概率论与数理统计练习题1

合集下载

概率论与数理统计练习题+答案

概率论与数理统计练习题+答案

概率论与数理统计 练习题1答案题目局部,〔卷面共有22题,100分,各大题标有题量和总分〕 一、选择题〔10小题,共30分〕1、假设P(A),()0.1P AB =,那么P(AB)=__________. 答案:0.22、设()0, ()0,P A P B >>那么以下公式正确的选项是( )。

A 、[]()()1()P A B P A P B -=-B 、( )()()P A B P A P B =⋅C 、(|)(|)P AB A P B A =D 、()(|)P A B P B A =答案:C3、设I 是一个区间,sin()0x Ix x Iϕ∈⎧=⎨∈⎩,是一个概率密度函数,那么I 是( )。

A 、[,)2ππ B 、(0,]π C 、3(,]2ππ D 、(,0]2π-答案:A4、将一枚硬币抛掷三次,设头两次抛掷中出现正面的次数为ξ,第三次抛掷出现正面的次数为η,二维随机变量(,)ξη所有可能取值的数对有( )。

A 、2对 B 、6对 C 、3对 D 、8对 答案:B5、设2~(, ),~(0, 1)N a N ξση那么η与ξ的关系为( )。

A 、2aξησ-=B 、a a ηξ=+C 、a ξησ-=D 、a ξησ=- 答案:C6、具有下面分布密度的随机变量中方差不存在的是( )。

答案:D7、设独立随机变量12100,,,ξξξ⋅⋅⋅均服从参数为4λ=的泊松分布,试用中心极限定理确定概率1001420i i P ξ=⎧⎫<=⎨⎬⎩⎭∑____________。

,0,1(0.5)0.6915F =,0,1(1)0.8413F =,0,1(2)0.9772F = 答案:0.8413 8、样本1(,, )n X X 来自总体ξ,ξ有分布密度()x ϕ及分布函数()F x ,那么以下结论不成立的是( )。

A 、i X 有分布密度()x ϕ,1, 2, , i n =B 、i X 有分布函数()F x ,1, 2, , i n =C 、{}1 ,, n Max X X 的分布函数为[]()nF xD 、n X 为{}1,,ax n M X X 的一个元偏估计答案:D 9、设(12,,, n X X X )是正态总体2~(, )X N μσ的样本,统计量()(U X μσ=-服从(0,1)N ,又知20.64,16n σ==,及样本均值X ,利用U 对μ作区间估计,假设已指定置信度1α-,并查得U 的临界值为121.96U α-=,那么μ的置信区间为( )。

概率论与数理统计练习题及答案

概率论与数理统计练习题及答案

概率论与数理统计习题一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2<x<4}=___ (A)0.8543 (B)0.1457 (C)0.3541 (D)0.2543 2.设)4,1(~N X ,且6179.0)3.0(=Φ,6915.0)5.0(=Φ,则P{0<x<1.6}=____ (A)0.3094 (B)0.1457 (C)0.3541 (D)0.25433.设随机变量的概率密度21()01qxx f x x -⎧>=⎨≤⎩,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/24.事件A ,B 为对立事件,则_____不成立。

(A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____(A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____A .B A ⊂ B . A B ⊂ C.A B -=Φ D.0)(=-B A P7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的是_____A . 0()1F x ≤≤B .0()1f x ≤≤ C.{}()P X x F x ==D.{}()P Xx f x ==8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____A.4114i i X X ==∑ B.142X X μ+- C.42211()ii K XX σ==-∑D.4211()3i i S X X ==-∑9.设,A B 为两随机事件,且B A ⊂,则下列式子正确的是_____ A .()()P A B P A += B .()()P AB P A =C. ()()|P B A P B = D. ()()()P B A P B P A -=- 10. 设()2~,,X N μσ那么当σ增大时,{}-P X μσ<=A .增大B .减少C .不变D .增减不定11. 设()()()()~,E X-1X 21,X P poission λλ-==⎡⎤⎣⎦分布且则___ A.1 B. 2 C .3 D .0 12.设 ()2~,X Nμσ,其中μ已知,2σ未知,123X , X ,X ,为其样本, 下列各项不是统计量的是____A. 123X X X ++ B. {}123min X ,X ,X C.23i 2i 1X σ=∑ D.1X μ-13.对于事件,A B ,下列命题正确的是_____ A .若,A B 互不相容,则.A 与B 也互不相容B .若,A B 相容,则.A 与B 也相容C.若,A B 互不相容,则.A 与B 也相互独立 D.若A 与B 相互独立, 那么.A 与B 相互独立14.假设随机变量X的分布函数为()F x ,密度函数为()f x .若X与-X有相同的分布函数,则下列各式中正确的是_____A .()F x =()F x -;B .()F x =()F x --;C .()f x =()f x -;D .()f x =()f x --; 15若()~X t n ,那么2~X ____A . (1,)F n ; B.(,1)F n ; C. 2()n χ; D. ()t n .二、填空题(在每个小题填入一个正确答案,填在题末的括号中)1.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.4P X >=2.设有7件产品,其中有1件次品,今从中任取出1件为次品的概率为 3.设AB φ=,()0.3,()0.4,P A P B ==则=⋃)(B A P4.设2~(,)X N μσ~X5 .设A 、B 、C 、是三个随机事件。

概率论与数理统计练习册题目

概率论与数理统计练习册题目

第一章 概率论的基本概念习题一 随机试验、随机事件一、判断题1.()A B B A =⋃- ( )2.C B A C B A =⋃ ( )3.()φ=B A AB ( )4.若C B C A ⋃=⋃,则B A = ( )5.若B A ⊂,则AB A = ( )6.若A C AB ⊂=,φ,则φ=BC ( )7.袋中有1个白球,3个红球,今随机取出3个,则(1)事件“含有红球”为必然事件; ( )(2)事件“不含白球”为不可能事件; ( )(3)事件“含有白球”为随机事件; ( )8.互斥事件必为互逆事件 ( )二、填空题1. 一次掷两颗骰子,(1)若观察两颗骰子各自出现的点数搭配情况,这个随机试验的样本空间为 ;(2)若观察两颗骰子的点数之和,则这个随机试验的样本空间为 。

2.化简事件()()()=⋃⋃⋃B A B A B A 。

3.设A,B,C 为三事件,用A,B,C 交并补关系表示下列事件:(1)A 不发生,B 与C 都发生可表示为 ;(2)A 与B 都不发生,而C 发生可表示为 ;(3)A 发生,但B 与C 可能发生也可能不发生可表示为 ;(4)A,B,C 都发生或不发生可表示为 ;(5)A,B,C 中至少有一个发生可表示为 ;(6)A,B,C 中至多有一个发生可表示为 ;(7)A,B,C 中恰有一个发生可表示为 ;(8)A,B,C 中至少有两个发生可表示为 ;(9)A,B,C 中至多有两个发生可表示为 ;(10)A,B,C 中恰有两个发生可表示为 ;三、选择题1.对飞机进行两次射击,每次射一弹,设A 表示“恰有一弹击中飞机”,B 表示“至少有一弹击中飞机”,C 表示“两弹都击中飞机”,D 表示“两弹都没击中飞机”,则下列说法中错误的是( )。

A 、A 与D 是互不相容的B 、A 与C 是相容的C 、B 与C 是相容的D 、B 与D 是相互对应的事件2.下列关系中能导出“A 发生则B 与C 同时发生”的有( )A 、A ABC =;B 、AC B A =⋃⋃; C 、A BC ⊂ ;D 、C B A ⊂⊂四、写出下列随机试验的样本空间1.记录一个小班一次数学考试的平均分数(设以百分制记分);2.一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3.某人射击一个目标,若击中目标,射击就停止,记录射击的次数。

概率论与数理统计第一章习题及答案

概率论与数理统计第一章习题及答案

概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。

故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。

相当于AB ,BC ,AC 中至少有一个发生。

故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

概率论与数理统计习题库,第一章

概率论与数理统计习题库,第一章

长沙理工大学二手货QQ 交易群146 808 417第一章#00001写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,出现奇数点.(2)将一枚均匀的硬币抛出两次,A: 第一次出现正面B: 两次出现同一面C: 至少有一次出现正面(3)一个口袋中有5只外形完全相同的球,编号为1、2、3、4、5,从中同时取出3只,球的最小号码为1.(4)一个口袋中有2只白球、3只黑球、4只红球,从中任取一球,A: 得白球, B: 不得红球*00001#00002在数学系中任选一名学生,令事件A 表示该生为男生,事件B 表示该生为三年级学生,事件C 表示该生为运动员. (1)(1)叙述事件C AB 的意义(2)(2)在什么条件下ABC=C 成立?(3)(3)什么时候关系式C ⊂B 是正确的? (4)(4)什么时候B A =成立?*00002#00003长沙理工大学二手货QQ 交易群146 808 417一个工人生产了n 个零件,事件A i ="该工人生产得第i 个零件是正品" i =1、2、、n用A i 表示下列事件:(1)(1)没有一个零件是次品;(2)(2)至少有一个零件是次品;(3)(3)仅仅只有一个零件是次品;(4)(4)至少有两个零件是次品.*00003#00004A 、B 是两个事件.证明下列关系等价B A ⊂,B A ⊂,B B A = ,A B A = ,φ=B A*00004#00005把A 1⋂ A 2⋂⋯ ⋂ A n 表示为不相容事件的和.*00005#00006长沙理工大学二手货QQ 交易群146 808 417证明:若(A-B )⋂(B-A )⊂ C ,则A ⊂(B-C )⋂(C-B )的充要条件是ABC= φ. *00006#00007一部五卷文集任意地排列到书架上,文卷号自左向右或自右向左恰好为12345的顺序的概率等于多少?*00007#00008在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成分数,求所得分数为既约分数得概率.*00008#00009有五条线段,长度分别为1、3、5、7、9.从这五条线段中任取三条,求所取三条线段恰好能构成三角形的概率.*00009#00010把一个表面涂有颜色的立方体等分为一千个小立方体,从这些小立方体中任取一个,求所取小立方体有k面(k=0、1、2、3)涂有颜色的概率.*00010#00011一个小孩用13个字母A、A、A、C、E、H、I、I、M、M、N、T、T做组字游戏.如随机地排列字母,问他组成"MATHEMATICIAN"的概率是多少?*00011#00012甲从2、4、6、8、10中任取一数,乙从1、3、5、7、9中任取一数,求甲取的数大于乙取的数的概率.*00012#00013在中国象棋的棋盘上任意地放上一只红"车"及一只黑"车",求它们正好可以互相吃掉的概率.*00013#00014一批灯泡有40只,其中有3只是坏的,从中任取5只检查.问:(1)5只都是好的概率是多少?(2)5只中有2只是坏的概率是多少?*00014#00015一幢10层楼中的一架电梯在底层走上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,设每位乘客在每层离开是等可能的,求没有两位乘客在同一层离开的概率.*00015#00016从一副扑克牌(52)张中任取6张,求得三张红色三张黑色牌的概率.*00016#00017掷两个骰子,求所得的两个点数一个恰是另一个的两倍的概率.*00017#00018掷三颗骰子,求所得的三个点数中最大的一个恰是最小的一个的两倍的概率.*00018#00019一个班上有2n个男生及2n个女生,把全班学生任意地分成人数相等的两组,求每组中男女生人数相等的概率.*00019#00020某城市共有自行车10000,牌照编号从00001到10000.问事件"偶然遇到一辆牌照编号中有数字8的自行车"的概率是多少?*00020#00021从n个数1、2、3、 、n中随机地取出两个数(不重复),问其中一个小于k(1<k<n),另一个大于k的概率是多少?*00021#00022有2n个数字,其中n个是0,n个是1.从中任取两数,求所取两数之和为0或为偶数的概率.*00022#00023在十个数字0、1、2、⋯、9中任取四个数(不重复),能排成一个四位偶数的概率是多少?*00023#00024四颗骰子掷一次至少得一个一点与两个骰子掷24次至少有一次得两个一点,哪一个概率大?*00024#00025从一副扑克牌(52张)中任意抽出10张,问(1)(1)至少有一张"A"的概率是多少?(2)(2)至少有两张"A"的概率是多少?*00025#00026一个中学有十五个班级,每班选出三个代表出席学生代表会议,从45名代表中选出15名组成工作委员会.求下列事件的概率(1)(1)一年级(一)在委员会中有代表;(2)(2)每个班级在委员会中均有代表.*00026#00027设甲袋中有a只白球b只黑球,乙袋中有c只白球d只黑球.今从两袋中各取一球,求所得两球颜色不同的概率.*00027#00028一口袋中有a只白球b只黑球,从中连续取球三次(不返回),求三只球依次为黑白黑的概率.*00028#00029从数1、2、3、⋯、n中随机地取出两个数,求所取两数之和为偶数的概率.*00029#00030任取两个正整数,求它们之和为偶数的概率.*00030#00031任取一个正整数,求下列事件的概率:(1)(1)该数的平方的末尾数字是1;(2)(2)该数的四次方的末尾数字是1;(3)(3)该数的立方的最后两位数字是1.*00031#00032设每个人的生日在星期几是等可能的,求6个人的生日都集中在一星期中的某两天但不是都在同一天的概率.*00032#00033一个小组有8个学生,问这8个学生的生日都不相同的概率是多少?(一年有365天)*00033#00034n个朋友随机地围绕圆桌而坐,求下列事件的概率:(1)(1)甲、乙两人坐在一起,且乙坐在甲的左边;(2)(2)甲、乙、丙三人坐在一起;(3)(3)若n个人并排坐在长桌的一边,求上述事件的概率.*00034#00035把n个"0"与n个"1"随机地排列,求没有两个"1"连续在一起的概率.*00035#00036从一个装有白球、黑球与红球各n个的口袋中任取m个球,求其中有m1个白球、m2个黑球、m3个红球的概率.(m1+ m2 +m3=m)*00036#00037从一个装有n个白球、n个黑球的口袋中逐一取球(不返回,直至取完为止),求黑白球恰好相间取出的概率.*00037#00038从一个装有a个白球、b个黑球的口袋中逐一取球(不返回),直至留在袋中的球都是同一中颜色为止.求最后是白球留在袋中的概率.*00038#00039有mn个球,其中一个是黑球,一个是白球,其余的都是红球.把这mn个球放在m个袋中,每袋放n个球.求黑球与白球恰好在一袋中的概率.*00039#00040从n双尺码不同的鞋子中任取2r只(2r<n)求下列事件的概率:(1)(1)所取的2r只中没有两只成对;(2)(2)所取的2r只中只有两只成对;(3)(3)所取的2r只中只有恰成r对.*00040#00041在一口袋中装有n种颜色的球,每种颜色的球只有k只.从中任取r只(r n),求所取r 只球颜色全部都不相同的概率.*00041#00042把n根同样长的棒都分成长度为1与2之比的两根小棒,然后把2n根小棒任意地分成n对,每对又接成一根"新棒".求下列事件的概率:(1)(1)全部新棒都是原来分开的两根小棒相接的,(2)(2)全部新棒的长度都与原来的一样.*00042#00043一个人把六根草紧握在手中,仅露出它们的头和尾.然后请另一人把六个头两两相连接,六个尾两两相连接.求放开手后六根草恰好连成一个环的概率.试把该结果推广到2n根草的情形.*00043#00044把n个不同的球随机地放入n个匣子中去,求恰有一个空匣的概率.*00044#00045一个教室共有n+k个座位,随机地坐上n个人.求其中指定的s个座位(s<n)都坐上了人的概率.*00045#00046设有n 个人,每个人都等可能地被分配到N 个房间中的任意一间去住(n ≤N).求下列事件的概率:(1)(1)指定的n 个房间里各有一人住的概率,(2)(2)恰有n 各房间,其中各住一人.*00046#00047甲掷均匀硬币n+1次,乙掷n 次.求甲掷出正面的次数大于乙掷出正面的次数的概率. *00047#00048从数1、2、3、⋯、N 中不重复地任取n 个数(n ≤N)按大小排成一列:x 1<x 2<⋯<x m <⋯<x n求x m =M (m ≤M ≤N )的概率.*00048#00049从数1、2、3、⋯、N 中可重复地任取n 个数按大小排成一列:x 1≤x 2≤⋯≤x m ≤⋯≤x n求x m =M (m ≤M ≤N )的概率.*00049#00050已知事件A 、B 的概率都是1/2,证明: P(AB)=)B A P(*00050#00051设事件A 与B 同时发生比导致C 发生,证明:P(A)+P(B)-1≤ P(C)*00051#00052对任意事件A 、B 、C ,证明:P(AB)+P(AC)-P(BC) ≤ P(C)*00052#00053设A 、B 、C 为三个事件,且P(A)=x 、P(B)=2 x 、P(C)=3 xP(AB)=P(AC)=P(BC)= y证明:x ≤1/4,y ≤1/4.*00053#00054从装有红、白、黑各一个球的口袋中任意取球(取后放回),直至各种颜色的球都至少出现一次为止.求(1)(1)摸球次数不少于6次的概率,(2)(2)摸球次数恰好为6次的概率.*00054#00055从一副扑克牌中(有返回地)任意抽取n 张(n ≥4),求这n 张牌包含全部四种花色的概率. *00055#00056甲乙从1、2、3、⋯、15中各任取一数(不重复),已知甲取的数是5的倍数,求甲数大于乙数的概率.*00056#00057袋中有一个白球及一个黑球,一次次地从中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止.求取了n 次都没有取到黑球的概率.*00057#00058甲袋中有两个白球四个黑球,乙袋中有四个白球两个黑球.现在掷一枚均匀的硬币,若得到正面就从甲袋中连续摸球n 次(有返回),若得反面就从乙袋中连续摸球n 次.若已知摸到的n 个球均为白球,求这些球是从甲袋中取出的概率.*00058#00059两个体育协会各有排球、足球、篮球队各一个,同类球队进行比赛时协会A 的各队胜协会B 的各队的概率分别为0.8、0.4、0.4(不可能平局).若一个协会在三次比赛中至少胜两次就称获胜,问哪一个协会获胜的可能性大?*00059#00060两个赌徒在每一局获胜的概率都是1/2.两人约定谁先赢得一定的局数就获得全部赌本.但赌博在中途被中断了.此时第一个赌徒还需赢得m 局才获胜,第二个赌徒还需赢得n 局才能获胜,问如何分配赌本才合理.*00060#00061把n 个不同的球随机地放入N 个匣子.求某指定的一个匣子中恰有r 个(r ≤n )球的概率. *00061#00062甲乙两人各掷均匀硬币n 次,求两人掷出正面次数相同的概率.*00062#00063甲乙两射手轮流对同一目标进行射击,甲命中的概率为p 1,乙命中的概率为p 2,甲先射,谁先命中谁得胜.问甲乙两人获胜的概率为多少?*00063#00064设甲袋中有k 个白球及1个黑球,乙袋中有k +1白球,每次从两袋中各任取一球,交换放入对方的袋中.求经过n 次交换后,黑球仍在甲袋中的概率为p n ,证明:21p lim n =∞→n*00064#00065做一系列独立试验,每次试验成功的概率为p .求在试验成功n 次之前至少失败m 次的概率. *00065#00066掷均匀硬币n+m 次,已知至少出现一次正面,求第一次正面出现在第n 次的概率. *00066#00067做一系列独立试验,每次试验成功的概率为p .求第n 次试验时得到第r 次成功的概率. *00067#00068某数学家有两盒火柴,每盒有n 根.每次用火柴时他在两盒中任取一盒,抽出一根.求他用完一盒(既拿出最后一根)时,另一盒中还有r (1≤r ≤n )根的概率.*00068#00069掷m+n次均匀硬币(m>n),求至少连续出现m次正面的概率*00069#00070掷均匀硬币直至第一次出现连接两个正面为止,求这时共掷了n次的概率.*00070#00071在线段(0,1)中任取十个点,求其中三点在区间(0,1/4)中,四点在区间(1/4,2/3),三点在区间(2/3,1)中的概率.*00071#00072有两只口袋,甲袋中3只白球2只黑球,乙袋中装有2只白球5只黑球.任选一袋,并从中任取一球,问此球是白球的概率是多少?*00072#00073袋中装有m(m≥3)个白球和n个黑球的罐子中失去一个球,但不知是什么颜色,为了猜测它是什么颜色,随机地从罐子中取两个球,结果均为白球,问失去的是白球的概率是多少?*00073#00074袋中装有5个白球和5个黑球,从中任取5个球放入空袋中,再从此5个球中任取3个球放入另一个空袋中,最后从第三个袋子中任取一球为白球,问第一次取出的球均为白球的概率?*00074#00075一个质点从平面上某一点开始等可能地向上、下、左、右四个方向游动,每次游动的距离为1.求经过2n次游动后回到出发点的概率.*00075#00076写出下列随机试验的样本空间及下列事件中的样本点。

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。

解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。

解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。

解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。

解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。

解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。

考研数学概率论和数理统计第一章测试题(卷)(含答案解析)

考研数学概率论与数理统计第一章测试题(含答案)一、单项选择题(每小题2分,共20分)1.对于任意二事件A 和B ,与B BA不等价...的是()(A)B A (B)A B(C)BA (D)BA 2.设事件A 与事件B 互不相容,则()(A)0)(B A P (B))()()(B P A P AB P (C))(1)(B P A P (D)1)(B AP 3.对于任意二事件A 和B ,则以下选项必然成立的是()(A)若AB ,则B A,一定独立 (B)若AB ,则B A,有可能独立(C)若AB ,则B A,一定独立 (D)若AB,则B A,一定不独立4.设A 和B 是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是()(A)A 与B 互不相容(B)A 与B 相容(C))()()(B P A P AB P (D))()(A P B AP 5.设B A,为任意两个事件,且B A ,0)(B P ,则下列选项必然成立的是()(A))|()(B A P A P (B))|()(B A P A P (C))|()(B A P A P (D))|()(B A P A P 6.设B A,为两个随机事件,且0)(B P ,1)|(B A P ,则必有()(A))()(A P B A P (B))()(B P B A P (C))()(A P B A P (D))()(B P B AP 7.已知1)(0B P ,且)|()|(]|)[(2121B A P B A P B A A P ,则下列选项成立的是()(A))|()|(]|)[(2121B A P B A P B A A P (B))()()(2121B A P B A P B A BA P (C))|()|()(2121B A P B A P A A P (D))|()()|()()(2211A B P A P A B P A P B P 8.将一枚硬币独立地掷两次,引进事件:1A {掷第一次出现正面},2A {掷第二次出现正面},3A {正、反面各出现一次},4A {正面出现两次},则事件()(A)321,,A A A 相互独立 (B)432,,A A A 相互独立(C)321,,A A A 两两独立 (D)432,,A A A 两两独立9.某人向同一目标独立重复射击,每次射击命中目标的概率为p (10p ),则此人第4射击恰好第2次命中目标的概率为()(A)2)1(3p p (B)2)1(6p p (C)22)1(3p p (D)22)1(6p p 10.设C B A ,,是三个相互独立的随机事件,且1)()(0C P AC P ,则在下列给定的四对事件中不.相互独立的是()(A)B A与C (B)AC 与C (C)B A与C (D)AB 与C二、填空题(每小题2分,共14分)1.“C B A ,,三个事件中至少有两个发生”,这一事件可以表示为___2.若事件B A ,满足1BP A P ,则A 与B 一定____________3.在区间)1,0(中随机地取两个数,则两数之差的绝对值小于21的概率为4.在一次试验中,事件A 发生的概率为p 。

《概率论与数理统计》习题及答案--第一章

《概率论与数理统计》习题及答案
第一章
1.写出下列随机试验的样本空间及下列事件中的样本点:
( 1)掷一颗骰子,记录出现的点数 . A ‘出现奇数点’ ; ( 2)将一颗骰子掷两次, 记录出现点数 . A ‘两次点数之和为
一次的点数,比第二次的点数大 2’;
Байду номын сангаас10’,B ‘第
( 3)一个口袋中有 5 只外形完全相同的球,编号分别为 1,2,3,4,5 ;从中同时
解 ( 1) A1 A2 A3 ;( 2) A1 A2 A3 ;( 3) A1 A2 A3 ( 4) A1 A2 A1 A3 A2 A3 。
A1 A2 A3
A1 A2 A3 ;
4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。
解 设 A ‘任取一电话号码后四个数字全不相同’ ,则
P( A)
(2,3,5), (2, 4,5), (1,3,5)}
A {(1, 2,3), (1,2, 4), (1,2,5), (1,3, 4), (1,3,5), (1,4,5)}
( 4) S {( ab, , ), ( , ab, ), ( , ,ab), (a,b, ), ( a, ,b), (b, a, ),
(b, , a), ( , a, b,), ( ,b, a)} ,其中‘ ’表示空盒;
A {( ab, , ), (a, b, ), ( a, , b), (b, a, ), (b, , a)} 。
( 5) S {0,1, 2, }, A {0,1, 2,3, 4}, B {3, 4, } 。 2.设 A, B,C 是随机试验 E 的三个事件,试用 A, B,C 表示下列事件:
( 1)仅 A 发生; ( 2) A, B, C 中至少有两个发生; ( 3) A, B, C 中不多于两个发生; ( 4) A, B, C 中恰有两个发生; ( 5) A, B, C 中至多有一个发生。

概率论与数理统计练习

《概率论与数理统计》期(末)练习一.选择题1.甲、乙、丙三人各向目标射击一发子弹,以A、8、。

分别表示甲、乙、丙命中目标,用A、B、C的运算关系表示大事“恰好有一人命中目标”,下列表达式正确的是(C )A. Λ∪B∪CB. Λ∩B∩CC. ABC∪ ABC∪ ABCD. ABC U ABC U ABC2.设大事A,B满意P(A3)=0,则(D )oA. A8是不行能大事B. A和8不相容C. P(A)=()或P(8)=0D. A8不肯定是不行能大事3.设随机变量X4(〃,p),且E(X)=2.4, D(X)=1.44,则二项分布的参数为(B )。

A. n=4,p=0.6B. n=6,p=0.4C. n=8,p=O.3D. n=24,p=0.14.随机变量乂。

(-3,1),丫~"(2,1),且瓦丫相互独立,设2=乂-2丫+7,则及(A )。

A. N(0,5)B. N(0,6)C. N(0, 12)D. N(0,54)5.对于任意两个随机变量X和匕若E(XY)=E(X)E(Y),则(B )。

A. D(XY)=D(X)D(Y)B. D(X+Y)=D(X)+D(Y)c. x和y相互独立D. x和y不独立6.对随机变量X,函数∕x)=P{X≤x}称为X的(D )A.概率分布B.概率C.概率密度D.分布函数7.在对总体的假设检验中,若给定显著性水平为α ,则犯第一类错误的概率为(B )0CCA. 1 —ocB. (XC. —D.不能确定2版X;8.设X∣,X),…,X 〃,…,Xj是来自正态总体N(0,M)的样本,则统计量V = 3一听∕=n÷l从的分布是(B )oA. t(n+1)B. F(π, tn)C. F(H- 1, ∕w-1)D. F(∕n, n)2k9.设X 的概率分布为P{X=A}=-^ (k=0,l,2,...),则O(2X) = ( D )e k∖A. 1B. 2C. 4D. 810.设0,2, 2, 3, 3为来自匀称分布总体U(0,9)的样本观看值,则。

概率论与数理统计练习题

概率论与数理统计练习题一、单项选择题1.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为( A )A .2224B .1224C C C .242!A D .2!4!2、抛一枚不均匀硬币,正面朝上的概率为23,将此硬币连抛4次,则恰好3次正面朝上的概率是( C ) A .881B .827C .3281D .343、设()0.5,()0.6,()0.4,()P A P B P B A P AB ===则=( C ) A .0. 3 B .0.6 C .0.4 D .0.84、设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,020,2)(x xx f ,则{}11≤≤-X P =( B )A .0B .0.25C .0.5D .15、已知随机变量X 的概率密度为)(x f X ,令=2Y X ,则Y 的概率)(Y f Y 为( D )A. )2(2y f X -B. )2(y f X -C. )2(21y f X --D. )2(21yf X -6.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( A ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0D .P (A ∪B )=17.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( D ) A .P (A ) B .P (AB ) C .P (A|B )D .18.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=(C ) A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5}D .P{4.5<X<5.5},9.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于(D )A .-1B .21- C .21 D .110.设二维随机变量(X ,Y )的分布律为则P{X=Y}=( A ) A .0.3 B .0.5 C .0.7D .0.811.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( A ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5D .E (X )=2,D (X )=412.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( C ) A .-13 B .15 C .19D .2313.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=(B ) A .6 B .22 C .30D .4614.在假设检验问题中,犯第一类错误的概率α的意义是(C ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率15.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( B ) A .x 2 B .x C .2xD .x21二、填空题16.一口袋装有3只红球,2只黑球,近从中任取2只球,则这2只球恰为一红一黑的 概率是_ 0.6 _17.某射手命中率为23,他独立地向目标设计4次,则至少命中一次的概率为_80/81 _18.抛硬币5次,记其中正面向上的次数为X ,则{}4≤X P =___30/31_. 19. 设X ~N (2,4),则{}=≤2X P ___0.5___.20、设连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<=2,120),1(310,31)(x x x x e x F x记X 的概率密度为f (x ),则当x <0时f (x )=__1/3ex______.21.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=____0.5________. 22.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为___18/25_________.23.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____0.7________.24.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为___0.9_________.25.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=___31/32_________.三、计算题26、甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.27、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律28、设X 的概率密度为⎩⎨⎧≤≤-=其他,011,)(x x x f ,求:(1) X 的分布函数F(x);(2) {}5.0<X P ;(3){}5.0->X P29.设二维随机变量(X ,Y )的分布律为 试问:X 与Y 是否相互独立?为什么?30.假设某校考生数学成绩服从正态分布,随机抽取25位考生的数学成绩,算得平均成绩61=x 分,标准差s=15分.若在显著性水平0.05下是否可以认为全体考生的数学平均成绩为70分?(附:t 0.025(24)=2.0639)四、证明题31、设A,B 为随机事件,且()P B >0.证明:()1()P A B P A B =- 五、综合32、设随机变量X 在区间[2 ,5]上服从均匀分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计作业1 第1页 共5页
《概率论与数理统计》
第1次作业

(课程代码:04183)

总分 题号 一 二 三 四 五
核分人 题分
复查人 得分

一、单项选择题:(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请
将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设A,B为两个互不相容事件,则下列各式错误..的是( )
A.P(AB)=0 B.P(A∪B)=P(A)+P(B)

C.P(AB)=P(A)P(B) D.P(B-A)=P(B)
2.设事件A,B相互独立,且P(A)=31,P(B)>0,则P(A|B)=( )

A.151 B.51
C.154 D.31
3.设随机变量X在[-1,2]上服从均匀分布,则随机变量X的概率密度f (x)为( )

A..,0;21,31)(其他xxf B..,0;21,3)(其他xxf

C..,0;21,1)(其他xxf D. .,0;21,31)(其他xxf
4.设随机变量X ~ B31,3,则P{X1}=( )
A.271 B.278
C.2719 D.2726

得分 评卷人
复查人
概率论与数理统计作业1 第2页 共5页

5.设二维随机变量(X,Y)的分布律为
Y
X
1 2 3

1
2
101 103 10

2

101 102 10
1
则P{XY=2}=( )
A.51 B.103

C.21 D.53
6.设二维随机变量(X,Y)的概率密度为




,,0;10,10,4),(其他yxxy
yxf

则当0y1时,(X,Y)关于Y的边缘概率密度为fY ( y )= ( )
A.x21 B.2x

C.y21 D.2y
7.设二维随机变量(X,Y)的分布律为
Y
X
0 1

0
1
3

1

3
1
3
1

0
则E(XY)=( )
A.91 B.0

C.91 D.31
8.设总体X ~ N(2,),其中未知,x1,x2,x3,x4为来自总体X的一个样本,则以下关
于的四个估计:)(41ˆ43211xxxx,
3212515151ˆxxx,213
626

1
ˆ
xx

14
7

1
ˆ
x

中,哪一个是无偏估计?( )

A.
1ˆ B.2
ˆ

C.
3ˆ D.4
ˆ

概率论与数理统计作业1 第3页 共5页

9.设x1, x2, …, x100为来自总体X ~ N(0,42)的一个样本,以x表示样本均值,则x~( )
A.N(0,16) B.N(0,0.16)
C.N(0,0.04) D.N(0,1.6)
10.要检验变量y和x之间的线性关系是否显著,即考察由一组观测数据(xi,yi),i=1,2,…,n,
得到的回归方程
xy

10

ˆˆ
ˆ



是否有实际意义,需要检验假设( )

A.0∶,00100HH∶ B.0∶,0∶1110HH
C.0ˆ∶,0ˆ∶0100HH D.0ˆ∶,0ˆ∶1110HH

二、填空题:(本大题共15小题,每小题2分,共30分)请在
每小题的空格中填上正确答案。错题、不填均无分。

1.有甲、乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为_______.
2.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3
次的概率为_______.

3.设离散型随机变量X的分布函数为,2,1,21,31,1,0)(xxxxF则2XP_______.

4.设随机变量)1,1(~UX,则21XP_______.
5.设随机变量)31,4(~BX,则0XP_______.
6.设随机变量)4,0(~NX,则0XP_______.

7.已知当10,10yx时,二维随机变量),(YX的分布函数22),(yxyxF,记
),(YX

的概率密度为),(yxf,则)41,41(f_______.
8.设二维随机变量),(YX的概率密度为,,0,10,10,1),(其他yxyxf则
21,21YXP
_______.

9.设二维随机变量),(YX的分布律为下表,则)(XYE_______.

得分 评卷人
复查人
概率论与数理统计作业1 第4页 共5页

Y
X
0 1

1
61 6

2

2
62 6

1

10.设随机变量X的分布律为 ,则)(2XE=_______.
11.设随机变量X与Y相互独立,且0)(,0)(YDXD,则X与Y的相关系数

XY

______.

12.设随机变量)8.0,100(~BX,由中心极限定量可知,8674XP__ __.(Φ
(1.5)=0.9332)

13.设随机变量),(~21nnFF,则~1F___ ____.
14.设总体),(~2NX,其中2未知,现由来自总体X的一个样本921,,,xxx算得
样本均值10x,样本标准差s=3,并查得t0.025(8)=2.3,则的置信度为95%置信区间
是_______.

15.设总体X服从参数为)0(的指数分布,其概率密度为.0,0,0,),(xxexfx由
来自总体X的一个样本nxxx,,,21算得样本平均值9x,则参数的矩估计

ˆ
=_______.

三、计算题(本大题共2小题,每小题8分,共16分)

1.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,
20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,
它是次品的概率;(2)该件次品是由甲车间生产的概率.

得分 评卷人 复查人

X -1 1
P
3

1

3
2
概率论与数理统计作业1 第5页 共5页

2.设随机变量X与Y相互独立,且X,Y的分布律分别为
X 0 1 Y 1 2

P 41 43 P
52 5

3

试求:(1)二维随机变量(X,Y)的分布律;(2)随机变量Z=XY的分布律.

四、综合题(本大题共2小题,每小题12分,共24分)
1.设二维随机变量(X,Y)的分布律如下表所示,且已知E(Y)=1,试求:(1)常数α,
β;(2)E(XY);(3)E(X)。

2.若已知,2.0)(,0)()(,3.0)()()(BCPACPABPCPBPAP求概率
)(ABCP;)(CBAP
;).(CBAP

五、应用题(10分)
设有两种报警系统Ⅰ与Ⅱ,它们单独使用时,有效的概率分别为0.92与0.93,且已知
在系统Ⅰ失效的条件下,系统Ⅱ有效的概率为0.85,试求:
(1)系统Ⅰ与Ⅱ同时有效的概率;(2)至少有一个系统有效的概率.

得分 评卷人 复查人
Y
X
0 1 2

0 0.1 0.2 0.1
1 0.2
α β

得分 评卷人 复查人

相关文档
最新文档