和绕组组成。

铁芯是由多个细铁皮带铺成特定的形状。

绕组的数量定为铁芯逐级增加,造成变压器层数的增长。

绕组是由铜线绕成,分为高电压绕组与低电压绕组两个部分。

高电压绕组的绕制量要比低电压绕组多。

2. 绕组绕组由两个部分组成。

每个部分包括多个线圈并且分别包裹在铁心上。

其中一个线圈代表高压绕组,由少量的线圈构成,芯为铁心的一部分。

另一个线圈代表低压绕组,绕制成为所需的大小,也构成了铁心的一部分。

当电流通过线圈时,它会在铁芯上产生磁通量,使成对的线圈之间的电流换能,进而将电压从高压绕组传递到低压绕组。

3. 绝缘料绝缘料是用来阻止电流从一个线圈或铁芯流到另一部分的材料。

通常使用纸张和厚度约为数十米的绝缘纸层。

绝缘层保护变压器免受电弧和电火花等等对环境的危害。

4. 冷却装置冷却装置是用来控制变压器的温度的。

变压器运行时会产生大量的热量,如果此时热量不能及时散发,它将不能摄入过多的负载能量,从而导致变压器过热,反过来则造成设备损坏。

因此冷却装置是非常重要的。

一般情况下,变压器装有油或是冷却水,通过散热器对之进行冷却操作。

5. 油箱油箱是一个重要的装置,是用来储存冷却油的容器。

冷却油是变压器在运行时需要的物质,通过冷却油,变压器得以保持在正常工作温度范围内。

6. 控制装置控制装置是变压器的主要控制设备。

其主要由自动保护及控制系统、温度监控系统组成。

自动保护及控制系统可以检测是否存在短路、过载等异常情况,从而防止变压器受到损坏; 温度监控系统则会监控变压器的温度变化,防止变压器过热,发生事故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般指连接交流电源的线圈称之为「一次线圈」(Primary coil);而跨于此线圈的电压称之为「一次电压.」。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈问的「匝数比」所决定的。因此,变压器区分为升压与降压变压器两种。
大部份的变压器均有固定的铁芯,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部份磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度之磁耦合。在一些变压器中,线圈与铁芯二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附属物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,吾人可以如是说,倘无变压器,则现代工业实无法达到目前发展的现况。
A.电压比:
变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级.在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势.当N2>N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1时,其感应电动势低于初级电压,这种变压器称为降变压器.初级次级电压和线圈圈数间具有下列关系:
若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化,又不计铁心损失,根据能量守恒原理可得,由此得出一次、二次绕组电压和电流有效值的关系令 K=N1/N2,称为匝比(亦称电压比)。
二.变压器的结构简介
⑴铁心
铁心是变压器中主要的磁路部分。通常由含硅量较高,厚度分别为 0.35 mm.3mm.27 mm,
电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。一般提供60Hz电力网络之电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部份属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。
变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率就越小,效率也就越高,反之,功率越小,效率也就越低。
C变压器的功率
变压器铁心磁通和施加的电压有关。在电流中励磁电流不会随着负载的增加而增加。虽然负载增加铁心不会饱和,将使线圈的电阻损耗增加,超过额定容量由于线圈产生的热量不能及时的散出,线圈会损坏,假如你用的线圈是由超导材料组成,电流增大不会引起发热,但变压器内部还有漏磁引起的阻抗,但电流增大,输出电压会下降,电流越大,输出电压越低,所以变压器输出功率不可能是无限的。假如你又说了,变压器没有阻抗,那么当变压器流过电流时会产生特别大电动力,很容易使变压器线圈损坏,虽然你有了一台功率无限的变压器但不能用。只能这样说,随着超导材料和铁心材料的发展,相同体积或重量的变压器输出功率会增大,但不是无限大!
四、各次级绕组最大电流的确定
变压器次级绕组输出电流取决于该绕组漆包线的直径D。漆包线的直径可从引线端子处直接测得。测出直径后,依据公式I=2D2,可求出该绕组的最大输出电流。式中D的单位是mm。
从测量可知,该变压器有4个绕组,其中标号⑤、⑥、⑦的是一带抽头的绕组,⑩号端子与任一绕组均不相通,是屏蔽层引出端子。
第二步:确定初级绕组。
对于降压式电源变压器,初级绕组的线径较细,匝数也比次级绕组多。因此,像图4这样的降压变压器,其电阻最大的是初级绕组。
第三步:确定所有次级绕组的电压。
在初级绕组上通过调压器接入交流电,缓缓升压直至220V。依次测量各绕组的空载电压,标注在各输出端。如果变压器在空载状态下较长时间不发热,说明变压器性能基本完好,也进一步验证了判定的初级绕组是正确的。
二、功率的估算
电源变压器传输功率的大小,取决于铁芯的材料和横截面积。所谓横截面积,不论是E形壳式结构,或是E形芯式结构(包括C形结构),均是指绕组所包裹的那段芯柱的横断面(矩形)面积。在测得铁芯截面积S之后,即可按P=S2/1.5估算出变压器的功率P。式中S的单位是cm2。
例如:测得某电源变压器的铁芯截面积S=72cm2,估算其功率,得P=S2/1.5=72/1.5=33W剔除各种误差外,实际标称功率是30W。
U1/U2=N1/N2
式中n称为电压比(圈数比).当n<1时,则N1>N2,U1>U2,该变压器为降压变压器.反之则为升压变压器.
另有电流之比I1/I2=N2/N1
电功率P1=P2
注意上面的式子只在理想变压器只有一个副线圈时成立,当有两个副线圈时P1=P2+P3,U1/N1=U2/N2=U3/N3,电流则须利用电功率的关系式去求,有多个时依此推类。
配电变压器、电力变压器、 全密封变压器、组合式变压器、干式变压器、 单相变压器、电炉变压器、整流变压器、电抗器、抗用变压器、防雷变压器、箱式变压器、箱式变电器。
变压器的最基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。
铜损是指变压器线圈电阻所引起的损耗.当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗.由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损.
变压器的铁损包括两个方面.一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。另一是涡流损耗,当变压器工作时.铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗.
式中:E--感应电势有效值
f--频率
N--匝数
m--主磁通最大值
由于二次绕组与一次绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻抗压降后,电压1和2大小也就不同。
当变压器二次侧空载时,一次侧仅流过主磁通的电流(Í0),这个电流称为激磁电流。当二次侧加负载流过负载电流2时,也在铁芯中产生磁通,力图改变主磁通,但一次电压不变时,主磁通是不变的,一次侧就要流过两部分电流,一部分为激磁电流0,一部分为用来平衡2,所以这部分电流随着2变化而变化。当电流乘以匝数时,就是磁势。
上述的平衡作用实质上是磁势平衡作用,变压器就是通过磁势平衡作用实现了一、二次侧的能量传递。
变压器技术参数 对不同类型的变压器都有相应的技术要求,可用相应的技术参数表示.如电源变压器的主要技述参数有:额定功率、额定电压和电压比、额定频率、工作温度等级、温升、电压调整率、绝缘性能和防潮性能,对于一般低频变压器的主要技述参数是:变压比、频率特性、非线性失真、磁屏蔽和静电屏蔽、效率等.
变压器---利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件
⑴变压器 ---- 静止的电磁装置
变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能
电压器的主要部件是一个铁心和套在铁心上的两个绕组。
⑵变压器原理
与电源相连的线圈,接收交流电能,称为一次绕组
三、各绕组电压的测量
要使一个没有标记的电源变压器利用起来,找出初级的绕组,并区分次级绕组的输出电压是最基本的任务。现以一实例说明判断方法。
例:已知一电源变压器,共10个接线端子。试判断各绕组电压。
第一步:分清绕组的组数,画出电路图。
用万用表R×1挡测量,凡相通的端子即为一个绕组。现测得:两两相通的有3组,三个相通的有1组,还有一个端子与其他任何端子都不通。照上述测量结果,画出电路图,并编号。
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
⑷理想变压器
不计一次、二次绕组的电阻和铁耗,
其间耦合系数 K=1 的变压器称之为理想变压器
描述理想变压器的电动势平衡方程式为
e1(t) = -N1 d φ/dt
e2(t) 率:
在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即
η=(P2÷P1)x100%
式中η为变压器的效率;P1为输入功率,P2为输出功率.
当变压器的输出功率P2等于输入功率P1时,效率η等于100%,变压器将不产生任何损耗.但实际上这种变压器是没有的.变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损。
变压器工作原理及详细介绍
要知道变压器的工作原理,首先要知道它的功能,其实也不外乎就是电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁芯形状一般有E型和C型铁芯。它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。电源变压器应用非常广泛。
变压器按用途可以分为:
2. 从绕组引出端子数识别 电源变压器常见的有两个绕组,即一个初级和一个次级绕组,因此有四个引出端。有的电源变压器为防止交流声及其他干扰,初、次级绕组间往往加一屏蔽层,其屏蔽层是接地端。因此,电源变压器接线端子至少是4个。
3. 从硅钢片的叠片方式识别 E形电源变压器的硅钢片是交替插入的,E片和I片间不留空气隙,整个铁芯严丝合缝。音频输入、输出变压器的E片和I片之间留有一定的空气隙,这是区别电源和音频变压器的最直观方法。至于C形变压器,一般都是电源变压器。
怎样判别电源变压器参数
电源变压器标称功率、电压、电流等参数的标记,日久会脱落或消失。有的市售变压器根本不标注任何参数。这给使用带来极大不便。下面介绍无标记电源变压器参数的判别方法。此方法对选购电源变压器也有参考价值。
一、识别电源变压器
1. 从外形识别 常用电源变压器的铁芯有E形和C形两种。E形铁芯变压器呈壳式结构(铁芯包裹线圈),采用D41、D42优质硅钢片作铁芯,应用广泛。C形铁芯变压器用冷轧硅钢带作铁芯,磁漏小,体积小,呈芯式结构(线圈包裹铁芯)。
表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成
相关文档
最新文档