高考物理二轮复习专题一力与运动第4讲万有引力定律及其应用练案

合集下载

浙江专版2021年高考物理一轮复习第四章曲线运动第4讲万有引力与航天考点突破练含解析

浙江专版2021年高考物理一轮复习第四章曲线运动第4讲万有引力与航天考点突破练含解析

第4讲万有引力与航天考点1中心天体质量和密度的估算(c)【典例1】(2018·浙江4月选考真题)土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约为1.2×106 km,已知引力常量G=6。

67×10—11 N·m2/kg2,则土星的质量约为()A.5×1017 kg B。

5×1026 kgC。

7×1033 kg D.4×1036 kg【解题思路】解答本题应注意以下三点:关键点(1)土星的引力提供卫星做圆周运动的向心力。

(2)轨道半径和周期的单位要换算为米和秒。

(3)警示点:计算时单位统一使用国际单位.【解析】选B。

卫星绕土星运动,土星的引力提供卫星做圆周运动的向心力,设土星质量为M:=m R,解得M=。

代入计算可得:M=kg=5×1026 kg,故B正确,A、C、D 错误。

1。

通过观测冥王星的卫星,可以推算出冥王星的质量。

假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量。

这两个物理量可以是()A。

卫星的速度和质量B.卫星的质量和轨道半径C。

卫星的质量和角速度D。

卫星的运行周期和轨道半径【解析】选D.根据线速度和角速度可以求出半径r=,根据万有引力提供向心力:=m,整理可以得到:M==,故选项A、B、C错误;若知道卫星的周期和半径,则=m()2r,整理得到:M=,故选项D正确。

2.“嫦娥二号”卫星是在绕月极地轨道上运动的,加上月球的自转,卫星能探测到整个月球的表面。

卫星CCD相机已对月球背面进行成像探测,并获取了月球部分区域的影像图。

假设卫星在绕月极地轨道上做圆周运动时距月球表面高为H,绕行的周期为T M;月球绕地球公转的周期为T E ,半径为R0。

地球半径为R E,月球半径为R M。

若忽略地球及太阳引力对绕月卫星的影响,则月球与地球质量之比为()A。

备战2020年高考物理计算题专题复习:《万有引力定律》(解析版)

备战2020年高考物理计算题专题复习:《万有引力定律》(解析版)

《万有引力定律》一、计算题1.2019年1月3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了第一张近距离拍摄月球背面的图片。

此次任务实现了人类探测器首次在月球背面软着陆、首次在月球背面通过中继卫星与地球通讯,因而开启了人类探索月球的新篇章。

探测器在月球背面着陆的难度要比在月球正面着陆大很多。

其主要原因在于:由于月球的遮挡,着陆前探测器将无法和地球之间实现通讯。

2018年5月,我国发射了一颗名为“鹊桥”的中继卫星,在地球和月球背面的探测器之间搭了一个“桥”,从而有效地解决了通讯问题。

为了实现通讯和节约能量,“鹊桥”的理想位置就是围绕“地—月”系统的一个拉格朗日点运动,如图1所示。

所谓“地—月”拉格朗日点是指空间中的某个点,在该点放置一个质量很小的天体,该天体仅在地球和月球的万有引力作用下保持与地球和月球的相对位置不变。

设地球质量为M,月球质量为m,地球中心和月球中心间的距离为L,月球绕地心运动,图1中所示的拉格朗日点到月球球心的距离为r。

推导并写出r与M、m和L之间的关系式。

地球和太阳组成的“日—地”系统同样存在拉格朗日点,图2为“日—地”系统示意图,请在图中太阳和地球所在直线上用符号“”标记出几个可能拉格朗日点的大概位置。

2.利用万有引力定律可以测量天体的质量.英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g,地球半径为R,引力常量为若忽略地球自转的影响,求地球的质量.测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O做匀速圆周运动的两个星球A和B,如图所示.已知A、B间距离为L,A、B绕O点运动的周期均为T,引力常量为G,求A、B的总质量.测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”已知月球的公转周期为,月球、地球球心间的距离为你还可以利用、中提供的信息,求月球的质量.3.如图所示是“月亮女神”、“嫦娥1号”绕月做圆周运行时某时刻的图片,用、、、、分别表示“月亮女神”和“嫦娥1号”的轨道半径及周期,用R表示月亮的半径.请用万有引力知识证明:它们遵循其中k是只与月球质量有关而与卫星无关的常量经多少时间两卫星第一次相距最远;请用所给“嫦娥1号”的已知量.估测月球的平均密度.4.2014年10月8日,月全食带来的“红月亮”亮相天空,引起人们对月球的关注。

万有引力定律天体运动复习课件

万有引力定律天体运动复习课件
38
7.卫星变轨的动态分析 如图所示,a、b、c是在地球大 气层外圆形轨道上运动的3颗卫星,下 列说法正确的是:( D ) A.b、c的线速度大小 相等,且大于a的线速度 B.a、b的向心加速度 大小相等,且大于c的向 心加速度
39
C.c加速可追上同一轨道上的 b,b减速可等候同一轨道上的c D.a卫星由于某原因,轨道半 径缓慢减小,其线速度将增大
33
C.靠近地球表面沿圆轨道运行的 航天器的运行周期与靠近月球表面 沿圆轨道运行的航天器的运行周期 之比约为8∶9 D.靠近地球表面沿圆轨道运行的 航天器的线速度与靠近月球表面沿 圆轨道运行的航天器的线速度之比 约为81∶4
34
我国发射的亚洲一号同步通讯卫星的质量 为m,如果地球半径为R,自转角速度为 ω,表面重力加速度为g,则卫星 ( ABC ) A.距地面的高度
r
其中G=6.67×10-11N· 2/kg2,叫 m 引力常量.
4
2.适用条件:公式适用于 质点间 的相互 作用.当两个物体间的距离远远大于物 体本身的大小时,物体可视为质点.均 匀的球体也可以视为质点,r是两球心 间的距离. 3.万有引力定律的应用 (1)行星表面物体的重力:重力近似等 于 万有引力 .
h
3
gR 2

2
R
B.环绕速度
v 3 gR 2
m 3 gR 2 4
35
C.受到地球引力为
D.受到地球引力为mg
6.同步卫星问题 据报道,我国数据中继卫星“天 链一号01星”于2008年4月25 日在西昌卫星发射中心发射升空, 经过4次变轨控制后,于5月1日成 功定点在东经77°赤道上空的同 步轨道.关于成功定点后的“天链 一号01星”,下列说法正确的是 BC ( )

《万有引力定律》(精选12篇)

《万有引力定律》(精选12篇)

《万有引力定律》(精选12篇)《万有引力定律》篇1教学目标知识目标1、在开普勒第三定律的基础上,推导得到,使学生对此定律有初步理解;2、使学生了解并掌握;3、使学生能认识到的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).能力目标1、使学生能应用解决实际问题;2、使学生能应用和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.情感目标1、使学生在学习的过程中感受到的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用的过程中应多观察、多思考.教学建议的内容固然重要,让学生了解发现的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.的教学设计方案教学目的:1、了解得出的思路和过程;2、理解的含义并会推导;3、掌握,能解决简单的万有引力问题;教学难点:的应用教学重点:教具:展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.教学过程(一)新课教学(20分钟)1、引言展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:(1)牛顿是怎样研究、确立的呢?(2)是如何反映物体间相互作用规律的?以上两个问题就是这节课要研究的重点.2、通过举例分析,引导学生粗略领会牛顿研究、确立的科学推理的思维方法.苹果在地面上加速下落:(由于受重力的原因):月亮绕地球作圆周运动:(由于受地球引力的原因);行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.3、引入课题.板书:第二节、(1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)(2):宇宙间的一切物体都是相互吸引的.两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书) 式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).(二)应用(例题及课堂练习)学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起?(请学生带着这个疑问解题)例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少?解:由得:代入数据得:通过计算这个力太小,在许多问题的计算中可忽略例题2.已知地球质量大约是,地球半径为km,地球表面的重力加速度 .求:(1)地球表面一质量为10kg物体受到的万有引力?(2)地球表面一质量为10kg物体受到的重力?(3)比较万有引力和重力?解:(1)由得:代入数据得:(2)(3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.(三)课堂练习:教师请学生作课本中的练习,教师引导学生审题,并提示使用公式解题时,应注意因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.(四)小结:1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么?留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么?它不足以影响物体的运动,故常常可忽略不计.2、应用公式解题,值选,式中所涉其它各量必须取国际单位制.(五)布置作业 (3分钟):教师可根据学生的情况布置作业 .探究活动组织学生编写相关小论文,通过对资料的收集,了解的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.1、发现的历史过程.2、第谷在发现上的贡献.《万有引力定律》篇2教学目标知识目标1、在开普勒第三定律的基础上,推导得到,使学生对此定律有初步理解;2、使学生了解并掌握;3、使学生能认识到的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).能力目标1、使学生能应用解决实际问题;2、使学生能应用和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.情感目标1、使学生在学习的过程中感受到的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用的过程中应多观察、多思考.教学建议的内容固然重要,让学生了解发现的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.的方案教学目的:1、了解得出的思路和过程;2、理解的含义并会推导;3、掌握,能解决简单的万有引力问题;教学难点:的应用教学重点:教具:展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.教学过程(一)新课教学(20分钟)1、引言展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:(1)牛顿是怎样研究、确立的呢?(2)是如何反映物体间相互作用规律的?以上两个问题就是这节课要研究的重点.2、通过举例分析,引导学生粗略领会牛顿研究、确立的科学推理的思维方法.苹果在地面上加速下落:(由于受重力的原因):月亮绕地球作圆周运动:(由于受地球引力的原因);行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.3、引入课题.板书:第二节、(1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)(2):宇宙间的一切物体都是相互吸引的.两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书) 式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).(二)应用(例题及课堂练习)学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起?(请学生带着这个疑问解题)例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少?解:由得:代入数据得:通过计算这个力太小,在许多问题的计算中可忽略例题2.已知地球质量大约是,地球半径为km,地球表面的重力加速度 .求:(1)地球表面一质量为10kg物体受到的万有引力?(2)地球表面一质量为10kg物体受到的重力?(3)比较万有引力和重力?解:(1)由得:代入数据得:(2)(3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.(三)课堂练习:教师请学生作课本中的练习,教师引导学生审题,并提示使用公式解题时,应注意因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.(四)小结:1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么?留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么?它不足以影响物体的运动,故常常可忽略不计.2、应用公式解题,值选,式中所涉其它各量必须取国际单位制.(五)布置作业 (3分钟):教师可根据学生的情况布置作业 .探究活动组织学生编写相关小论文,通过对资料的收集,了解的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.1、发现的历史过程.2、第谷在发现上的贡献.《万有引力定律》篇3教学目标知识目标1、在开普勒第三定律的基础上,推导得到,使学生对此定律有初步理解;2、使学生了解并掌握;3、使学生能认识到的普遍性(它存在宇宙中任何有质量的物体之间,不管它们之间是否还有其它作用力).能力目标1、使学生能应用解决实际问题;2、使学生能应用和圆周运动知识解决行星绕恒星和卫星绕行星运动的天体问题.情感目标1、使学生在学习的过程中感受到的发现是经历了几代科学家的不断努力,甚至付出了生命,最后牛顿总结了前人经验的基础上才发现的.让学生在应用的过程中应多观察、多思考.教学建议的内容固然重要,让学生了解发现的过程更重要.建议教师在授课时,应提倡学生自学和查阅资料.教师应准备的资料应更广更全面.通过让学生阅读“的发现过程”,让学生根据牛顿提出的几个结果自己去猜测万有引力与那些量有关.教师在授课时可以让学生自学,也可由教师提出问题让学生讨论,也可由教师展示出开普勒三定律和牛顿的一些故事引导学生讨论.的教学设计方案教学目的:1、了解得出的思路和过程;2、理解的含义并会推导;3、掌握,能解决简单的万有引力问题;教学难点:的应用教学重点:教具:展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.教学过程(一)新课教学(20分钟)1、引言展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:(1)牛顿是怎样研究、确立的呢?(2)是如何反映物体间相互作用规律的?以上两个问题就是这节课要研究的重点.2、通过举例分析,引导学生粗略领会牛顿研究、确立的科学推理的思维方法.苹果在地面上加速下落:(由于受重力的原因):月亮绕地球作圆周运动:(由于受地球引力的原因);行星绕太阳作圆周运动:(由于受太阳引力的原因),(牛顿认为)牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.3、引入课题.板书:第二节、(1)万有引力:宇宙间任何有质量的物体之间的相互作用.(板书)(2):宇宙间的一切物体都是相互吸引的.两个物体间的引力大小,跟他们之间质量的乘积成正比,跟它们的距离的平方成反比.(板书) 式中:为万有引力恒量;为两物体的中心距离.引力是相互的(遵循牛顿第三定律).(二)应用(例题及课堂练习)学生中存在这样的问题:既然宇宙间的一切物体都是相互吸引的,哪为什么物体没有被吸引到一起?(请学生带着这个疑问解题)例题1、两物体质量都是1kg,两物体相距1m,则两物体间的万有引力是多少?解:由得:代入数据得:通过计算这个力太小,在许多问题的计算中可忽略例题2.已知地球质量大约是,地球半径为km,地球表面的重力加速度 .求:(1)地球表面一质量为10kg物体受到的万有引力?(2)地球表面一质量为10kg物体受到的重力?(3)比较万有引力和重力?解:(1)由得:代入数据得:(2)(3)比较结果万有引力比重力大.原因是在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力.(三)课堂练习:教师请学生作课本中的练习,教师引导学生审题,并提示使用公式解题时,应注意因单位制不同,值也不同,强调用国际单位制解题.请学生同时到前面,在黑板上分别作1、2、3题.其它学生在座位上逐题解答.此时教师巡回指导学生练习随时注意黑板上演算的情况.(四)小结:1、万有引力存在于宇宙中任何物体之间(天体间、地面物体间、微观粒子间).天体间万有引力很大,为什么?留学生去想(它是支配天体运动的原因).地面物体间,微观粒子间:万有引力很小,为什么?它不足以影响物体的运动,故常常可忽略不计.2、应用公式解题,值选,式中所涉其它各量必须取国际单位制.(五)布置作业 (3分钟):教师可根据学生的情况布置作业 .探究活动组织学生编写相关小论文,通过对资料的收集,了解的发现过程,了解科学家们对知识的探究精神,下面就是相关的题目.1、发现的历史过程.2、第谷在发现上的贡献.《万有引力定律》篇4【教材分析】万有引力定律的发现过程犹如一部壮丽的科学史诗,它歌颂了前辈科学家的科学精神,也展现了科学发展过程中科学家们富有创造性而又严谨的科学思维,是发展学生思维能力难得的好材料,本节课内容充分利用这些材料发展学生的科学思维能力。

004物理总复习名师学案--曲线运动和万有引力定律

004物理总复习名师学案--曲线运动和万有引力定律

物理总复习名师学案--曲线运动和万有引力定律●考点指要【说明】 不要求会推导向心加速度的公式a =Rv 2.●复习导航本章所研究的运动形式不同于前面两章,但研究的方法仍与前面一致,即根据牛顿第二定律研究物体做曲线运动时力与运动的关系.所以本章知识是牛顿运动定律在曲线运动形式下的具体应用.另外,运动的合成和分解是研究复杂运动的基本方法,万有引力定律是力学中一个独立的基本定律.复习好本章的概念和规律,将加深对速度、加速度及其关系的理解,加深对牛顿第二定律的理解,提高应用牛顿运动定律分析解决实际问题的能力,同时对复习振动和波、交流电、带电粒子在电场或磁场中的运动做好必要的准备.平抛物体运动的规律及其研究方法、圆周运动的角速度、线速度、向心加速度和万有引力、人造卫星都是近年来高考的热点.由于航天技术、人造地球卫星属于现代科技发展的重要领域,所以近些年的高考对万有引力、人造卫星的考查每年都有.平抛运动、匀速圆周运动还经常与电场力、洛伦兹力联系起来进行综合考查.所以,对本章的复习应给予足够的重视.本章内容可分成三个单元组织复习:(Ⅰ)运动的合成和分解;平抛运动.(Ⅱ)圆周运动.(Ⅲ)万有引力定律;人造地球卫星.第Ⅰ单元 运动的合成和分解·平抛运动●知识聚焦一、运动的合成和分解1.运动的独立性:一个物体同时参与几个分运动,各分运动独立进行,互不影响.2.运动的合成:加速度、速度、位移都是矢量,遵守矢量的合成法则. (1)两分运动在同一直线上时,同向矢量大小相加,反向矢量大小相减.(2)两分运动不在同一直线上时,按照平行四边形定则进行合成,如图4—1—1所示.图4—1—1(3)两分运动垂直时或正交分解后的合成 a 合=22y x a a + v 合=22y x v v + s 合=22y x s s +3.运动的分解:是运动合成的逆过程.分解原则:根据运动的实际效果分解或正交分解. 二、曲线运动1.曲线运动的特点:运动质点在某一点的瞬时速度的方向,就是通过这一点的曲线的切线方向.因此,质点在曲线运动中的速度方向时刻在改变.所以曲线运动一定是变速运动.但是,变速运动不一定是曲线运动.2.物体做曲线运动的条件:从运动学角度说,物体的加速度方向跟速度方向不在一条直线上时,物体就做曲线运动.从动力学的角度说,如果物体所受合外力的方向跟物体的速度方向不在一条直线上时,物体就做曲线运动.三、平抛运动1.定义:水平抛出的物体只在重力做用下的运动.2.性质:是加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线.3.处理方法:可分解为(1)水平方向速度等于初速度的匀速直线运动.v x =v 0,x =v 0t.(2)竖直方向的自由落体运动.v y =gt ,y =21gt 2. 下落时间t =g y /2 (只与下落高度y 有关,与其他因素无关). 任何时刻的速度v 及v 与v 0的夹角θ:v =220)()(gt v +,θ=arctan (gt /v 0)任何时刻的总位移: s =222022)21()(gt t v y x +=+●疑难辨析1.匀变速曲线运动与非匀变速曲线运动的区别:加速度a 恒定的曲线运动为匀变速曲线运动,如平抛运动. 加速度a 变化的曲线运动为非匀变速曲线运动,如圆周运动. 2.对运动的合成和分解的讨论 (1)合运动的性质和轨迹两直线运动合成,合运动的性质和轨迹由分运动的性质及合初速度与合加速度的方向关系决定:两个匀速直线运动的合运动仍是匀速直线运动.一个匀速直线运动和一个匀变速直线运动的合运动仍是匀变速运动:二者共线时为匀变速直线运动;二者不共线时为匀变速曲线运动.两个匀变速直线运动的合运动仍为匀变速运动:当合初速度与合加速度共线时为匀变速直线运动;当合初速度与合加速度不共线时为匀变速曲线运动.(2)轮船渡河问题的分解方法1:将轮船渡河的运动看做水流的运动(水冲船的运动)和轮船相对水的运动(即设水不流动时船的运动)的合运动.方法2:将船对水的速度沿平行于河岸和垂直于河岸方向正交分解如图4—1—2所示,则v 1-v 2cos θ为轮船实际上沿水流方向的运动速度,v 2sin θ为轮船垂直于河岸方向的运动速度.图4—1—2①要使船垂直横渡,则应使v 1-v 2cos θ=0,此时渡河位移最小为d .②要使船渡河时间最短,则应使v 2sin θ最大,即当θ=90°时,渡河时间最短为t =d /v 2. (2)物体拉绳或绳拉物体运动的分解——按运动的实际效果分解.例如,图4—1—3中,人用绳通过定滑轮拉物体A ,当人以速度v 0匀速前进时,求物体A 的速度.图4—1—3首先要分析物体A 的运动与人拉绳的运动之间有什么样的关系.物体A 的运动(即绳的末端的运动)可看做两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于v 0;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值.这样就可以将v A 按图示方向进行分解,很容易求得物体A 的速度v A =cos 0v .当物体A 向左移动,θ将逐渐变大,v A 逐渐变大.虽然人做匀速运动,但物体A 却在做变速运动.在进行速度分解时,要分清合速度与分速度.合速度就是物体实际运动的速度,是平行四边形的对角线.虽然分速度的方向具有任意性,但只有按图示分解时,v 1才等于v 0,才能找出v A 与v 0的关系,因此,分速度方向的确定要视题目而具体分析.在上述问题中,若不对物体A 的运动认真分析,就很容易得出v A =v 0cos θ的错误结果.3.平抛运动中,任何两时刻(或两位置)的速度变化量Δv =g Δt ,方向恒为竖直向下.如图4—1—4所示.图4—1—4●典例剖析[例1]一艘小船从河岸的A 处出发渡河,小船保持与河岸垂直方向行驶,经过10 min 到达正对岸下游120 m 的C 处,如图4—1—5所示.如果小船保持原来的速度逆水斜向上游与河岸成α角方向行驶,则经过12.5 min 恰好到达正对岸的B 处,求河的宽度.图4—1—5【解析】 解决这类问题的关键是画好速度合成的示意图,画图时首先要明确哪是合运动哪是分运动.对本题来讲,AC 和AB 是两个不同运动过程中船相对于岸的实际运动方向,那么AB 和AC 就是速度合成平行四边形的对角线.一旦画好平行四边形,剩下的工做就是根据运动的等时性以及三角形的边角关系列方程求解了.设河宽为d ,河水流速为v 水,船速为v 船,船两次运动速度合成如图4—1—6和4—1—7所示图4—1—6 图4—1—7第一次渡河与第二次渡河在垂直岸的方向上位移相等,则 v 船t 1=v 船sin αt 2 ① 第一次渡河沿水流方向上位移为BC ,则BC =v 水t 1②由图4—1—7可得船的合速度:v =v 水tan α,所以河的宽度为: d =v t 2=v 水tan α·t 2 ③ 由①式得 sin α=0.8 故tan α=24由②式得 v 水=12 m/min 代入③式可得河宽d =12×34×12.5 m =200 m 【思考】 (1)若渡河过程中水流的速度突然变大了,是否影响渡河时间?是否影响到达对岸的地点? (2)如果v 船<v 水,小船还能不能到达对岸的B 点?这时的最小位移该如何求?【思考提示】 (1)水流的速度增大,不影响过河的时间,但影响到达对岸的地点.(2)当v 船<v 水时,小船不能到达对岸B 点.当v 船跟船的合速度垂直时,船过河的位移最小. 【设计意图】 通过本例说明运动合成与分解的方法,并进一步说明分析小船过河问题的方法. [例2]在高空匀速水平飞行的飞机,每隔1 s 投放一物体,则 A.这些物体落地前排列在一条竖直线上B.这些物体都落在地面上的同一点C.这些物体落地时速度大小和方向都相同D.相邻物体在空中距离保持不变【解析】 这些物体离开飞机后均做平抛运动.在水平方向上,物体与飞机的速度相同,所以所有物体在落地前均处在飞机的正下方.故A 选项正确.物体下落的总时间相同,水平方向最大位移也相同,由于不同物体的抛出点不同,所以落地点也不同.故B选项错.物体落地时的水平分速度v 0均相同,竖直分速度v y =gh 2也相同,所以这些物体落地速度的大小和方向都相同.故C 选项正确.任两个相邻物体在空中的距离Δh =h 1-h 2=21gt 2-21g (t -1)2=21g (2t -1),即随着t 的增大,Δh 也逐渐增大.D选项错.故正确选项为AC【思考】 (1)飞机上的人看物体做什么运动?地面上的人又认为物体做什么运动? (2)若某时刻一物体刚离开飞机,试画出此前四个物体的运动轨迹示意图.(3)若物体在落地前的最后10 s 内,其速度方向由跟竖直方向成60°变为45°.那么,飞机的高度和速度多大?相邻物体落地点间的距离多大?【思考提示】 (1)飞机上的人看物体做自由落体运动,地面上的人看物体做平抛运动.(2)如图a 所示. (3)如图b 所示. v y1=v 0tan30° v y2=v 0tan45° v y2-v y1=g Δt求得v 0=236.6 m/s v y2=v 0=236.6 m/s 飞机的飞行高度为h =1026.2362222⨯=g v y m=2799 m 相邻物体落地点间的距离为236.6 m.【设计意图】 复习平抛运动的规律及研究方法.[例3]如图4—1—8所示,排球场总长为18 m ,设网的高度为2 m ,运动员站在离网3 m 远的线上正对网前竖直跳起把球垂直于网水平击出.(g =10 m/s 2)图4—1—8(1)设击球点的高度为2.5 m ,问球被水平击出时的速度在什么范围内才能使球既不触网也不出界? (2)若击球点的高度小于某个值,那么无论球被水平击出时的速度多大,球不是触网就是出界,试求出此高度?【解析】 水平击出的排球其运动情况虽然受空气阻力的影响,但是当这类题目出现在中学物理中时仍然可以简化为只受重力做用,因此在这里可以认为其运动为平抛运动.第(1)问中击球点位置确定之后,恰不触网是速度的一个临界值,恰不出界则是击球速度的另一个临界值.第(2)问中确定的则是临界轨迹,当击球点、网的上边缘和边界点三者位于临界轨迹上时,如果击球速度变小则一定触网,否则速度变大则一定出界.(1)如图4—1—9所示,排球恰不触网时其运动轨迹为Ⅰ.排球恰不出界时其轨迹为Ⅱ.根据平抛物体的运动规律:x=v 0t 和h =21gt 2可得,当排球恰不触网时有:图4—1—9 x 1=3 m x 1=v 1t 1① h 1=2.5 m -2 m =0.5 m ,h 1=21gt 12②由①②可得:v 1=9.5 m/s当排球恰不出界时有: x 2=3 m +9 m =12 m,x 2=v 2t 2 ③ h 2=2.5 m,h 2=21gt 22④由③④可得:v 2=17 m/s所以既不触网也不出界的速度范围是: 9.5 m/s <v ≤17 m/s(2) 图4—1—10所示为排球恰不触网也恰不出界的临界轨迹.设击球点的高度为h ,根据平抛运动的规律则有:图4—1—10 x 1=3 m ,x 1=v t 1′⑤ h 1′=h -2 m,h 1′=21gt 1′2⑥ x 2=3 m +9 m =12m,x 2=v t 2′ ⑦ h 2=h =21gt 2′2⑧解⑤~⑧式可得所求高度h =2.13 m.【说明】 本题涉及的物理过程并不复杂,但每当遇到类似的题目时常常又感到无从下手,因此能养成一个良好的分析问题解决问题的思路特别重要.结合本题的解题过程不难看出,解决本题的关键有三点:其一是确定运动性质——平抛运动;其二是确定临界状态——恰不触网或恰不出界;其三是确定临界轨迹——轨迹示意图.【设计意图】 (1)通过本例说明平抛运动中临界问题的分析方法;(2)练习应用平抛运动规律分析实际问题的方法.●反馈练习 ★夯实基础1.做平抛运动的物体,每秒的速度增量总是 A.大小相等,方向相同 B.大小不等,方向不同 C.大小相等,方向不同 D.大小不等,方向相同【解析】 平抛运动是匀变速运动,加速度为重力加速度,速度的改变量为Δv =gt 故平抛运动的物体每1 s 速度的增量大小为9.8 m/s ,方向竖直向下,A 选项正确. 【答案】 A2.对平抛运动的物体,若g 已知,再给出下列哪组条件,可确定其初速度大小 A.水平位移 B.下落高度C.落地时速度的大小和方向D.落地时位移的大小和方向【解析】 平抛运动的物体水平方向为匀速直线运动,竖直方向为自由落体运动.已知落地时速度大小和方向,则初速度为落地速度的水平分速度.【答案】 C3.物体做平抛运动时,它的速度方向与水平方向的夹角α的正切tan α随时间t 变化的图象是如图4—1—11中的图4—1—11【解析】 由图中可看出平抛物体速度与水平方向夹角α正切即为:tan α=00,v gt v g v v y为定值,则tan α与t 成正比. 【答案】 B4.有关运动的合成,以下说法正确的是A.两个直线运动的合运动一定是直线运动B.两个不在一直线上的匀速直线运动的合运动一定是直线运动C.两个匀加速直线运动的合运动一定是匀加速直线运动D.匀加速直线运动和匀速直线运动的合运动一定是直线运动【解析】 判断合运动是直线运动还是曲线运动,依据是物体所受的合外力或物体的合加速度与合速度方向是否在一条直线上.【答案】 B5.甲乙两人在一幢楼的三层窗口比赛掷垒球,他们都尽力沿水平方向掷出同样的垒球,不计空气阻力.甲掷的水平距离正好是乙的两倍.若乙要想水平掷出相当于甲在三层窗口掷出的距离,则乙应A.在5层窗口水平掷出B.在6层窗口水平掷出C.在9层窗口水平掷出D.在12层窗口水平掷出【解析】 由于h 甲=h 乙,x 甲=2x 乙,所以v 甲=2v 乙;由x =v 0t 得为使x 甲′=x 乙′,须使t 甲′=21t 乙′;由h =21gt 2得h 甲′=41h 乙′,故为使甲、乙掷出球的水平距离相等,乙应在12层窗口水平抛出. 【答案】 D6.从倾角为θ的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向左抛出.第一次初速度为v 1,球落到斜面上的瞬时速度方向与斜面夹角为α1,第二次初速度为v 2,球落到斜面上的瞬时速度方向与斜面夹角为α2,若v 1>v 2,则A.α1>α2B.α1=α2C.α1<α2D.无法确定【解析】 如图所示,由平抛运动的规律知l sin θ=21gt 2l cos θ=v 0t 解得:t =gv θtan 20 由图知 tan(α+θ)=v gtv v y ==2tan θ 所以α与抛出速度 v 0无关,故α1=α2,选项B 正确. 【答案】 B7.炮台高出海面45 m ,炮弹的水平出口速度为600 m/s ,如果要使炮弹击中一艘正以36 km/h 的速度沿直线远离炮台逃跑的敌舰,那么应在敌舰离炮台____ m 处开炮.(g =10 m/s 2)【解析】 击中敌舰用时间:21gt 2=h ,t =3 s ,则有v 敌舰t +x =v 炮弹·t ,则x =v 炮弹·t -v 敌舰·t =1770 m【答案】 17708.世界上第一颗原子弹爆炸时,恩里科·费米把事先准备好的碎纸片从头顶上方撒下,碎纸片落到他身后约2 m 处.由此,费米推算出那枚原子弹的威力相当于1万吨TNT 炸药.假设纸片是从1.8 m 高处撒下.请你估算当时的风速是___m/s ,并简述估算的方法 .【答案】310或3.3 把纸片的运动看做是平抛运动,由h =21gt 2,v =ts求出风速v ★提升能力9.玻璃生产线上,宽9 m 的成型玻璃板以2 m/s 的速度连续不断地向前行进,在切割工序处,金刚钻的走刀速度为10 m/s ,为了使割下的玻璃板都成规定尺寸的矩形,金刚钻割刀的轨道应如何控制?切割一次的时间多长?【解析】 本题是研究分运动和合运动的问题.由题图可知:cos θ=m/s10m/s2=0.2则θ=arccos0.2 v ⊥=m/s 96m/s 21022=-t =969 s ≈0.92 s【答案】 (1)轨道方向与玻璃板运动方向成arccos0.2. (2)0.92 s10.有一小船正在渡河,如图4—1—12所示,在离对岸30 m 时,其下游40 m 处有一危险水域.假若水流速度为5 m/s,为了使小船在危险水域之前到达对岸,那么,从现在起,小船相对于静水的最小速度应是多大?图4—2—12【解析】 如图所示,当小船到达危险水域前,恰好到达对岸,其合速度方向沿AC 方向,sin α=53.为使船速最小,应使v 1⊥v ,则 v 1=v 2sin α=53v 2=3 m/s. 【答案】 3 m/s11.五个直径均为d =5 cm 的圆环连接在一起,用细线悬于O 点.枪管水平时枪口中心与第五个环心在同一水平面上,如图4—1—13,它们相距100 m ,且连线与球面垂直.现烧断细线,经过0.1 s 后开枪射出子弹,若子弹恰好穿过第2个环的环心,求子弹离开枪口时的速度(不计空气阻力,g 取10 m/s 2).图4—1—13【解析】 设从子弹射出到穿过环心所用时间为t ,则根据平抛运动在竖直方向上做自由落体运动的特点,得竖直方向的位移关系:s 弹+0.05×(5-2) m =s 环即21gt 2+0.05×2 m =21g (t +0.1 s )2, 解得t =0.1 s.又据子弹水平方向做匀速直线运动:则 v 0=1.0100t s m/s =1000 m/s 【答案】 1000 m/s12.如图4—1—14,AB 为斜面,倾角为30°,小球从A 点以初速度v 0水平抛出,恰好落到B 点.求:图4—1—14(1)AB 间的距离;(2)物体在空中飞行的时间;(3)从抛出开始经多少时间小球与斜面间的距离最大?【解析】 (1)、(2)由题意,得:21gt 2=l AB sin30° ① v 0t =l AB cos30°②解得:t =gv 02tan30°=g 332v 0l AB =4v 02/3g(3)将v 0和重力加速度g 沿平行于斜面和垂直于斜面方向正交分解如图所示.则当物体在垂直于斜面方向速度为零时与斜面距离最大,即: v ⊥0-g ⊥t ′=0v 0sin30°-g cos30°t =0所以t =g v 3/30或:当平抛运动的速度与斜面平行时,物体离斜面最远,如图所示, 则v y =v 0tan30°=gt ′ t ′=gv g v 3330tan 00=︒ 【答案】 (1)gv 3420;(2)g v 3320;(3)g v 330‴13.光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度v 0抛出,如图4—1—15所示.求小球滑到底端时,水平方向位移多大?图4—1—15【解析】 小球的运动可分解为两个分运动:①水平方向匀速直线运动;②沿斜面向下做初速度为零的匀加速直线运动,a =g sin θ.水平方向:s =v 0t沿斜面向下:L =21at 2解得l =v 0θsin 2g L.【答案】 v 0θsin 2g L‴14.飞机以恒定的速度v 沿水平方向飞行,飞行高度为2000 m ,在飞行过程中释放一炸弹,在30 s 后飞行员听见炸弹落地的爆炸声.假设此爆炸声向空间各个方向传播速度都为320 m/s ,炸弹受到的空气阻力可以忽略,取g =10 m/s 2.则炸弹经_______s 时间落地,该飞机的飞行速度v =_______m/s.(答案保留2位有效数字)【解析】 炸弹飞行时间由平抛运动规律可求.竖直方向为自由落体运动,则由h =21gt 2,可求得t 1=20 s.则:声音传播时间t 2=20 s -20 s =10 s飞机10 s 内飞行距离为:2220003200-由此可求飞行速度.炸弹落地时,飞机在其正上方,在声音传播到飞机的10 s 内飞机的位移为x =v 0t 2如图所示,则 h 2+x 2=v 2t 22即 h 2+v 02t 22=v 2t 22解得v 0=222th v -=222102000320- m/s=250 m/s 【答案】 20 2.5×102第Ⅱ单元 圆周运动●知识聚焦一、描述圆周运动的物理量 1.线速度(1)物理意义:描述质点沿圆周运动的快慢.(2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向. (3)大小:v =s /t (s 是t 时间内通过的弧长). 2.角速度(1)物理意义:描述质点绕圆心转动的快慢. (2)大小:ω=φ/t (rad/s ),φ是连接质点和圆心的半径在t 时间内转过的角度. 3.周期T ,频率f做圆周运动的物体运动一周所用的时间叫做周期.做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速. 4.v 、ω、4、f 的关系T =f1, ω=f T ππ22, v =r fr r Tωππ==22注意:T 、f 、ω三个量中任一个确定,其余两个也就确定了. 5.向心加速度(1)物理意义:描述线速度方向改变的快慢.(2)大小:a =r v 2=ω2r =4π2f 2r =2244πr(2)方向:总是指向圆心.所以不论a 的大小是否变化,它都是个变化的量.6.向心力(1)做用效果:产生向心加速度,只改变线速度的方向,不改变速度的大小.因此,向心力不做功.(2)大小:F =ma =m r v 2=m ω2r=m r 2244π=4π2m f 2r(2)方向:总是沿半径指向圆心,向心力是个变力. 二、匀速圆周运动1.特点:匀速圆周运动是线速度大小不变的运动.因此它的角速度、周期和频率都是恒定不变的.物体受的合外力全部提供向心力.2.质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直. 三、一般的圆周运动(非匀速圆周运动)速度的大小有变化,向心力和向心加速度的大小也随着变化.公式v =ωr 、a =r v 2=ω2r 、F =m rv 2=m ω2r 对非匀速圆周运动仍然适用,只是利用公式求圆周上某一点的向心力和向心加速度的大小,必须用该点的瞬时速度值.●疑难辨析1.在分析传动装置的各物理量时,要抓住不等量和相等量的关系.同轴的各点角速度ω相等,而线速度v =ωr 与半径r 成正比,向心加速度a =ω2r 与半径成正比.在不考虑皮带打滑的情况下,传动皮带与皮带连接的两轮边缘的各点线速度大小相等,而角速度ω=rv与半径r 成反比,向心加速度a =r v 2与半径成反比.2.处理圆周运动的动力学问题时,在明确研究对象以后,首先要注意两个问题:(1)确定研究对象运动的轨道平面和圆心的位置,以便确定向心力的方向.例如,沿半球形碗的光滑内表面,一小球在水平面上做匀速圆周运动,如图4—2—1所示.小球做圆周运动的圆心在与小球同一水平面上的O ′点,不在球心O ,也不在弹力F N 所指的PO 线上.图4—2—1(2)向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切不可在物体的相互做用力(重力、弹力、摩擦力等)以外再添加一个向心力.3.圆周运动的临界问题:图4—2—2 图4—2—3(1)如图4—2—2和图4—2—3所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:①临界条件:绳子或轨道对小球没有力的做用:mg =m Rv 2v 临界=Rg②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <v 临界(实际上球还没到最高点时就脱离了轨道)图4—2—4 图4—2—5(2)如图4—2—4的球过最高点时,轻质杆对球产生的弹力情况: ①当v =0时,F N =mg (F N 为支持力).②当0<v <Rg 时,F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =Rg 时,F N =0.④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大.若是图4—2—5的小球在轨道的最高点时,如果v ≥Rg 此时将脱离轨道做平抛运动,因为轨道对小球不能产生拉力.●典例剖析[例1]如图4—2—6所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则图4—2—6A.a 点与b 点线速度大小相等B.a 点与c 点角速度大小相等C.a 点与d 点向心加速度大小相等D.a 、b 、c 、d 四点,加速度最小的是b 点【解析】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与皮带接触的各点线速度相同.这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论.由图4—2—6可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度相等,即v a=v c ,又v =ωR , 所以ωa r =ωc ·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =21ωa ,所以选项B错.又v b =ωb ·r = 21ωa r =21v a ,所以选项A 也错.向心加速度:a a =ωa 2r ;a b =ωb 2·r =(21ωa )2r =41ωa 2r =41a a ;a c =ωc 2·2r =(21ωa )2·2r = 21ωa 2r =21a a ;a d =ωd 2·4r =(21ωa )2·4r =ωa 2r =a a .所以选项C 、D 均正确.【思考】 在皮带传动装置中,从动轮的转动是静摩擦力做用的结果.试分析一下主动轮和从动轮上的与皮带接触的各点所受摩擦力的情况.【思考提示】 从动能的摩擦力带动轮子转动,故轮子受到的摩擦力方向沿从动轮的切线与轮的转动方向相同;主动轮靠摩擦力带动皮带,故主动轮所受摩擦力方向沿轮的切线与轮的转动方向相反.【设计意图】 帮助学生理清表示圆周运动的各物理量间的关系.并掌握讨论有关问题的方法.[例2]如图4—2—7所示,在电机距轴O 为r 处固定一质量为m 的铁块.电机启动后,铁块以角速度ω绕轴O 匀速转动.则电机对地面的最大压力和最小压力之差为 .【解析】 铁块在竖直面内做匀速圆周运动,其向心力是重力mg 与轮对它的力F 的合力.由圆周运动的规律可知: 当m 转到最低点时F 最大,当m 转到最高点时F 最小.设铁块在最高点和最低点时,电机对其做用力分别为F 1和F 2,且都指向轴心,根据牛顿第二定律有:在最高点:mg +F 1=m ω2r ① 在最低点:F 2-mg =m ω2r ②电机对地面的最大压力和最小压力分别出现在铁块m 位于最低点和最高点时,且压力差的大小为:ΔF N =F 2+F 1 ③由①②③式可解得:ΔF N =2m ω2r【思考】 (1)若m 在最高点时突然与电机脱离,它将如何运动? (2)当角速度ω为何值时,铁块在最高点与电机恰无做用力?图4—2—7(3)本题也可认为是一电动打夯机的原理示意图.若电机的质量为M ,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少?【思考提示】 (1)平抛运动(2)电机对铁块无做用力时,重力提供铁块的向心力,则 mg =m ω12r即 ω1=rg (3)铁块在最高点时,铁块与电动机的相互做用力大小为F 1,则 F 1+mg =m ω22r F 1=Mg 即当ω2≥mr g m M )(+时,电动机可以跳起来,当ω2=mrgm M )(+时,铁块在最低点时电机对地面压力最大,则F 2-mg =m ω22r F N =F 2+Mg解得电机对地面的最大压力为F N =2(M+m )g【设计意图】 通过本例说明在竖直平面内物体做圆周运动通过最高点和最低点时向心力的来源,以及在最高点的临界条件的判断和临界问题分析方法.[例3]如图4—2—8所示,光滑的水平面上钉有两枚铁钉A 和B ,相距0.1 m 、长1 m 的柔软细绳拴在A 上,另一端系一质量为0.5 k g 的小球,小球的初始位置在AB 连线上A 的一侧,把细线拉紧,给小球以2 m/s 的垂直细线方向的水平速度使它做圆周运动.由于钉子B 的存在,使线慢慢地缠在A 、B 上.图4—2—8(1)如果细线不会断裂,从小球开始运动到细线完全缠在A 、B 上需要多长时间? (2)如果细线的抗断拉力为7 N ,从开始运动到细线断裂需经历多长时间?【解析】 小球交替地绕A 、B 做匀速圆周运动,因线速度不变,随着转动半径的减小,线中张力F 不断增大,半周期不断减小.推算出每个半周期的时间及半周期数,就可求出总时间,根据绳子能承受的最大拉力,可求出细绳断裂所经历的时间.在第一个半周期内:F 1=m 02L v t 1=vL 0π在第二个半周期内:F 2=m ABL L v -02t 2=vL L AB )(0-π在第三个半周期内:F 2=m ABL L v 202-。

第4章 曲线运动 万有引力定律2013高考导航

第4章 曲线运动 万有引力定律2013高考导航
第四章
曲线运动
万有引力定律
第四章
曲线运动
万有引力定律
第四章
曲线运动
万有引力定律
2013高考导航
考纲展示 1.运动的合成和分解 Ⅰ
2.曲线运动中质点的速度的方向沿轨道 的切线方向,且必具有加速度 Ⅰ
3.平抛运动 Ⅱ
第四章
曲线运动
万有引力定律
4.匀速圆周运动.线速度和角速度.周 期.圆周运动中的向心力.圆周运动的向 v 心加速度 a= r
2

5.万有引力定律及其应用.人造地球卫星 的运动(限于圆轨道) Ⅱ
第四章
曲线运动
万有引力定律
6.宇宙速度.航天技术的发展和宇宙 航行 Ⅰ 7.实验五:研究平抛物体的运动
第四章
曲线运动
万有引力定律
命题热点 1.运动的合成与分解,可能会以选择 题的形式出现. 2.平抛运动规律的应用,可能单独考 查,也可能与圆周运动、功能关系综 合考查.
第四章
曲线运动
万有引力定律
3.竖直平面内的圆周运动也是高考的 热点,该类题型主要结合牛顿第二定 律和机械能守恒定律或能量守恒定律 进行考查. 4.运用万有引力定律及向心力公式分 析天体运动、航天技术、人造卫星的 绕行速度、运行周期以及计算天体的
ቤተ መጻሕፍቲ ባይዱ四章
曲线运动
万有引力定律
质量、密度等是近几年高考的热点.
5.平抛运动的实验结合实际平抛运动
综合考查.
第四章
曲线运动
万有引力定律
本部分内容讲解结束
按ESC键退出全屏播放

(物理)高考必刷题物理万有引力定律的应用题含解析

(物理)高考必刷题物理万有引力定律的应用题含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。

高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解课件


解析:工件同时参与了水平向右的匀速运动和竖直方向的匀速 运动,水平和竖直方向的速度都不变,根据矢量合成的平行四 边形法则,合速度大小和方向均不变。
考点一 物体做曲线运动的条件及轨迹分析
1.曲线运动的条件:物体所受合外力(或加速度)方向与运动方 向不共线。 2.曲线运动的类型 (1)匀变速曲线运动:合力(加速度)恒定不变。 (2)变加速曲线运动:合力(加速度)变化。 3.合外力方向与轨迹的关系:物体做曲线运动的轨迹一定夹 在合外力方向与速度方向之间,速度方向与轨迹相切,合外力 方向指向轨迹的“凹”侧。
[解析] (1)小船参与了两个分运动,即船随水漂流的运动和船在 静水中的运动。因为分运动之间具有独立性和等时性,故小船
渡河的时间等于垂直于河岸方向的分运动的时间,即
t
=d= v船
200 4
s=50 s。小船沿水流方向的位移 s 水=v 水t=2×50 m=100 m,
即船将在正对岸下游 100 m 处靠岸。
小船渡河的时间为
t=v船sdin
,当 θ
θ=90°,即船头与河岸垂直时,
渡河时间最短,最短时间为 tmin=50 s。
(4)因为 v 船=3 m/s<v 水=5 m/s,所以船不
可能垂直于河岸横渡,不论航向如何,总
被水流冲向下游。如图丙所示,设船头(v 船)
与上游河岸成 θ 角,合速度 v 与下游河岸成
考点三 运动分解中的两类模型
1.小船渡河模型 渡河时 间最短
当船头方向垂直于河岸时,渡河时间最短, 最短时间 tmin=vd船
渡河位 移最短
如果 v 船>v 水,当船头方向与上游夹角 θ 满 足 v 船 cos θ=v 水时,合速度垂直于河岸,渡 河位移最短,等于河宽 d 如果 v 船<v 水,当船头方向(即 v 船方向)与合 速度方向垂直时,渡河位移最短,等于dv水

专题4万有引力定律和天体运动(精)

永久免费组卷搜题网卫 r2 地面表面附近的重力加速度 g = G M R2 把 r=2R 代入,解方程可得卫
(2)卫星下次通过该建筑物上方时,卫星比地球多转弧度,所需时间
=卫(05 年杭州)侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为 h,已知地球半径为 R,地面表面处的重力加速度为 g,地球的自转周期为 T。

⑴试求该卫星的运行速度;⑵要使卫星在一天内将地面上赤道各处在日照条件下的情况全部拍下来,卫星在通过赤道上空时,卫星上的摄像机应拍摄地面上赤道圆周的弧长 S 是多少? 答案:⑴设地球质量为 M,卫星质量为 m,卫星在运行时,由万有引力提供向心力:
设地球表面有个质量为 m0 的物体,则:m0g= G 由①②式联立,卫星的运行速度为:⑵设卫星的运动周期为T′,则:
得:摄像机每次
应拍摄地面上赤道圆周的弧长为:S= N 一天内侦察卫星经过有日照的赤道上空次数为:得:S=永久免费组卷搜题网
永久免费组卷搜题网 永久免费组卷搜题网。

2011高考物理一轮复习考点演练:第4章 曲线运动 万有引力定律与航天(解析版)

第四章曲线运动万有引力定律与航天第1节曲线运动运动的合成与分解班级姓名成绩(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1. 关于曲线运动的性质,下列说法中正确的是( )A. 曲线运动一定是变速运动B. 曲线运动一定是变加速运动C. 圆周运动一定是匀变速运动D. 变力作用下的物体一定做曲线运动2. 一质点在xOy平面内从O点开始运动的轨迹如图所示,则质点的速度( )①若x方向始终匀速,则y方向先加速后减速②x方向始终匀速,则y方向先减速后加速③若y方向始终匀速,则x方向先减速后加速④若y方向始终匀速,则x方向先加速后减速A. ①③B. ①④C. ②③D. ②④3. (2010·广东实验中学模拟)某人游珠江,他以一定速度面部始终垂直河岸向对岸游去.江中各处水流速度相等,他游过的路程、过河所用的时间与水速的关系是( )A. 水速大时,路程长,时间长B. 水速大时,路程长,时间短C. 水速大时,路程长,时间不变D. 路程、时间与水速无关4. (2010·肇庆模拟)河水的流速随离河岸的距离的变化关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A. 船渡河的最短时间是60 sB. 船在行驶过程中,船头始终与河岸垂直C. 船在河水中航行的轨迹是一条直线D. 船在河水中的最大速度是7 m/s5. 如图所示,在一次救灾工作中,一架沿水平直线飞行的直升飞机A,用悬索(重力可忽略不计)救助困在湖水中的伤员B. 在直升飞机A和伤员B以相同的水平速度匀速运动的同时,悬索将伤员提起,在某一段时间内,A、B之间的距离以l=H-t2(式中H 为直升飞机A 离地面的高度,各物理量的单位均为国际单位制单位)规律变化,则在这段时间内,下面判断中正确的是(不计空气作用力) ( )A. 悬索的拉力小于伤员的重力B. 悬索成倾斜直线C. 伤员做速度减小的曲线运动D. 伤员做加速度大小、方向均不变的曲线运动6. 如图所示为一个做匀变速曲线运动的质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,则下列说法中正确的是 ( )A. D 点的速率比C 点的速率大B. A 点的加速度与速度的夹角小于90°C. A 点的加速度比D 点的加速度大D. 从A 到D 加速度与速度的夹角先增大后减小7. (2010·山东师大附中模拟)如图所示,小朋友在玩一种运动中投掷的游戏,目的是在运动中将手中的球投进离地面高3 m 的吊环,他在车上和车一起以2 m/s 的速度向吊环运动,小朋友抛球时手离地面1.2 m ,当他在离吊环的水平距离为2 m时将球相对于自己竖直上抛,球刚好进入吊环,他将球竖直向上抛出时的速度是(g 取10 m/s 2)()A .1.8 m/sB . 3.2 m/sC .6.8m/sD . 3.6m/s8. 一物体在光滑的水平桌面上运动,在相互垂直的x方向和y 方向上的分运动速度随时间变化的规律如图所示.关于物体的运动,下列说法正确的是 ( )①物体做曲线运动②物体做直线运动③物体运动的初速度大小是50 m/s④物体运动的初速度大小是10 m/sA. ①③B. ①④C. ②③D. ②④9. (2010·衡水模拟)民族运动会上有一个骑射项目,运动员骑在奔驶的马背上,弯弓放箭射击侧向的固定目标.假设运动员骑马奔驰的速度为v1,运动员静止时射出的弓箭速度为v2,跑道离固定目标的最近距离为d.要想命中目标且射出的箭在空中飞行时间最短,则()A. 运动员放箭处离目标的距离为dv 2/v 1B.2vC. 箭射到靶的最短时间为d/v 1D.10. 如图所示,沿竖直杆以速度v 匀速下滑的物体A 通过轻质细绳拉光滑水平面上的物体B ,细绳与竖直杆间的夹角为θ,则以下说法正确的是 ( )A. 物体B 向右匀速运动B. 物体B 向右匀加速运动C. 细绳对A 的拉力逐渐变小D. 细绳对B 的拉力逐渐变大二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11. (14分)河宽d =60 m ,水流速度v1=6 m /s ,小船在静水中的速度v2=3 m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?12. (16分)如图甲所示,在一端封闭、长约1 m 的玻璃管内注满清水,水中放一个蜡烛做的蜡块,将玻璃管的开口端用胶塞塞紧.然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动.假设从某时刻开始计时,蜡块在玻璃管内每1 s 上升的距离都是10 cm ,玻璃管向右匀加速平移,每1 s 通过的水平位移依次是2.5 cm 、7.5 cm 、12.5 cm 、17.5 cm .图乙中,y 表示蜡块竖直方向的位移,x 表示蜡块随玻璃管通过的水平位移,t=0时蜡块位于坐标原点.(1)请在图乙中画出蜡块4 s 内的轨迹.(2)求出玻璃管向右平移的加速度.(3)求t=2 s 时蜡块的速度v .第2节平抛运动及其应用班级姓名成绩(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1. 物体做平抛运动时,它的速度方向与水平方向的夹角α的正切tan α随时间t 变化的图象是图中的( )2. (2009·广东理科基础)滑雪运动员以20 m /s 的速度从一平台水平飞出,落地点与飞出点的高度差3.2 m.不计空气阻力,g 取10 m /s 2.运动员飞过的水平距离为s ,所用时间为t ,则下列结果正确的是( )A. s=16 m ,t=0.50 sB. s=16 m ,t=0.80 sC. s=20 m ,t=0.50 sD. s=20 m ,t=0.80 s3. 一物体从某高度以初速度v0水平抛出,落地时速度大小为v ,则它运动的时间为( )A.0v v g - B.02v v g - C.2202v v g - D.g 4. 如图所示,从一根空心竖直钢管A 的上端边缘沿直径方向向管内水平抛入一钢球,球与管壁多次相碰后落地(球与管壁相碰时间不计).若换一根等高但较粗的钢管B ,用同样方法抛入此钢球,则运动时间 ( )A. 在A 管中的球运动时间长B. 在B 管中的球运动时间长C. 在两管中的运动时间一样长D. 无法确定5. 如图所示,斜面上有a 、b 、c 、d 四个点,ab=bc=cd.从a 点正上方的O 点以速度v 0水平抛出一个小球,它落在斜面上b 点.若小球从O 点以速度2v 0水平抛出,不计空气阻力,则它会落在斜面上的 ( )A. b 与c 之间某一点B. c点C. c与d之间某一点D. d点6. 如图所示,A、B两质点以相同的水平速度v0抛出,A在竖直平面内运动,落地点为P1,B在光滑斜面上运动,落地点为P2,不计阻力,比较P1、P2在x轴方向上的远近关系是( )A. P1较远B. P2较远C. P1、P2等远D. A、B都有可能7. 甲乙两人在一幢楼的三层窗口比赛掷垒球,他们都尽力沿水平方向掷出同样的垒球,不计空气阻力.甲掷的水平距离正好是乙的两倍.若乙要想水平掷出相当于甲在三层窗口掷出的距离,则乙应( )A. 在5层窗口水平掷出B. 在6层窗口水平掷出C. 在9层窗口水平掷出D. 在12层窗口水平掷出8. 如图所示,一战斗机由东向西沿水平方向匀速飞行,发现地面目标P后,开始瞄准并投掷炸弹,若炸弹恰好击中目标P,假设投弹后,飞机仍以原速度水平匀速飞行,则(不计空气阻力) ( )①炸弹击中目标P时飞机正处在P点正上方②炸弹击中目标P时飞机是否处在P点正上方取决于飞机飞行速度的大小③飞行员听到爆炸声时,飞机正处在P点正上方④飞行员听到爆炸声时,飞机正处在P点偏西一些的位置A. ①③B. ①④C. ②③D. ②④9. (2010·苏州模拟)如图所示,取稍长的细杆,其一端固定一枚铁钉,另一端用羽毛做一个尾翼,做成A、B两只“飞镖”,将一软木板挂在竖直墙壁上作为镖靶.在离墙壁一定距离的同一处,将它们水平掷出,不计空气阻力,两只“飞镖”插在靶上的状态如图所示(侧视图).则下列说法中正确的是( )A. A镖掷出时的初速度比B镖掷出时的初速度小B. B镖插入靶时的末速度比A镖插入靶时的末速度大C. B镖的运动时间比A镖的运动时间长D. A镖的质量一定比B镖的质量大10. 如图所示,在一次空地演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截,设拦截系统与飞机的水平距离为x,若拦截成功,不计空气阻力,则v1、v2的关系应满足()A. v 1=v 2B. v 1=2Hv x C. v 12D. v 1=2xv H二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11. (14分)在一次扑灭森林大火的行动中,一架专用直升机载有足量的水悬停在火场上空320 m 高处,机身可绕旋翼轴原地旋转,机身下出水管可以从水平方向到竖直向下方向旋转90°,水流喷出速度为30 m/s ,不计空气阻力,取g=10 m/s 2,请估算能扑灭地面上火的面积.12. (16分)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L 、网高h ,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g)(1)若球在球台边缘O 点正上方高度为h 1处以速度v 1水平发出,落在球台的P 1点(如图实线所示),求P 1点距O 点的距离x 1.(2)若球在O 点正上方某高度处以速度v 2水平发出,恰好在最高点时越过球网落在球台的P 2点(如图虚线所示),求v 2的大小.第3节圆周运动及其应用班级姓名成绩(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1. 如图所示为A、B两质点做匀速圆周运动的向心加速度随半径变化的图象,其中A为双曲线的一个分支,由图可知()A. A物体运动线速度大小不变B. A物体运动角速度大小不变C. B物体运动线速度大小不变D. B物体运动角速度与半径成正比2. 如图所示,一物块沿曲线从M点向N点运动的过程中,速度逐渐减小.在此过程中物块在某一位置所受合力方向可能的是( )3. 如图所示,光滑水平面上,小球m在拉力作用下做匀速圆周运动,若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是( )A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc做离心运动4. 如图所示,绳子的一端固定在O点,另一端拴一重物在水平面上做匀速圆周运动( )①周期相同时,绳长的容易断②周期相同时,绳短的容易断③线速度大小相等时,绳短的容易断④线速度大小相等时,绳长的容易断A. ①③B. ①④C. ②③D. ②④5. (2010·广州调研)如图所示,小球以初速度为v0从光滑斜面底部向上滑动,恰能到达最大高度为h的斜面顶部.图中①是内轨半径大于h的光滑轨道,②是内轨半径小于h的光滑轨道,③是内轨直径等于h的光滑轨道,④是长为1/2h 的轻杆(可绕固定点O转动,小球与杆的下端相碰后粘在一起).小球在底端时的初速度都为v0,则小球在以上四种情况中能到达高度h的有( )①②③④A. ①③B. ①④C. ②③D. ②④6. (2010·广州调研)如图所示,质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小球,今使小球在水平面内做半径为R的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为( )A. mω2RB.C. D. 条件不足,无法确定7. 申雪赵宏博在温哥华冬奥会的夺冠使双人花样滑冰得到了更大的关注.如图所示,在双人花样滑冰运动中,有时会看到男运动员拉着女运动员离开地面在空中做圆锥摆运动的精彩场面,目测体重为G的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g,估算该女运动员( )A.B.C.D.8. (2010·韶关调研)如图所示,光滑半球的半径为R,球心为O,固定在水平面上,其上方有一个光滑曲面轨道AB,高度为R/2.轨道底端水平并与半球顶端相切.质量为m的小球由A点静止滑下.小球在水平面上的落点为C,则( )A.小球将沿半球表面做一段圆周运动后抛至C点B.小球将从B点开始做平抛运动到达C点C.OC之间的距离为2RD. OC之间的距离为R29. 如图所示,水平的木板B托着木块A一起在竖直平面内做匀速圆周运动,从水平位置a沿逆时针方向运动到最高点b的过程中( )①B对A的支持力越来越大②B对A的支持力越来越小③B对A的摩擦力越来越大④B对A的摩擦力越来越小A. ①③B. ①④C. ②③D. ②④10. 在光滑的水平面上相距40 cm的两个钉子A和B,如图所示,长1 m的细绳一端系着质量为0.4 kg的小球,另一端固定在钉子A上,开始时,小球和钉子A、B在同一直线上,小球始终以2 m/s的速率在水平面上做匀速圆周运动.若细绳能承受的最大拉力是 4 N,那么从开始到细绳断开所经历的时间是( )A. 0.9π sB. 0.8π sC. 1.2π sD. 1.6π s二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11. (14分)如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20 cm处放置一小物块A,其质量为m=2 kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求:(1)当圆盘转动的角速度ω=2 rad/s时,物块与圆盘间的摩擦力大小为多大?方向如何?(2)欲使A与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(取g=10 m/s2)12. (16分)一根轻绳一端系一小球,另一端固定在O点,在O点有一个能测量绳的拉力大小的力传感器,让小球绕O 点在竖直平面内做圆周运动,由传感器测出拉力F随时间t变化图象如图所示,已知小球在最低点A的速度v A=6 m/s,g=9.8 m/s2取π2=g,求:(1)小球做圆周运动的周期T;(2)小球的质量m;(3)轻绳的长度L.第4节万有引力与航天班级姓名成绩(时间:45分钟满分:100分)一、选择题(本题共10小题,每小题7分,每题只有一个答案正确,共70分)1. (改编题)在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道.已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍.关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是( )A. 太阳引力远小于月球引力B. 太阳引力与月球引力相差不大C. 月球对不同区域海水的吸引力大小相等D. 月球对不同区域海水的吸引力大小有差异2. 下列各组物理数据中,能够估算出月球质量的是()①月球绕地球运行的周期及月、地中心间的距离②绕月球表面运行的飞船的周期及月球的半径③绕月球表面运行的飞船的周期及线速度④月球表面的重力加速度A. ①②B. ③④C. ②③D. ①④3. (2009·广东理科基础)宇宙飞船在半径为r1的轨道上运行,变轨后的半径为r2,且知r1>r2,宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的( )A. 线速度变小B. 角速度变小C. 周期变大D. 向心加速度变大4. 下列关于地球同步通信卫星的说法中,正确的是( )A. 为避免通信卫星在轨道上相撞,应使它们运行在不同的轨道上B. 通信卫星定点在地球上空某处,各个通信卫星的角速度相同,但线速度大小可以不同C. 不同国家发射通信卫星的地点不同,这些卫星轨道不一定在同一平面内D. 通信卫星只能运行在赤道上空某一恒定高度上5. 如图所示,在同一轨道平面上,绕地球做圆周运动的卫星A、B和C,某时刻恰好在同一直线上,当卫星B运转一周时,下列说法正确的有()A. 因为各卫星的角速度ωA=ωB=ωC,所以各卫星仍在原位置上B. 因为各卫星运转周期T A<T B<T C,所以卫星A超前于卫星B,卫星C滞后于卫星BC. 因为各卫星运转频率f A>f B>f C,所以卫星A滞后于卫星B,卫星C超前于卫星BD. 因为各卫星的线速度v A<v B<v C,所以卫星A超前于卫星B,卫星C滞后于卫星B6. 土星外层上有一个环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v与该层到土星中心的距离R之间的关系来判断.①若v ∝R,则该层是土星的一部分②若v2∝R,则该层是土星的卫星群③若v ∝1/R,则该层是土星的一部分④若v2∝1/R,则该层是土星的卫星群以上判断正确的是( )[来源: ]A. ①②B. ③④C. ②③D. ①④7. 宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站,可以采取的措施是( )A. 只能从较低轨道上加速B. 只能从较高轨道上加速C. 只能从同一空间同一高度轨道上加速D. 无论在什么轨道上,只要加速都行8. (创新题)在研究宇宙发展演变的理论中,有一种学说叫做“宇宙膨胀说”,这种学说认为引力常量G在缓慢地减小,根据这一理论,在很久很久以前,太阳系中地球的公转情况与现在相比( )A. 公转半径R较大B. 公转周期T较大C. 公转速率v较大D. 公转角速度ω较小9. (2009·福建)“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r,运行速率为v,当探测器在飞越月球上一些环形山中的质量密集区上空时( )A. r、v都将略为减小B. r、v都将保持不变C. r将略为减小,v将略为增大D. r将略为增大,v将略为减小10. (改编题)2008年9月25日至28日我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343 km处点火加速,由椭圆轨道变成高度为343 km的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断错误的是( )A.飞船变轨后机械能增大B.飞船在圆轨道上时航天员出舱前后都处于失重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度二、计算题(本题共2小题,共30分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)11. (2010·北京崇文区模拟)(14分)2008年9月我国成功发射“神舟”七号载人航天飞船.如图所示为“神舟”七号绕地球飞行时的电视直播画面,图中数据显示,飞船距地面的高度约为地球半径的1/20.已知地球半径为R,地面附近的重力加速度为g,设飞船、大西洋星绕地球均做匀速圆周运动.(1)估算“神舟”七号飞船在轨运行的加速度大小;(2)已知大西洋星距地面的高度约为地球半径的6倍,估算大西洋星的速率.12. (2010·青岛模拟)(16分)宇航员在月球表面完成下面的实验:在一固定的竖直光滑圆轨道内部最低点有一静止的质量为m的小球(可视为质点),如图所示.当给小球一瞬间的速度v时,刚好能使小球在竖直平面内做完整的圆周运动,已知圆弧的轨道半径为r,月球的半径为R,引力常量为G.求:(1)若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?(2)轨道半径为2R的环月卫星周期为多大?参考答案第四章第1节曲线运动运动的合成与分解1. 解析:曲线运动的速度方向发生变化,故具有加速度,其加速度可以变化也可以恒定,所以A正确BD错误;圆周运动的加速度方向发生变化,是变加速运动,故C错误.答案:A2. 解析:由轨迹图线可知,若x方向始终匀速,则开始所受合力沿-y方向,后来沿+y方向,如图甲所示,可以判断应是先减速后加速,故①错误、②正确;若y方向匀速,则受力先沿+x方向,后沿-x方向,如图乙所示,故先加速后减速,所以③错误,④正确.答案:D3. 解析:游泳者相对于岸的速度为他相对于水的速度和水流速度的合速度,水流速度越大,其合速度与岸的夹角越小,,与水速无关,故A、B、D均错误,C正确.路程越长,但过河时间t=d/v人答案:C4. 解析:当船头垂直河岸时过河时间最短,由图可看出河宽300 m,船速为3 m/s,由t=x/v可知最短时间为100 s,由于水速是变化的,故航行的轨迹是一条曲线.船速最大时v =5 m/s.答案:B5.解析:飞机和伤员水平方向以相同的速度匀速运动,A、B之间的距离以l=H-t2的规律变化,故伤员在竖直方向上做匀加速运动,伤员的合运动为匀变速曲线运动.所以A、B、C错误,D正确.答案:D6. 解析:质点做匀变速曲线运动,合力的大小方向均不变,加速度不变,故C错误;由B点速度与加速度相互垂直可知,合力方向与B点切线垂直且向下,故质点由C到D点的过程中,合力做正功,速率增大,A正确;A点的加速度方向与过A的切线即速度方向夹角大于90°,B错误;从A到D加速度与速度的夹角一直变小,D错误.答案:A7. 解析:对于小球,水平方向,x=v0t,对于竖直方向,有vt-gt2/2=H-h,将x=2 m,v0=2 m/s,H=3 m,h=1.2 m,g=10 m/s2代入前面两式并联立解得,v=6.8 m/s.答案:C8. 解析:由v-t图象可以看出,物体在x方向做匀速直线运动,在y方向做匀变速直线运动,故物体做曲线运动,①正确,②错误;物体的初速度是两个初速度的矢量和,即v0=50m/s,③正确,④错误.答案:A9. 解析:要想以箭在空中飞行的时间最短的情况下击中目标,v2必须垂直于v1,并且v1、v2的合速度方向指向目标,如图所示.故箭射到靶的最短时间为d/v2,C、D又x=v1t=v1·d/v2,故2v 错误,B 正确.答案:B10. 解析:物体A 沿绳的分速度与物体B 运动的速度大小相等,故有v B =vcos θ,随物体A 下滑,θ角减小,v B 增加,但不是均匀增加,θ越小,cos θ增加越慢,v B 增加越慢,也即B 的加速度越来越小,由F T =m B a B 可知,细绳的拉力逐渐变小,故只有C 正确.答案:C11. 解析:(1)要使小船渡河时间最短,则小船船头应垂直河岸渡河, 渡河的最短时间t=d/v 2=60/3s=20 s(2)此时v 2<v 1,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短.由几何知识可得,即以v 1的末端为圆心,以v 2的长度为半径作圆,从v 1的始端作此圆的切线,该切线方向即为最短航程的方向,如图所示.设航程最短时,船头应偏向上游河岸,与河岸成θ角,则 cos θ=v2/v1=3/6=1/2,θ=60° 最短行程s=d/cos θ=120 m即小船的船头与上游河岸成60°角时,渡河的最短航程为120 m. 12. 解析:(1)如图所示:(2)蜡块水平方向做匀加速运动 Δx=at 2a=Δx /t 2=5×10-2 m/s2. (3)竖直方向上的速度v y =y/t=0.1 m/s水平方向的速度v x =(x 2+x3)/2T=0.1 m/s 合速度=0.14 m/s.第2节平抛运动及其应用1.解析:由图可看出平抛物体速度与水平方向夹角α的正切tan α=v y/v0=gt/v0,则tan α与t成正比.答案:B2. 解析:做平抛运动的时间由高度决定,根据竖直方向做自由落体运动得根据水平方向做匀速直线运动可知s=v0t=20×0.80 m=16 m,故B正确.答案:B3. 解析:物体平抛运动的时间t=v y/g,由速度的合成与分解可知v y t=v yg选项D正确.答案:D4. 解析:物体平抛运动的时间由竖直高度决定,在A钢管中的运动利用对称性可以看成一个平抛运动的轨迹,所以C 正确.答案:C5.解析:当水平速度变为2v0时,如果作过b点的直线be,小球将落在c的正下方的直线上一点,连接O点和e点的曲线,和斜面相交于bc间的一点,故A正确.答案:A6. 解析:因为a A=g,a B=gsin θ,x=v0t,由h=1/2gt2A及h/sin θ=1/2a B t2B,可得t A B即t B>t A,可得x2>x1,B 项正确.答案:B7. 解析:由于h甲=h乙,x甲=2x乙,所以v甲=2v乙;由x=v0t,要使x甲′=x乙′,则t甲′=1/2t乙′;由h=1/2gt2得h甲′=1/4h乙′,故为使甲、乙掷出球的水平距离相等乙应在12层窗口水平掷出.答案:D8. 解析:投弹后,炸弹在水平方向的速度与飞机的速度相同,根据运动的独立性和等时性可知①正确.从击中目标到飞行员听到爆炸声需要一定时间,飞机向前运动一段位移,则④正确.答案:B9.解析:飞镖A、B都做平抛运动,由h=1/2gt2得t=B镖运动时间比A镖运动时间长,C正确;由v0=x/t知A镖掷出时的初速度比B镖掷出时的初速度大,A错误;由A、B镖插入靶时的末速度大小,B错误;也不能比较A、B镖的质量大小.答案:C10.解析:炮弹拦截成功,即两炮弹同时运动到同一位置,设此位置距地面的高度为h,则x=v1t,h=v2t-1/2gt2,H-h=1/2gt2.由以上各式联立解得:v1=xv2/H.答案:D11.解析:已知h=320 m,v0=30 m/s,当水流沿水平方向射出时,在水平地面上落地点最远,扑灭地面上火的面积最大.由平抛物体的运动规律有x=v0t,h=1/2gt2,联立以上两式并代入数据可得x=x由于水管可从水平方向到竖直方向旋转90°,所以灭火面积是半径为x的圆面积,其大小为S=πx2=3.14×2402m2≈1.81×105 m2.12. 解析:(1)如图所示,设乒乓球飞行时间为t1,根据平抛运动的规律,则h1=1/2gt21①x1=v1t1②解得x1=v(2)由题意可知水平三段应是对称的,所以开始击球点的高度恰好为网的高度h,x2=1/2L同理h=1/2gt2x2=v2t解得v2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 专题一 第4讲 万有引力定律及其应用 限时:40分钟 一、选择题(本题共12小题,其中1~8题为单选,9~12题为多选) 1.(2018·陕西省西交大附中高三下学期期中)如图,人造地球卫星M、N在同一平面内绕地心O做匀速圆周运动。已知M、N连线与M、O连线间的夹角最大为θ,则M、N的运动速度大小之比等于( A )

A.sinθ B.1sinθ C.tanθ D.1tanθ [解析] 设M、N卫星所在的轨道半径分别为:RM、RN,根据题意可知卫星M、N连线与M、O连线间的夹角最大为θ,且MN连线应与卫星N所在的轨道相切,如图所示:

根据几何关系可知:RN=RMsinθ 根据:GMmr2=mv2r

得:vMvN=sinθ,故A正确。故选A。 2.(2018·宁夏银川二中高三下学期模拟三试题)设想在地面上通过火箭将质量为m的人造小飞船送入预定轨道,至少需要做功W。若预定轨道半径为R,地球半径为r,地球表面处的重力加速度为g,忽略空气阻力,不考虑地球自转的影响。取地面为零势能面,则下列说法正确的是( D )

A.地球的质量为gR2G 2

B.小飞船在预定轨道的周期为2πr3gR2 C.小飞船在预定轨道的动能为mgR22r D.小飞船在预定轨道的势能为W-mgr22R [解析] 根据GMmr2=mg可知地球的质量为M=gr2G,选项A错误;根据GMmR2=m4π2T2R,解得T=2πR3GM=2πR3gr2,选项B错误;根据GMmR2=mv2R,解得小飞船在预定轨道的动能为Ek=12mv2=GMm2R=mgr22R,选项C错误;小飞船在预定轨道的势能为Ep=W-Ek=W-mgr22R,选项D正确;故选D。 3.(2018·福建省莆田市高三下学期模拟)超冷矮恒星“TRAPPIST-1”距离地球约39光年,它的质量约为太阳质量的8%。科学家发现有七个行星围绕该恒星公转,其中“d行星”的轨道半径约为日地距离的2%。已知地球绕太阳的公转周期为1年,利用上述数据可估算出“d行星”绕“TRAPPIST-1”的公转周期约为( B ) A.1天 B.4天 C.29天 D.90天

[解析] 根据GMmr2=m4π2T2r可得T=4π2r3GM∝r3M,则TdT地=210031008=1100,则Td=1100T地=3.65天≈4天。故选B。

4.(2018·四川省凉山州高三第三次诊断试题)发射高度较高的探测卫星时,需要经过多次变轨,如图先把卫星发射至近地轨道Ⅰ,Ⅱ、Ⅲ是两次变轨后的椭圆轨道,轨道Ⅰ、Ⅱ、Ⅲ均相切于O点,Q、P分别为轨道Ⅱ、Ⅲ的远地点,则( B )

A.卫星从地面发射到轨道Ⅰ的过程中,一直处于失重状态 B.卫星从轨道Ⅱ的O点运动到Q点的过程中,万有引力一直做负功 C.卫星在轨道Ⅱ运动的机械能大于在轨道Ⅲ运动的机械能 D.卫星在轨道Ⅰ运动的周期大于在轨道Ⅲ运动的周期 [解析] 卫星从地面发射到轨道Ⅰ的过程中,一直加速,加速度方向向上,处于超重状态,故A错误;卫星从轨道Ⅱ的O点运动到Q点的过程中,万有引力与速度方向夹角为钝角, 3

万有引力做负功,故B正确;卫星从轨道Ⅱ变轨到Ⅲ的过程中,需要加速离心,机械能变大,故C错误;由R31T21=R33T23可知T3>T1,故D错误。 5.(2018·山西省孝义市高三下学期一模理综)从2011年10月进入高度为370km的圆轨道后,“天宫一号”一直在轨道上匀速运行,并完成了与三艘神舟飞船的交会对接任务。2016年3月16日,“天宫一号”进入轨道衰减期。就在前几天“天宫一号”进入大气层……。下列说法正确的是( C )

A.与“天宫一号”对接时,神舟飞船的速度应大于第一宇宙速度 B.2015年“天宫一号”的运行周期大于同步卫星运行周期 C.从2016年4月到2018年2月,“天宫一号”的速度越来越大,机械能越来越小 D.进入大气层后下落的过程中,“天宫一号”内的物体处于完全失重状态 [解析] 第一宇宙速度是卫星围绕地球做匀速圆周运动的最大线速度,其轨道半径为地球半径,而神舟飞船的轨道半径更大,故神舟飞船的线速度小于第一宇宙速度,故A错误;

根据GMmr2=m4π2T2r,解得:T=2πr3GM,因“天宫一号”的轨道半径小于同步卫星的半径,故其周期小于同步卫星的周期,故B错误;进入大气层,由于空气阻力的作用,“天宫一号”的轨道半径越来越小,线速度越来越大,机械能越来越小,故C正确;进入大气层后,除受重力作用外,还受空气阻力作用,其加速度小于重力加速度,故处于失重状态,而不是完全失重状态,故D错误;故选C。 6.(2018·广东省汕头市高三下学期4月模拟)2018年2月12日,我国采取一箭双星方式,成功发射了北斗三号第五、六颗组网卫星,中国北斗导航系统由5颗地球同步静止轨道卫星和30颗中高度轨道卫星组成。已知北斗M4卫星绕地球做匀速圆周运动,距离地面的高度为21617km,地球半径约为6400km,地面重力加速度g=9.8m/s2,则北斗M4卫星的加速度大小约为( A ) A.0.51m/s2 B.0.859m/s2 C.1.25m/s2 D.0.137m/s2

[解析] 在地球表面的物体:GMmR2=mg

北斗M4卫星绕地球做匀速圆周运动时:GMmR+h2=ma 4

解得:a=0.51m/s2。故选A。 7.(2018·陕西省宝鸡市模拟)2018年1月12日,我国以“一箭双星”方式成功发射第26、第27颗北斗导航卫星,拉开2018年将发射16颗北斗卫星的序幕。北斗导航卫星的轨道有三种:地球静止轨道(高度35809km)、倾斜地球同步轨道(高度35809km)、中圆地球轨道(高度21607km),如图所示。下列说法正确的是( D )

A.中圆轨道卫星的周期一定比静止轨道卫星的周期长 B.中圆轨道卫星受到的万有引力一定比静止轨道卫星受到的万有引力大 C.倾斜同步轨道卫星始终位于地球表面某点的正上方 D.倾斜同步轨道卫星每天在固定的时间经过同一地区的正上方 [解析] 中圆轨道卫星的轨道半径比地球静止同步轨道半径小,做圆周运动的周期短,选项A错误;由于不知道中圆轨道卫星与静止轨道卫星的质量,无法比较二者与地球之间的万有引力大小,选项B错误;地球静止轨道卫星始终位于地球表面某点的正上方,选项C错误;倾斜同步轨道卫星的周期与地球的自转周期相同,都是24小时,所以倾斜同步轨道卫星每天在固定的时间经过同一地区的正上方,D正确。 8.(2018·贵州省贵阳市高三5月模拟)2018年1月9日11时24分,我国在太原卫星发射中心用“长征二号丁”运载火箭,将“高景一号”03、04星成功发射升空,这两颗卫星是0.5米级高分辨率遥感卫星,他们均在距地面高度均为530km的轨道上绕地球做匀速圆周运动,以下说法正确的是( B ) A.这两颗卫星运行速率比地球同步卫星的速率小 B.这两颗卫星的加速度比地球同步卫星的加速度大 C.这两颗卫星的动能一定比地球同步卫星的动能大 D.这两颗卫星中任意一颗一天可看见6次日出 [解析] 两颗卫星均在距地面高度均为530km的轨道上绕地球做匀速圆周运动,可知高

度远小于同步卫星的高度,则由v=GMr可知,两颗卫星运行速率比地球同步卫星的速率小;由a=GMr2可知,加速度比地球同步卫星的加速度大,选项B正确,A错误;两颗卫星与同步卫星的质量关系不确定,则无法比较动能关系,选项C错误;根据开普勒第三定律r3T2=k,知两颗卫星轨道半径与同步卫星的轨道半径之比约为(6400+530)∶36000≈7∶36,则因

同步卫星的周期为24小时,则此周期为0.0875×24h≈2h,所以卫星的运行周期是地球自 5

转周期的1/12倍,因此卫星中的宇航员一天内可看到12次日出,故D错误。故选B。 9.(2018·东北三省四市高三第二次联合模拟)2017年4月20日,中国第一艘货运飞船“天舟一号”发射升空,并与在轨运行的“天宫二号”成功交会对接,开展了一系列任务,验证了空间站货物补给、推进剂在轨补加等关键技术。设地球半径为R,地球表面的重力加速度为g,两者对接后一起绕地球运行的轨道可视为圆轨道,离地面的高度为kR,运行周期为T。则下列说法正确的是( AC )

A.对接前,“天舟一号”可以先到达比“天宫二号”的轨道半径小的轨道然后加速对接 B.对接前,“天舟一号”可以先到达与“天宫二号”的轨道半径相同的轨道然后加速对接

C.对接后,飞船的加速度大小为a=g1+k2

D.对接后,飞船的速度大小为v=2πkRT [解析] 对接前,“天舟一号”在前,如果自身减速,在原轨道上万有引力大于所需要的向心力,做近心运动,轨道半径变小,即可以先到达比“天宫二号”的轨道半径小的轨道

然后加速对接,故A正确,B错误;在地球表面附近,根据重力等于万有引力mg=GMmR2,得

GM=gR2,对接后,轨道半径r=R+kR=(1+k)R,根据万有引力提供向心力,有GMm1r2=m1a,

得a=GMr2=gR21+k2R2=g1+k2,故C正确;对接后,飞船的线速度v=2πrT=2π1+kRT=2πR1+kT,故D错误。

10.(2017·江西省新余市二模)18世纪,数学家莫佩尔蒂,哲学家伏尔泰曾经设想“穿透”地球;假设能够沿着地球两极连线开凿一条沿着地轴的隧道贯穿地球,一个人可以从北极入口由静止自由落入隧道中,忽略一切阻力,此人可以从南极出口飞出,(已知此人的质量m=50kg;地球表面处重力加速度取g=10m/s2;地球半径R=6.4×106m;假设地球可视为质量分布均匀的球体。均匀球壳对壳内任一点的质点合引力为零)则以下说法正确的是( BD ) A.人与地球构成的系统,由于重力发生变化,故机械能不守恒

相关文档
最新文档