数列的概念及其表示方法
人教A版高中数学选择性必修第二册精品课件 第四章 数列 4.1 第1课时 数列的概念与简单表示

1 = + = 2,
解(1)设 an=kn+b(k≠0),则
解得
∴an=4n-2.
17 = 17 + = 66,
= -2.
(2)令an=88,即4n-2=88,解得n=22.5∉N*,
∴88不是数列{an}中的项.
角度2.根据数列的前几项写出数列的通项公式
【例2-2】 写出下列数列的一个通项公式:
解 递增数列.
3.在1984年到2016年的9届夏季奥运会上,我国获得的金牌数依次排成数
列:15,5,16,16,28,32,51,38,26.试画出该数列的图象.
解该数列的图象如图所示.
知识点3
数列的通项公式
如果数列{an}的第n项an与它的序号n之间的对应关系可以用一个式子来
表示,那么这个式子叫做这个数列的 通项公式
3
68 不是该数列的项.
(3)an=n(3n-28),令an<0,结合n∈N*,解得n=1,2,3,4,5,6,7,8,9,即数列{an}中有
9个负数项.
规律方法 1.利用数列的通项公式求某项的方法
数列的通项公式给出了第n项an与它的位置序号n之间的关系,只要用序号
代替公式中的n,就可以求出数列的相应项.
确定性、有序性、可重复性;
(2)集合中的元素可以是数,也可以是点、方程以及其他事物等,但数列中
的每一项必须是数.
自主诊断
1.下列有关数列的说法正确的是( D )
A.数列中的任意两项均不可能相同
B.数列-1,0,1与数列1,0,-1是同一个数列
C.数列1,3,5,7可表示为{1,3,5,7}
D.数列2,5,2,5,…,2,5,…是无穷数列
数列的基本概念和规律

数列的基本概念和规律数列是数学中常见的概念之一,是一种按照一定规律排列的数的集合。
它在数学和实际生活中都有广泛的应用。
在本文中,我们将介绍数列的基本概念和规律,并举例说明其在不同领域的具体应用。
一、数列的定义和表示方式数列是由一系列有序的数按照一定规律排列而成的。
一般地,数列可以用下标表示,如a₁、a₂、a₃,也可以用公式表示,如an=n²。
其中,a₁、a₂、a₃是数列的前三项,an是数列的第n项。
二、数列的分类根据数列的规律性质不同,我们可以将数列分为等差数列、等比数列和斐波那契数列三种常见类型。
1. 等差数列等差数列是指数列中的相邻两项之间的差值相等的数列。
其通项公式一般为an=a₁+(n-1)d,其中a₁为首项,d为公差。
等差数列在实际生活中有着广泛的应用,比如计算机科学中的循环语句、物理学中的匀速直线运动等。
2. 等比数列等比数列是指数列中的相邻两项之间的比值相等的数列。
其通项公式一般为an=a₁*q^(n-1),其中a₁为首项,q为公比。
等比数列在金融和经济学中有着重要的应用,比如复利计算、人口增长预测等。
3. 斐波那契数列斐波那契数列是指数列中的每一项都等于前两项之和的数列。
其通项公式一般为an=an-1+an-2,其中a₁=a₂=1。
斐波那契数列在自然界中随处可见,比如植物叶子的排列、螺旋线的形成等。
三、数列的求和公式在某些情况下,我们需要求解数列的前n项和。
对于等差数列和等比数列,我们可以通过求和公式快速计算出结果。
1. 等差数列的求和公式对于公差为d的等差数列,其前n项和公式为Sn=(n/2)(a₁+an)。
2. 等比数列的求和公式对于公比为q且q≠1的等比数列,其前n项和公式为Sn=a₁*(1-q^n)/(1-q)。
四、数列的应用举例数列在不同领域都有着广泛的应用。
以下是一些具体的例子。
1. 自然科学领域数列在物理、化学和生物学等自然科学领域中有着重要的应用。
比如在物理学中,等差数列可以用来描述匀速直线运动中物体的位移随时间的变化;等比数列可以用来描述指数增长或衰减的过程。
高中数学课件-第1讲 数列的概念与简单表示法

第六章 数列第1讲 数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通考试要求项公式).2.了解数列是自变量为正整数的一类特殊函数,理解单调性是数列的一项重要性质,可用来求最值.01聚焦必备知识知识梳理1.数列的有关概念(1)数列的定义一般地,我们把按照__________________排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数数列{a n}是从正整数集N*(或它的有限子集{1,2,…,n})到实数集R 的函数,其自变量是__________,对应的函数值是________________,记为a n=f (n).数列是一种特殊的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.提醒2.数列的表示法解析式法、表格法、____________.3.数列的单调性从第2项起,每一项都_________它的前一项的数列叫做递增数列;从第2项起,每一项都_________它的前一项的数列叫做递减数列.特别地,__________________的数列叫做常数列.4.数列的通项公式和递推公式(1)如果数列{a n}的__________________与它的____________之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.(2)如果一个数列的相邻两项或多项之间的关系可以用_______________来表示,那么这个式子叫做这个数列的递推公式.提醒(1)并不是所有的数列都有通项公式;(2)同一个数列的通项公式在形式上未必唯一.5.数列的前n项和公式如果数列{a n}的前n项和S n与它的____________之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的前n项和公式.常用结论1.思考辨析(在括号内打“ √”或“×”)(1)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(2)1,1,1,1,…,不能构成一个数列.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( )夯基诊断√××√(2)已知数列{a n }的前n 项和公式为S n =n 2,则a n =____________.答案:2n -1当n=1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,且a 1=1也满足此式,故a n =2n -1,n ∈N *.(3)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n=____________.答案:5n -4由a1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,a 4=16=5×4-4,…,归纳可知a n =5n -4.02突破核心命题考 点 一由an与S n的关系求通项公式C(2)已知数列{a n}的前n项和为S n,且满足S n=2n+2-3,则a n=_____.已知S n 求a n 的3个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.反思感悟训练1 (1)已知数列{a n}的前n项和为S n,且2a1+22a2+23a3+…+2n a n=n·2n,则数列{a n}的通项公式为a n=____________.(2)已知S n为数列{a n}的前n项和,a1=1,S n S n+1=-a n+1(n∈N*),则a10=____________.例2 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{a n }的通项公式为a n =____________.考 点 二由数列的递推关系求通项公式考向1累加法例3 已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =_______.2累乘法反思感悟B考 点 三数列的性质考向 1数列的单调性D2数列的周期性答案:13数列的最值A反思感悟训练3 (1)如表,定义函数f (x ):对于数列{a n },a 1=4,a n =f (a n -1),n =2,3,4,…,则a 2023=( )A.1B.2C.5D.4C x12345f (x )54312C 由题意,a1=4,a n=f(a n-1),所以a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=f(5)=2,a5=f(a4)=f(2)=4,a6=f(a5)=f(4)=1,a7=f(a6)=f(1)=5,…,则数列{a n}是以4为周期的周期数列,所以a2023=a2020+3=a3=5,故选C.突破核心命题限时规范训练聚焦必备知识 4103限时规范训练(四十)ADB4.大衍数列,来源于我国的《乾坤谱》,是世界数学史上第一道数列题,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为( )CA.760B.800C.840D.924BCD6.(2023·珠海质检)数列{a n }满足a 1=1,a 2=2且a n +2=a n +(-1)n ,n ∈N *,则该数列的前40项之和为( )A.-170B.80C.60D.230C C 由a n +2=a n +(-1)n ,n ∈N *,得a 2k +2=a 2k +1,a 2k +1=a 2k -1-1,所以a 2k +1+a 2k +2=a 2k -1+a 2k =…=a 1+a 2=3,所以数列{a n }的前40项之和为20(a 1+a 2)=60.。
22人教版高中数学新教材选择性必修第二册--4.1 数列的概念 第1课时 数列的概念与表示

由 =
π
π
sin cos
4
4
=
1
π
sin ,得 1
2
2
=
1
, 2
2
= 0, 3 =
1
3π
sin
2
2
=
1
− , 4
2
=
1
2
0, 5 = 1 = , … , 所以数列 { } 的项具有周期性,且 1 + 2 + 3 + 4 = 0,
所以 1 + 2 + 3 + ⋯ . +2021 = 1 + 2020 + 2021 = 505(1 + 2 + 3 +
9
解题感悟
归纳数列通项公式的方法技巧
1.要由数列的前几项写出数列的一个通项公式,只需观察分析数列中项的构
成规律,看哪些部分不随序号的变化而变化,哪些部分随序号的变化而变化,
确定变化部分随序号变化的规律,继而表示出 .
2.常见数列的通项公式:
数列
-1,2,-3,4,…
1,3,5,7,…
通项公式
续表
1,2,4,8,…
1,4,9,16,…
9,99,999,9999,…
类型2 周期数列及其应用
例2
(1) (多选)已知数列 { }, = sin
A. 1 =
1
2
B. 2 = 1
C. 2020 = 0
因为 = sin
D. +4 =
π
π
cos
4
4
1
2
1
2
π
, 所以 1
π
数列的概念和简单表示法ppt

递增性
总结词
数列的各项按照从小到大的顺序排列。
详细描述
递增性指的是数列中的每一项都比前一项大,即数列按照从小到大的顺序排列。 例如,一个递增的整数数列可以是1,2,3,4,5,…。
递减性
总结词
数列的各项按照从大到小的顺序排列。
详细描述
递减性指的是数列中的每一项都比后一项小,即数列按照从大到小的顺序排 列。例如,一个递减的整数数列可以是5,4,3,2,1,…。
2023
数列的概念和简单表示法
目录
• 数列的定义和分类 • 数列的表示法 • 数列的特性 • 数列的简单运算 • 数列的扩展知识 • 数列的应用案例
01
数列的定义和分类
数列的定义
数列是一种特殊的函数,它按照顺序排列一组实数。 数列的第一个数叫做首项,最后一个数叫做末项。
数列中的每一个数叫做项,而每个项与它前面的那个 数的差叫做公差。
数列的极限和收敛性
数列的极限
如果当n趋向无穷大时,数列的项无限接近某个常数a,则称a为该数列的极限。
数列的收敛性
如果一个数列存在极限,则称该数列为收敛数列。
06
数列的应用案例
数列在金融领域的应用
复利计算
01
数列常用于计算投资收益的复利,如等比数列的求和公式被广
泛应用于计算累计利息。
风险评估
02
等差数列的性质
等差数列的任意一项都等于其首项加上一个常数,即第n 项a_n=a_1+(n-1)d,其中d为公差。
等比数列的概念和性质
等比数列的定义
如果一个数列从第二项起,每一项与前一项的比等于同一个常数,这个数列 就叫做等比数列。这个常数叫做等比数列的公比。
等比数列的性质
数列的概念(基础)

数列的概念与简单表示法要点一、数列的概念数列概念:按照一定顺序排列着的一列数称为数列. 要点诠释:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项:数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项,第2项,…;排在第n 位的数称为这个数列的第n 项.其中数列的第1项也叫作首项;项在数列中的位置序号称为项数.要点诠释:数列的项与项数是两个不同的概念。
数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号.类比集合中元素的三要素,数列中的项也有相应的三个性质: (1)确定性:一个数是否数列中的项是确定的; (2)可重复性:数列中的数可以重复;(3)有序性:数列中的数的排列是有次序的.数列的一般形式可以写成:1a ,2a ,3a ,…,n a ,…,或简记为{}n a .其中n a 是数列的第n 项.要点诠释:{}n a 与n a 的含义完全不同,{}n a 表示一个数列,n a 表示数列的第n 项. 要点二、数列的分类 根据数列项数的多少分: 有穷数列:项数有限的数列. 无穷数列:项数无限的数列. 根据数列项的大小分:递增数列:从第2项起,每一项都大于它的前一项的数列。
递减数列:从第2项起,每一项都小于它的前一项的数列。
常数数列:各项相等的数列。
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 要点三、数列的通项公式与前n 项和数列的通项公式表示,那么这个公式就叫做这个数列的通项公式.如数列:0,1,23,…的通项公式为1n a n =-(*n N ∈);1,1,1,1,…的通项公式为1n a =(*n N ∈);1,12,13,14,…的通项公式为1n a n=(*n N ∈);要点诠释:(1)并不是所有数列都能写出其通项公式; (2)一个数列的通项公式有时是不唯一的。
数列的概念和应用
数列的概念和应用一、数列的概念1.数列的定义:数列是由按照一定顺序排列的一列数组成的。
2.数列的表示方法:用大括号“{}”括起来,例如:{a1, a2, a3, …, an}。
3.数列的项:数列中的每一个数称为数列的项,简称项。
4.数列的项的编号:数列中每个项都有一个编号,通常表示为n,n为正整数。
5.数列的通项公式:用来表示数列中第n项与n之间关系的公式称为数列的通项公式,例如:an = n^2。
6.数列的类型:(1)等差数列:数列中任意两个相邻项的差都相等,记为d(d为常数)。
(2)等比数列:数列中任意两个相邻项的比都相等,记为q(q为常数,q≠0)。
(3)斐波那契数列:数列的前两项分别为0和1,从第三项开始,每一项都是前两项的和。
二、数列的应用1.等差数列的应用:(1)等差数列的求和公式:Sn = n/2 * (a1 + an)。
(2)等差数列的前n项和公式:Sn = n/2 * (2a1 + (n-1)d)。
(3)等差数列的第n项公式:an = a1 + (n-1)d。
2.等比数列的应用:(1)等比数列的求和公式:Sn = a1 * (1 - q^n) / (1 - q)。
(2)等比数列的前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)。
(3)等比数列的第n项公式:an = a1 * q^(n-1)。
3.斐波那契数列的应用:(1)斐波那契数列的性质:斐波那契数列的前两项分别为0和1,从第三项开始,每一项都是前两项的和。
(2)斐波那契数列的通项公式:Fn = (1/√5) * [((1+√5)/2)^n - ((1-√5)/2)^n]。
4.数列在实际生活中的应用:(1)计数:数列可以用来表示一些有序的集合,如自然数集、整数集等。
(2)计时:数列可以用来表示时间序列数据,如一天内的每小时气温变化。
(3)排队:数列可以用来表示排队时的人数,以及每个人的位置。
(4)数据分析:数列可以用来表示一组数据的分布情况,如成绩分布、经济发展水平等。
数列的概念及表示方法PPT课件
例2.根据下面数列{an}的通项公式,求a5,an-1:
(1)an= n n 1
(2)an=(-1)n·n.
CHENLI
17
问题引领7
数列有那些表示方法?
{1、通项公式法
数列的表示法: 2、图象法
3、列表法
你能做出下列两个数列的图象吗? (1)全体正偶数按从小到大顺序构成的数列 :
1,1,2,3,5,8,13,21,34
CHENLI
5
上述各例中按照一定顺序排列的一列数:
v三角形数:1,3,6,10,··· v正方形数:1,4,9,16,···
v斐波那契数: 1 , 1 , 2 , 3 ,5 ,8 ,1 3
v-1的1次幂,2次幂,3次幂,……排列成一列数:
1 , 1 , 1 , 1
函数解析式 an f(n) 就是数列的通项公式,
CHENLI
15
问题引领5 你能由数列的前几项写出数列的通项公式吗? 例1:写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
(1) 1, 1 ,1 , 1 ; 23 4
根据数列的前若干项写 出的通项公式的形式唯
(2) 2,0,2,0;
一吗?请举例说明。
1 , 2 , 3 , 4 , 6 2 3
有穷数列 递增数列
1 无, 1 穷, 数1 , 列1 , 常数 列 4
1 , 1 , 1 , 1 5
无穷数列 摆动数列
CHENLI
11
数列的一般形式可以写成:
a1 , a2, a3, , an ,
a 简记为 an ,其中 n 叫做数列的第n 项。
注意:①一些数列的通项公式不是唯一的
高考数学-第六章 §6.1 数列的概念与简单表示法
数列的概念与简单表示法考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的有关概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.若已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).(3)数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式. 2.数列与函数数列{a n }是从正整数集N *(或它的有限子集{1,2,…,n })到实数集R 的函数,其自变量是序号n ,对应的函数值是数列的第n 项a n ,记为a n =f (n ).也就是说,当自变量从1开始,按照从小到大的顺序依次取值时,对应的一列函数值f (1),f (2),…,f (n ),…就是数列{a n }. 3.数列的分类分类标准 类型 满足条件 项数 有穷数列 项数有限 无穷数列 项数无限 项与项间递增数列a n +1>a n其中的大小 关系递减数列 a n +1<a n n ∈N *常数列a n +1=a n4.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 微思考1.数列的项与项数是一个概念吗?提示 不是.数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. 2.数列作为一种特殊函数,特殊性体现在什么地方?提示 体现在定义域上,数列的定义域是正整数集N *(或它的有限子集{1,2,3,…,n }).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)数列的通项公式是唯一的.( × )(2)所有数列的第n 项都能使用公式表达.( × ) (3)2,2,2,2,…,不能构成一个数列.( × )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( √ ) 题组二 教材改编2.数列13,18,115,124,135,…的通项公式是a n =________.答案 a n =1n (n +2),n ∈N *3.已知数列a 1=2,a n =1-1a n -1(n ≥2).则a 2 022=________.答案 -1解析 a 1=2,a 2=1-12=12,a 3=1-2=-1,a 4=1+1=2,所以数列{a n }满足a n =a n +3,所以a 2 022=a 3=-1.4.已知数列{a n }的通项公式为a n =n 2-λn +1,若{a n }是递增数列,则实数λ的取值范围是________. 答案 (-∞,3)解析 由题意得a n +1>a n ,即(n +1)2-λ(n +1)+1>n 2-λn +1. 化简得,λ<2n +1,n ∈N *,∴λ<3. 题组三 易错自纠5.已知数列{a n }的前n 项和为S n =-2n 2+1,则{a n }的通项公式为a n =________.答案 ⎩⎪⎨⎪⎧-1,n =1,-4n +2,n ≥2(n ∈N *) 解析 当n =1时,a 1=S 1=-1.当n ≥2时,a n =S n -S n -1=-2n 2+1+2(n -1)2-1=-4n +2,a 1=-1不适合上式,所以a n =⎩⎪⎨⎪⎧-1,n =1,-4n +2,n ≥2,n ∈N *.6.若a n =-n 2+9n +10,则当数列{a n }的前n 项和S n 最大时,n 的值为________. 答案 9或10解析 要使S n 最大,只需要数列中正数的项相加即可, 即需a n >0,-n 2+9n +10>0,得-1<n <10, 又n ∈N *,所以1≤n <10. 又a 10=0,所以n =9或10.题型一 由a n 与S n 的关系求通项公式1.已知数列{a n }的前n 项和S n =n 2+2n ,则a n =________. 答案 2n +1解析 当n =1时,a 1=S 1=3.当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -1)2+2(n -1)]=2n +1.由于a 1=3适合上式,∴a n =2n +1.2.已知数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 当n =1时,a 1=S 1=2a 1+1,∴a 1=-1. 当n ≥2时,S n =2a n +1,① S n -1=2a n -1+1.②①-②,S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,即a n =2a n -1(n ≥2),∴{a n }是首项a 1=-1,q =2的等比数列. ∴a n =a 1·q n -1=-2n -1.3.设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2解析 当n =1时,a 1=21=2. ∵a 1+3a 2+…+(2n -1)a n =2n ,①∴a 1+3a 2+…+(2n -3)a n -1=2n -1(n ≥2),② 由①-②得,(2n -1)·a n =2n -2n -1=2n -1, ∴a n =2n -12n -1(n ≥2).显然n =1时不满足上式,∴a n=⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2.4.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则下列结论正确的是_______. ①a n =1n (n -1)②a n =⎩⎪⎨⎪⎧-1,n =1,1n (n -1),n ≥2③S n =-1n④数列⎩⎨⎧⎭⎬⎫1S n 是等差数列答案 ②③④解析 ∵a n +1=S n ·S n +1=S n +1-S n ,两边同除以S n +1·S n ,得1S n +1-1S n =-1.∴⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,d =-1的等差数列,即1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n . 当n ≥2时,a n =S n -S n -1=-1n +1n -1=1n (n -1),又a 1=-1不适合上式,∴a n=⎩⎨⎧-1,n =1,1n (n -1),n ≥2.思维升华 (1)已知S n 求a n 的常用方法是利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2转化为关于a n 的关系式,再求通项公式.(2)S n 与a n 关系问题的求解思路方向1:利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. 方向2:利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解. 题型二 由数列的递推关系式求通项公式命题点1 累加法例1 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n答案 A解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2),把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 命题点2 累乘法例2 已知数列{a n }的前n 项和为S n ,其首项a 1=1,且满足3S n =(n +2)a n ,则a n =______. 答案n (n +1)2解析 ∵3S n =(n +2)a n ,① 3S n -1=(n +1)a n -1(n ≥2),②由①-②得,3a n =(n +2)a n -(n +1)a n -1, 即a n a n -1=n +1n -1, ∴a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n +1n -1×n n -2×n -1n -3×…×31×1=n (n +1)2.当n =1时,满足a n =n (n +1)2,∴a n =n (n +1)2.本例2中,若{a n }满足2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0,且a n >0,a 1=1,则a n =____________. 答案 n ·2n -1解析 由2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0得 n (2a 2n +a n ·a n +1-a 2n +1)+2a n (a n +a n +1)=0,∴n (a n +a n +1)(2a n -a n +1)+2a n (a n +a n +1)=0, (a n +a n +1)[(2a n -a n +1)·n +2a n ]=0, 又a n >0,∴2n ·a n +2a n -n ·a n +1=0, ∴a n +1a n =2(n +1)n, 又a 1=1,∴当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=2n n -1×2(n -1)n -2×2(n -2)n -3×…×2×32×2×21×1=2n -1·n .又n =1时,a 1=1适合上式,∴a n =n ·2n -1.思维升华 (1)根据形如a n +1=a n +f (n )(f (n )是可以求和的函数)的递推关系式求通项公式时,常用累加法求出a n -a 1与n 的关系式,进而得到a n 的通项公式.(2)根据形如a n +1=a n ·f (n )(f (n )是可以求积的函数)的递推关系式求通项公式时,常用累乘法求出a na 1与n 的关系式,进而得到a n 的通项公式.跟踪训练1 (1)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 ∵a n +1-a n =1n (n +1)=1n -1n +1,∴当n ≥2时,a n -a n -1=1n -1-1n ,a n -1-a n -2=1n -2-1n -1,……a 2-a 1=1-12,∴以上各式相加得,a n -a 1=1-1n ,∴a n =4-1n ,a 1=3适合上式,∴a n =4-1n.(2)已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =________. 答案 2222n n -+解析 ∵a n +1a n =2n ,∴当n ≥2时,a n a n -1=2n -1,a n -1a n -2=2n -2,……a 3a 2=22,a 2a 1=2, ∴a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=2n -1·2n -2·…·22·2·2 =21+2+3+…+(n -1)·22(1)212222,n nn n -⋅-++==,又a 1=2满足上式, ∴a n =2222n n -+.题型三 数列的性质命题点1 数列的单调性例3 已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值范围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)答案 D解析 (单调性)因为a n +1-a n =3n +3+k 2n +1-3n +k 2n =3-3n -k2n +1,由数列{a n }为递减数列知,对任意n ∈N *,a n +1-a n =3-3n -k2n +1<0,所以k >3-3n 对任意n ∈N *恒成立,所以k ∈(0,+∞). 思维升华 解决数列的单调性问题的三种方法(1)用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. (2)用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.(3)函数法.命题点2 数列的周期性例4 (2021·广元联考)已知数列{a n },若a n +1=a n +a n +2(n ∈N *),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则{b n }的前2 022项的和为( ) A .0 B .1 C .-5 D .-1 答案 A解析 ∵b n +2=b n +1-b n ,b 1=1,b 2=-2, ∴b 3=b 2-b 1=-2-1=-3, b 4=b 3-b 2=-1,b 5=b 4-b 3=-1-(-3)=2, b 6=b 5-b 4=2-(-1)=3, b 7=b 6-b 5=3-2=1.∴{b n }是周期为6的周期数列, 且S 6=1-2-3-1+2+3=0.∴S 2 022=S 337×6=0.思维升华 解决数列周期性问题根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和. 命题点3 数列的最值例5 已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn 的最小值为( )A.293 B .47-1 C.485 D.274 答案 C解析 由a n +1-a n =2n ,可得a n =n 2-n +28, ∴a n n =n +28n-1, 设f (x )=x +28x ,可知f (x )在(0,28]上单调递减,在(28,+∞)上单调递增,又n ∈N *,且a 55=485<a 66=293,故选C.思维升华 求数列的最大项与最小项的常用方法 (1)函数法,利用函数求最值.(2)利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2)确定最小项.(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝ ⎛⎭⎪⎫或当a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1;若有a n+1-a n =f (n +1)-f (n )<0⎝ ⎛⎭⎪⎫或当a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1.跟踪训练2 (1)已知数列{a n }的通项公式是a n =n3n +1,那么这个数列是( ) A .递增数列 B .递减数列 C .摆动数列 D .常数列 答案 A解析 a n +1-a n =n +13n +4-n 3n +1=1(3n +1)(3n +4)>0,∴a n +1>a n ,∴选A.(2)已知数列{a n }满足a n +2=a n +1-a n ,n ∈N *,a 1=1,a 2=2,则a 2 021等于( ) A .-2 B .-1 C .1 D .2 答案 A解析 由题意,数列{a n }满足a n +2=a n +1-a n , 且a 1=1,a 2=2,当n =1时,可得a 3=a 2-a 1=2-1=1; 当n =2时,可得a 4=a 3-a 2=1-2=-1; 当n =3时,可得a 5=a 4-a 3=-1-1=-2; 当n =4时,可得a 6=a 5-a 4=-2-(-1)=-1; 当n =5时,可得a 7=a 6-a 5=-1-(-2)=1; 当n =6时,可得a 8=a 7-a 6=1-(-1)=2; ……可得数列{a n }是以6为周期的周期数列, 所以a 2 021=a 336×6+5=a 5=-2. 故选A.(3)在数列{a n }中,a n =(n +1)⎝⎛⎭⎫78n,则数列{a n }的最大项是第________项. 答案 6或7解析 a n +1a n =(n +2)⎝⎛⎭⎫78n +1(n +1)⎝⎛⎭⎫78n=78×n +2n +1≥1.得n ≤6,即当n ≤6时,a n +1≥a n , 当n >6时,a n +1<a n ,∴a 6或a 7最大.课时精练1.数列3,3,15,21,33,…,则9是这个数列的第( ) A .12项 B .13项 C .14项 D .15项 答案 C解析数列3,3,15,21,33,…,可化为3,9,15,21,27,…,则数列的通项公式为a n=6n-3,当a n=6n-3=9时,6n-3=81,∴n=14,故选C.2.若数列{a n}满足a1=1,a n+1-a n-1=2n,则a n等于()A.2n+n-2 B.2n-1+n-1C.2n+1+n-4 D.2n+1+2n-2答案A解析∵a n+1-a n=2n+1,∴a2-a1=21+1,a3-a2=22+1,a4-a3=23+1,…,a n-a n-1=2n-1+1(n≥2),以上各式相加得,a n-a1=21+…+2n-1+(n-1)=2(1-2n-1)1-2+n-1=2n+n-3,∴a n=2n+n-2,选A.3.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+…+a2 021等于()A.4 711 B.4 712C.4 714 D.4 715答案C解析由题意可知a n a n+1a n+2=8,则对任意的n∈N*,a n≠0,则a1a2a3=8,∴a3=8a1a2=4,由a n a n+1a n+2=8,得a n+1a n+2a n+3=8,∴a n a n+1a n+2=a n+1a n+2a n+3,∴a n+3=a n,∵2 021=3×673+2,因此a1+a2+…+a2 021=673(a1+a2+a3)+a1+a2=673×7+1+2=4 714.故选C.4.已知数列{a n }的通项公式为a n =n 2-11n +a n,a 5是数列{a n }的最小项,则实数a 的取值范围是( )A .[-40,-25]B .[-40,0]C .[-25,25]D .[-25,0]答案 B解析 由已知条件得a 5是数列{a n }的最小项, 所以⎩⎪⎨⎪⎧a 5≤a 4,a 5≤a 6, 即⎩⎨⎧ 52-11×5+a 5≤42-11×4+a 4,52-11×5+a 5≤62-11×6+a 6,解得⎩⎨⎧a ≥-40,a ≤0. 故选B.5.(多选)下列四个命题中,正确的有( )A .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k B .已知数列{a n }的通项公式为a n =n 2-n -50,n ∈N *,则-8是该数列的第7项C .数列3,5,9,17,33,…的一个通项公式为a n =2n -1D .数列{a n }的通项公式为a n =n n +1,n ∈N *,则数列{a n }是递增数列 答案 ABD解析 对于A ,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n +1n 的第k 项为1+1k ,A 正确; 对于B ,令n 2-n -50=-8,得n =7或n =-6(舍去),B 正确;对于C ,将3,5,9,17,33,…的各项减去1,得2,4,8,16,32,…,设该数列为{b n },则其通项公式为b n =2n (n ∈N *),因此数列3,5,9,17,33,…的一个通项公式为a n =b n +1=2n +1(n ∈N *),C 错误;对于D ,a n =n n +1=1-1n +1,则a n +1-a n =1n +1-1n +2=1(n +1)(n +2)>0,因此数列{a n }是递增数列,D 正确.故选ABD.6.(多选)若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(a ∈N *),其中是“差递减数列”的有( )A .a n =3nB .a n =n 2+1C .a n =nD .a n =ln n n +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1,所以{a n +1-a n }为递增数列,故B 错误;对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n ,所以{a n +1-a n }为递减数列,故C 正确; 对于D ,若a n =ln n n +1,则a n +1-a n =ln n +1n +2-ln n n +1=ln ⎝ ⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n ,由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故D 正确. 故选CD.7.若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 解析 当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.8.(2021·北京市昌平区模拟)设数列{a n }的前n 项和为S n ,且∀n ∈N *,a n +1>a n ,S n ≥S 6.请写出一个满足条件的数列{a n }的通项公式a n =________.答案 n -6(n ∈N *)(答案不唯一)解析 ∀n ∈N *,a n +1>a n ,则数列{a n }是递增的,∀n ∈N *,S n ≥S 6,即S 6最小,只要前6项均为负数,或前5项为负数,第6项为0,即可, 所以,满足条件的数列{a n }的一个通项公式a n =n -6(n ∈N *)(答案不唯一).9.已知在数列{a n }中,a 1a 2a 3·…·a n =n 2(n ∈N *),则a 9=________. 答案 8164解析 ∵a 1a 2·…·a 8=82=64,①a 1·a 2·…·a 9=92=81,②②÷①得a 9=8164. 10.已知数列的通项为a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项. 答案 5解析 因为a n =n +13n -16,数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163,又因为n ∈N *,且数列{a n }的前5项递减,所以n =5时,a n 的值最小.11.已知数列{a n }的前n 项和为S n ,求数列{a n }的通项公式.(1)S n =2n -1,n ∈N *;(2)S n =2n 2+n +3,n ∈N *.解 (1)∵S n =2n -1(n ∈N *),∴当n =1时,a 1=S 1=2-1=1;当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1.经检验,当n =1时,符合上式,∴a n =2n -1(n ∈N *).(2)∵S n =2n 2+n +3(n ∈N *),∴当n =1时,a 1=S 1=2×12+1+3=6;当n ≥2时,a n =S n -S n -1=2n 2+n +3-[2(n -1)2+(n -1)+3]=4n -1. 经检验,当n =1时,不符合上式,∴a n =⎩⎪⎨⎪⎧6,n =1,4n -1,n ≥2,n ∈N *. 12.在数列{a n }中,a n =-2n 2+9n +3.(1)-107是不是该数列中的某一项?若是,其为第几项?(2)求数列中的最大项.解 (1)令a n =-107,-2n 2+9n +3=-107,2n 2-9n -110=0,解得n =10或n =-112(舍去).所以a 10=-107. (2)a n =-2n 2+9n +3=-2⎝⎛⎭⎫n -942+1058, 由于n ∈N *,所以最大项为a 2=13.13.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024答案 C解析 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.故选C.14.已知数列{a n }的前n 项和为S n ,且满足4(n +1)·(S n +1)=(n +2)2a n ,则数列{a n }的通项公式为( )A .(2n +1)2-1B .(2n +1)2C .8n 2D .(n +1)3答案 D解析 在4(n +1)·(S n +1)=(n +2)2a n 中,令n =1,得8(a 1+1)=9a 1,所以a 1=8,因为4(n +1)·(S n +1)=(n +2)2a n ,①所以4n ·(S n -1+1)=(n +1)2a n -1(n ≥2),②①-②得,4a n =(n +2)2n +1a n -(n +1)2n a n -1, 即n 2n +1a n =(n +1)2n a n -1,a n =(n +1)3n 3a n -1,所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1 =(n +1)3n 3×n 3(n -1)3×…×3323×8 =(n +1)3(n ≥2),又a 1=8也满足此式,所以数列{a n }的通项公式为(n +1)3. 故选D.15.设数列{a n }的前n 项和为S n ,满足S n =(-1)n a n +12n ,则S 1+S 3+S 5等于( ) A .0 B.1764 C.564 D.2164答案 D解析 数列{a n }的前n 项和为S n ,满足S n =(-1)n a n +12n , 当n 为偶数时,S n =S n -S n -1+12n , 即有S n -1=12n ,所以S 1+S 3+S 5=14+116+164=2164. 故选D.16.(2020·鹰潭模拟)S n 是数列{a n }的前n 项和,且a n -S n =12n -12n 2. (1)求数列{a n }的通项公式;(2)若b n =2n a-5a n ,求数列{b n }中最小的项.解 (1)对任意的n ∈N *,由a n -S n =12n -12n 2,得a n +1-S n +1=12(n +1)-12(n +1)2, 两式相减得a n =n ,因此数列{a n }的通项公式为a n =n .(2)由(1)得b n =2n -5n ,则b n +1-b n =[2n +1-5(n +1)]-(2n -5n )=2n -5. 当n ≤2时,b n +1-b n <0, 即b n +1<b n ,∴b 1>b 2>b 3; 当n ≥3时,b n +1-b n >0, 即b n +1>b n ,∴b 3<b 4<b 5<…,所以数列{b n}的最小项为b3=23-5×3=-7.。
第一节 数列的概念与简单表示方法
第六章数列(必修5)第一节数列的概念与简单表示方法高考概览:1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类函数.[知识梳理]1.数列的有关概念(1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.(2)数列的分类(3)数列的表示法 数列有三种表示法,它们分别是列表法、图象法和解析式法.2.数列的通项公式(1)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2. [辨识巧记]1.一个重要关系数列是一种特殊的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.2.两个特殊问题(1)对于数列与周期性有关的题目,关键是找出数列的周期.(2)求数列最大项的方法:①利用数列{a n }的单调性;②解不等式组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1, [双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( )(2)一个数列中的数是不可以重复的.( )(3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( )[答案] (1)× (2)× (3)× (4)√2.(必修5P 31例3改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5=( )A.32B.53C.85D.23[解析] 由a 1=1,a n =1+(-1)na n -1(n ≥2),得a 2=1+1=2,a 3=1-12=12,a 4=1+2=3,a 5=1-13=23.故选D.[答案] D3.已知数列{a n }为32,1,710,917,…,则可作为数列{a n }的通项公式的是( )A .a n =n -1n 2+1B .a n =n +1n 2+1C .a n =2n +1n 2+1D .a n =2n -1n 2+1[解析] 由32,55,710,917,…,归纳得a n =2n +1n 2+1,故选C. [答案] C4.已知数列,1,3,5,7,…,2n -1,…,则35是它的( )A .第22项B .第23项C .第24项D .第28项[解析] 由35=45=2×23-1,可知35是该数列的第23项.故选B.[答案] B5.已知数列{a n }的前n 项和S n =3+2n ,则a n =________. [解析] ∵S n =3+2n ,∴S n -1=3+2n -1(n ≥2),a n =S n -S n -1=2n -1(n ≥2). 而a 1=S 1=5,∴a n =⎩⎪⎨⎪⎧ 5,n =1,2n -1,n ≥2. [答案] ⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2考点一 归纳数列通项公式【例1】 写出下面各数列的一个通项公式:(1)12,34,78,1516,3132,…;(2)-1,32,-13,34,-15,36,…;(3)23,-1,107,-179,2611,-3713,…;(4)3,33,333,3333,….[解] (1)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(2)奇数项为负,偶数项为正,故通项公式的符号因数为(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)n n .也可写为a n =⎩⎪⎨⎪⎧ -1n ,n 为奇数,3n ,n 为偶数.(3)偶数项为负,而奇数项为正,故通项公式中必含有因子(-1)n +1,观察各项绝对值组成的数列,从第3项到第6项可见,分母分别由奇数7,9,11,13组成,而分子则是32+1,42+1,52+1,62+1,按照这样的规律,第1、2两项可改写为12+12+1,-22+12·2+1, 所以a n =(-1)n +1n 2+12n +1. (4)将数列各项改写为:93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,….所以a n =13(10n -1).(1)根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.[对点训练]1.下列关于星星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2[解析] 从图中可观察星星的构成规律,n =1时,有1个;n =2时,有3个;n =3时,有6个;n =4时,有10个;…∴a n =1+2+3+4+…+n =n (n +1)2.故选C.[答案] C2.已知数列{a n }的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( )A .a n =(-1)n -1+1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数 C .a n =2sin n π2D .a n =cos(n -1)π+1[解析] 对于选项C ,a 3=2sin 3π2=-2≠2,故选C.[答案] C考点二 S n 与a n 的关系【例2】 (1)已知数列{a n }的前n 项和S n =3n 2-2n ,求数列{a n }的通项公式.(2)已知数列{a n }的前n 项和S n =23a n +13,求数列{a n }的通项公式.[思路引导] 利用a n =S n -S n -1(n ≥2)转化→验证n =1→确定结果[解] (1)当n =1时,a 1=S 1=3×12-2×1=1;当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5.∵a 1=1也适合上式,∴a n =6n -5. (2)由S n =23a n +13得,当n ≥2时,S n -1=23a n -1+13,两式相减整理得:当n ≥2时,a n =-2a n -1.又n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,∴a n =(-2)n -1.[拓展探究] (1)若把本例(1)中“S n =3n 2-2n ”改为“S n =3n 2-2n +1”,其他条件不变,数列{a n }的通项公式是________.(2)本例(2)中条件改为a 1=-1,a n +1=S n S n +1,则S n =__________.[解析] (1)当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=(3n 2-2n +1)-[3(n -1)2-2(n -1)+1]=6n -5.∵a 1=2不适合上式,∴a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2. (2)由已知得a n +1=S n +1-S n =S n S n +1,两边同时除以S n S n +1得1S n-1S n +1=1, 即1S n +1-1S n =-1.又1S 1=-1, 所以⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列, 所以1S n=-1+(n -1)×(-1)=-n , 即S n =-1n .[答案] (1)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 (2)-1n已知S n 求a n 的一般步骤(1)当n =1时,由a 1=S 1求a 1的值.(2)当n ≥2时,由a n =S n -S n -1,求得a n 的表达式.(3)检验a 1的值是否满足(2)中的表达式,若不满足,则分段表示a n .(4)写出a n 的完整表达式.[对点训练]已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .[解] (1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2. 考点三 数列的函数性质【例3】 (1)(2018·内蒙古阿拉善左旗月考)已知数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2018等于( ) A .1 B .-1 C .-12 D .-2(2)已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. [思路引导] (1)递推a 1,a 2,a 3,a 4等→确定数列{a n }的周期→求值[解析] (1)∵a 1=1,a n +1=-1a n +1,∴a 2=-1a 1+1=-12,a 3=-1a 2+1=-2,a 4=-1a 3+1=1.由上述可知该数列为周期数列,其周期为3.又∵2018=3×672+2,∴a 2018=a 2=-12.故选C.(2)解法一:(定义法)因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1) (*).因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.解法二:(函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =-λ2,要使数列{a n }为递增数列,只需使定义在正整数集上的函数f (n )为增函数,故只需满足f (1)<f (2),即λ>-3.[答案] (1)C (2)λ>-3(1)周期数列的常见形式: ①所给递推关系中含有三角函数,利用三角函数的周期性;②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.[对点训练]1.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2),那么a 2019=( )A .1B .-2C .3D .-3[解析] 因为a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2,所以a n +3=-a n ,所以a n +6=-a n +3=a n ,所以{a n }是以6为周期的周期数列.因为2019=336×6+3,所以a 2019=a 3=a 2-a 1=3-2=1.故选A.[答案] A2.(2018·山东济宁期中)已知数列{a n }满足a n =⎩⎪⎨⎪⎧a n -2,n <4,(6-a )n -a ,n ≥4,若对任意的n ∈N *都有a n <a n +1成立,则实数a 的取值范围为( )A .(1,4)B .(2,5)C .(1,6)D .(4,6)[解析] 因为对任意的n ∈N *都有a n <a n +1成立,所以数列是递增数列,因此⎩⎪⎨⎪⎧ 1<a ,6-a >0,a <(6-a )×4-a ,解得1<a <4.故选A.[答案] A课后跟踪训练(三十四)基础巩固练一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )A.(-1)n +12B .cos n π2 C.n +12πD .cos n +22π [解析] 令n =1,2,3,…,逐一验证四个选项,易得D 正确.故选D.[答案] D2.(2019·福建福州八中质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2017=( )A .1B .0C .2017D .-2017[解析] ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2017=a 1=1.故选A.[答案] A3.某数列{a n }的前四项为0,2,0,2,给出下列各式:①a n =22[1+(-1)n ];②a n =1+(-1)n ;③a n =⎩⎪⎨⎪⎧2(n 为偶数),0(n 为奇数).其中可作为{a n }的通项公式的是( )A .①B .①②C .②③D .①②③[解析] 把每个式子中的前四项算出来与已知对照一下即可.[答案] D4.数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( )A .103 B.8658 C.8258 D .108[解析] 根据题意并结合二次函数的性质可得a n =-2n 2+29n +3=-2⎝ ⎛⎭⎪⎫n -2942+3+8418, ∴n =7时,a n 取得最大值,最大项a 7的值为108.故选D.[答案] D5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则a 10=( )A .64B .32C .16D .8[解析] 由a n +1·a n =2n ,所以a n +2·a n +1=2n +1,故a n +2a n=2,又a 1=1,可得a 2=2,故a 10=25=32.故选B.[答案] B二、填空题6.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.[解析] 令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).[答案] 107.(2019·河北唐山一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________. [解析] ∵S n =a 1(4n -1)3,a 4=32, ∴255a 13-63a 13=32,∴a 1=12.[答案] 128.已知数列{a n }满足a 1=1,a n =a 2n -1-1(n >1),则a 2017=________,|a n +a n +1|=________(n >1).[解析] 由a 1=1,a n =a 2n -1-1(n >1),得a 2=a 21-1=12-1=0,a 3=a 22-1=02-1=-1,a 4=a 23-1=(-1)2-1=0,a 5=a 24-1=02-1=-1,由此可猜想当n >1,n 为奇数时a n =-1,n 为偶数时a n =0,∴a 2017=-1,|a n +a n +1|=1.[答案] -1 1三、解答题9.(1)(2018·广东化州第二次模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,求数列{a n }的通项公式.(2)已知数列{a n }的各项均为正数,S n 为其前n 项和,且对任意n∈N *,均有2S n =a n +a 2n ,求数列{a n }的通项公式.[解] (1)由log 2(S n +1)=n +1,得S n +1=2n +1,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n ,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2 (2)∵2S n =a n +a 2n ,当n =1时,2S 1=2a 1=a 1+a 21. 又a 1>0,∴a 1=1.当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1,∴(a 2n -a 2n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1-1)=0,∵a n +a n -1>0,∴a n -a n -1=1,∴{a n }是以1为首项,1为公差的等差数列,∴a n =n (n ∈N *).10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值.(2)若{a n }为递增数列,求实数k 的取值范围.[解] (1)由n 2-5n +4<0,解得1<n <4.∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)解法一:因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,注意比较对象,即得k >-3.解法二:因为{a n }是递增数列,则a n +1>a n ,∴(n +1)2+k (n +1)+4>n 2+kn +4.解得:k >-3.∴k 的取值范围为(-3,+∞).能力提升练11.(2019·湖南六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12[解析] ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18.那么a 5=a 3·a 2=132.故选A.[答案] A12.已知a n =n -2017n -2018(n ∈N *),则数列{a n }的前50项中最小项和最大项分别是( )A .a 1,a 50B .a 1,a 44C .a 45,a 50D .a 44,a 45[解析] a n =n -2017n -2018=n -2018+2018-2017n -2018=1+2018-2017n -2018,要使a n 最大,则需n -2018最小,且n -2018>0,∴n =45时,a n 最大.同理可得n =44时,a n 最小.故选D.[答案] D13.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.[解析] 依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.[答案] 2814.(2019·河南洛阳第二次统一考试)已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *).(1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围.[解] (1)∵2S n =(n +1)a n ,∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n ,即na n +1=(n +1)a n ,∴a n +1n +1=a n n ,∴a n n =a n -1n -1=…=a 11=1, ∴a n =n (n ∈N *).(2)b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2)=2·3n -λ(2n +1).∵数列{b n }为递增数列,∴2·3n -λ(2n +1)>0,即λ<2·3n 2n +1. 令c n =2·3n2n +1,即c n +1c n=2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列,∴λ<c 1=2,即λ的取值范围为(-∞,2).拓展延伸练15.(2019·陕西咸阳二模)已知正项数列{a n }中,a 1+a 2+…+a n =n (n +1)2(n ∈N *),则数列{a n }的通项公式为( )A .a n =nB .a n =n 2C .a n =n 2D .a n =n 22[解析] ∵a 1+a 2+…+a n =n (n +1)2, ∴a 1+a 2+…+a n -1=n (n -1)2(n ≥2), 两式相减得a n =n (n +1)2-n (n -1)2=n (n ≥2),∴a n =n 2(n ≥2),(*)又当n =1时,a 1=1×22=1,a 1=1适合(*),∴a n =n 2,n ∈N *.故选B.[答案] B16.(2019·湖南永州二模)已知数列{a n }的前n 项和S n =3n (λ-n )-6,若数列{a n }单调递减,则λ的取值范围是( )A .(-∞,2)B .(-∞,3)C .(-∞,4)D .(-∞,5)[解析] ∵S n =3n (λ-n )-6,①∴S n -1=3n -1(λ-n +1)-6,n ≥2,②①-②得a n =3n -1(2λ-2n -1)(n ≥2),当n =1时,a 1=3λ-9,不适合上式,∴a n =⎩⎪⎨⎪⎧3λ-9,n =1,3n -1(2λ-2n -1),n ≥2, ∵{a n }为单调递减数列,∴a n >a n +1(n ≥2),且a 1>a 2,∴3n -1(2λ-2n -1)>3n (2λ-2n -3)(n ≥2),且λ<2,化为λ<n +2(n ≥2),且λ<2,∴λ<2,∴λ的取值范围是(-∞,2).故选A.[答案] A。