列一元二次方程解应用题类型训练习题汇编

合集下载

一元二次方程的应用大题专练

一元二次方程的应用大题专练

一元二次方程的应用大题专练题型一、传播问题1.有一个人患了流感,经过两轮传染后共有121个人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患流感?2.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是31,则这种植物每个支干长出多少个小分支?3.某教育局组织教职工男子篮球比赛.(1)本次比赛采用单循环赛制(参赛的每两支队之间要比赛一场),共安排了28场比赛,问:有多少支队参加比赛(2)在比赛场地边,东南西北四个角落分别划分一个大小一样的正方形观众席,已知观众席的总面积是400平方米,求每个正方形的边长.题型二、增长率问题1.用手机抢红包是大家春节期间进行交流联系、增强感情的一部分.下面是宁宁和她的妹妹在春节期间的对话:请问:(1)2022年到2024年宁宁和她妹妹除夕时用手机抢到红包的平均年增长率是多少?(2)2024年除夕,宁宁和她妹妹用手机各抢到了多少元的红包?2.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?3.“阳光玫瑰”是一种优质的葡萄品种.某葡萄种植基地2021年年底已经种植“阳光玫瑰”300亩,到2023年年底“阳光玫瑰”的种植面积达到432亩.(1)求该基地“阳光玫瑰”种植面积的年平均增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/kg时,每天能售出300kg;销售单价每降低1元,每天可多售出50kg.为了减少库存,该基地决定降价促销.已知该基地“阳光玫瑰”的平均成本为10元/kg,若要使销售“阳光玫瑰”每天获利3150元,并且使消费者尽可能获得实惠,则销售单价应定位多少元?题型三、销售问题1.《2024年政府工作报告》明确提出优化消费环境的目标,开展了“消费促进年”活动和实施“放心消费行动”等多项举措,旨在引导消费市场正向发展.某文具店为回馈顾客一直以来的信赖与支持,特地推出了商品促销活动.顾客每购买一本笔记本便赠送两支铅笔,若顾客一次性购买n支钢笔(n为正整数),则每支钢笔的价格在售价的基础上降低2n元.已知一本笔记本比一支铅笔贵8元,钢笔的售价为36元/支.(1)小华到此文具店购买了10本笔记本,30支铅笔,共消费120元,求此文具店所售卖笔记本和铅笔的单价.(2)小明计划到此文具店买16支铅笔和笔记本若干,但身上只带了70元,问小明最多可以买多少本笔记本?(3)已知此文具店所售卖钢笔的进价为24元/支,当顾客一次性购买多少只钢笔时,文具店此次交易的利润达到最大值?2.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?3.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,则商场平均每天可售出衬衫______件,每天获得的利润为______元.(2)若商场每天要获得利润1200元,请计算出每件衬衫应降价多少元?(3)商场每天要获得利润有可能达到1400元吗?若能,请求出此时每件衬衫的利润;若不能,请说明理由.4.某超市销售一种商品,成本价为30元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千y x,规定每千克售价不能低于30元,且不高于80元.克)之间满足一次函数关系180(1)如果该超市销售这种商品每天获得3600元的利润,那么该商品的销售单价为多少元?(2)设每天的总利润为w元,当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?题型四、面积问题1.为了加强劳动教育,我校在校园开辟了一块劳动教育基地:一面利用学校的墙(墙的最大可用长度为28米),用长为39米的篱笆,围成中间隔有一道篱笆的矩形菜地,在菜地的前端及中间篱笆上设计了三个宽1米的小门,便于同学们进入.(1)若围成的菜地面积为120平方米,求此时边AB的长;(2)若每平方米可收获2千克的菜,问该片菜地最多可收获多少千克的菜?2.某校九年级学生在数学社团课上进行纸盒设计,利用一个边长为30cm 的正方形硬纸板,在正方形纸板的四角各剪掉一个同样大小的小正方形,将剩余部分折成一个无盖纸盒.(1)若无盖纸盒的底面积为2484cm ,则剪掉的小正方形的边长为多少?(2)折成的无盖纸盒的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的小正方形的边长;如果没有,说明理由.3.科技创新活动一直在路上.现将某品牌平面展示屏设计与生产过程中收集的精准数据统计如下: 信息数据一:屏占比,指的是屏幕面积与整个外观面积的比,计算公式为:屏占比100%屏幕面积外观面积信息数据二:某厂商设计了该款1.0版平面展示屏(如图),正面外观呈矩形,长400mm ,宽300mm ,正中央是长宽之比为4:3的矩形屏幕,若要使屏占比达到81%,且左右边框等宽,均为xmm ,上下边框等宽,均为mm y ,应如何设计屏四周边框的宽度?信息数据三:在上述1.0版平面展示屏的升级版2.0版中,外观保持不变,对屏的长宽进行调整,调整之后使得左右边框的宽度各减少了0.9a ,上下边框的宽度各减少了a ,从而使屏占比进一步提升至91.35%.(1)求x ,y 的值;(2)求a 的值.题型五、几何动态问题1.如图,A B C D 、、、为矩形的四个顶点,4AB cm ,2AD cm ,动点P 、Q 分别从点A 、C 同时出发,都以1cm/s 的速度运动,其中点P 由A 运动到B 停止,点Q 由点C 运动到点D 停止.(1)求四边形PBCQ 的面积;(2)P 、Q 两点从出发开始到几秒时,P 、Q 、D 组成的三角形是等腰三角形?2.如图,在四边形ABCD 中,AB DC ,4AD ,12CD ,BD AD ,60A ,动点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位的速度沿着折线A D C 先由A 向D 运动,再由D 向C 运动,点Q 以每秒1个单位的速度由B 向A 运动,当其中一动点到达终点时,另一动点随之停止运动,设运动时间为t 秒.(1)两平行线DC 与AB 之间的距离是__________.(2)当点P 、Q 与BCD △的某两个顶点围成一个平行四边形时,求t 的值.(3)AP ,以AP ,AQ 为一组邻边构造平行四边形APMQ ,若APMQ 的面积为3t 的值.3.如图,在四边形ABCD 中,DC AB ∥,90B ,8cm AB ,4cm AD ,6cm CD ,点P 从点A 出发沿边AB 以2cm/s 的速度向点B 移动;同时,点Q 从点C 出发沿边CD 以1cm/s 的速度向点D 移动,当一点到达终点时,另一点也随之停止运动,设运动时间为s x .(1)PB cm ,CQ cm (用含x 的代数式表示);(2)当P 、Q 37cm 时,求x 的值;(3)填空:①当x 时,四边形APQD 是菱形;②当x 时,四边形PBCQ 是矩形.题型六、数字问题1.第十四届国际数学教育大会14ICME 会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有07~共8个基本数字,八进制数3745换算成十进制数是3210387848582021,表示14ICME 的举办年份.(1)请把八进制数3747换算成十进制数;(2)小华设计了一个n 进制数265,换算成十进制数是145,求n 的值(n 为正整数).2.两个相邻偶数的平方和的平均数为Q ,则Q 一定是偶数.如:2268100,100250,50为偶数.(1)偶数12和14是否满足上述结论,请说明理由;(2)设两个相邻偶数为2n 和22n ,请论证上述结论;(3)若122Q .求符合要求的偶数.3.阅读材料:200多年前,数学王子高斯用他独特的方法快速计算出123100的值.我们从这个算法中受到启发,用下面方法计算数列1,2,3,…,n ,…的前n 项和: 由1211211111n n nn n n n n 可知(1)1232n n n . 应用以上材料解决下面问题:(1)有一个三角点阵(如图),从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n 个点,.若该三角点阵前n 行的点数和为325,求n 的值.(2)在第一问的三角点阵图形中,前n 行的点数和能是900吗?如果能,求出n ;如果不能,说明理由.(3)如果把上图中的三角点阵中各行的点数依次换为3,6,9,…,3n ,…,前n 行的点数和能是900吗?如果能,求出n ;如果不能,说明理由.题型七、行程问题1.小明设计了点做圆周运动的一个动画游戏,如图所示,甲、乙两点分别从直径的两端点A 、B 以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程☎✆l cm 与时间☎✆s t 满足关系:213022lt t t ,乙以4cm/s的速度匀速运动,半圆的长度为21cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第三次相遇时,它们运动了多少时间?2.随着人们对健康生活的追求,全民健身意识日益增强,徒步走成为人们锻炼的日常,中老年人尤为喜爱.(1)张大伯徒步走的速度是李大伯徒步走的1.2倍,张大伯走5分钟,李大伯走10分钟,共走800米,求张大伯和李大伯每分钟各走多少米?(2)天气好,天色早,张大伯和李大伯锻炼兴致很浓,又继续走,与(1)中相比,张大伯的速度不变,李大伯的速度每分钟提高了2a 米,时间都各自多走了10a 分钟,结果两人又共走了6900米,求a 的值.3滑行时间/t s 0 1 2 3 4滑行速度/m/s y 60 57 54 51 48已知该飞机在跑道起点处着陆后的滑行速度y (单位:m/s )与滑行时间t (单位:s )之间满足一次函数关系.而滑行距离 平均速度v 时间t ,02t v v v ,其中0v 是初始速度,t v 是t 秒时的速度.(1)直接写出y 关于t 的函数解析式和自变量的取值范围;(2)求飞机滑行的最远距离;(3)当飞机在跑道起点处着陆后滑行了450m ,求此时飞机的滑行速度;(4)若飞机在跑道起点处开始滑行时,发现前方300m 有一辆通勤车正以54km/h 的速度匀速同向行驶,试问飞机滑行过程中是否有碰撞通勤车的危险?题型八、工程问题1.由于疫情反弹,某地区开展了连续全员核酸检测,9月7日,医院派出13名医护人员到一个大型小区设置了A 、B 两个采样点进行核酸采样,当天共采样9220份,已知A 点平均每人采样720份,B 点平均每人采样700份.(1)求A 、B 两点各有多少名医护人员?(2)9月8日,医院继续派出这13名医护人员前往这个小区进行核酸采样,这天,社区组织者将附近数个商户也纳入这个小区采样范围,同时重新规划,决定从B 点抽调部分医护人员到A 点经调查发现,B 点每减少1名医护人员,人均采样量增加10份,A 点人均采样量不变,最后当天共采样9360份,求从B 点抽调了多少名医护人员到A 点?2.某工程队采用A 、B 两种设备同时对长度为4800米的公路进行施工改造.原计划A 型设备每小时铺设路面比B 型设备的2倍多30米,则32小时恰好完成改造任务.(1)求A 型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的4800米多了1000米.在实际施工中,B 型设备在铺路效率不变的情况下,时间比原计划增加了25m 小时,同时,A 型设备的铺路速度比原计划每小时下降了3m 米,而使用时间增加了m 小时,求m 的值.3.城开高速公路即重庆市城口县至开州区的高速公路,是国家高速G69银百高速公路(银川至百色)的一段,线路全长129.3公里,甲、乙两工程队共同承建该高速公路某隧道工程,隧道总长2100米,甲、乙分别从隧道两端向中间施工,计划每天各施工6米.因地质结构不同,两支队伍每合格完成1米隧道施工所需成本不一样.甲每合格完成1米隧道施工成本为8万元;乙每合格完成1米隧道施工成本为9万元.(1)若工程结算时乙总施工成本不低于甲总施工成本的32,求甲最多施工多少米? (2)实际施工开始后地质情况比预估更复杂,甲乙两队每日完成量和成本都发生变化.甲每合格完成1米隧道施工成本增加m 万元时,则每天可多挖2m 米,乙在施工成本不变的情况下,比计划每天少挖3m 米,若最终每天实际总成本比计划多92m 万元,求m 的值.题型九、图表信息问题1.近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;(2)下表是这户居民4月份和5月份的用水量和缴费情况;月份用水量(吨)交水费总金额(元)4 7 705 5 40根据上表数据,求规定用水量的值.2.在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年1月份的日历.我们任意选择其中所示的菱形框部分将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:91131748,131572148.不难发现,结果都是48.(1)请证明发现的规律;(2)若用一个如图所示菱形框,再框出5个数字,其中最小数与最大数的积为435,求出这5个数的最大数;(3)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120.直接判断他的说法是否正确.(不必叙述理由)3.【观察思考】【规律发现】(1)第5个图案中“”的个数为______;(2)第n(n为正整数)个图案中“○”的个数为_____“”的个数为_____(用含n的式子表示)【规律应用】(3)结合上面图案中“○”和“”的排列方式及规律,求正整数n,使得“○”比“”的个数多28.题型十、项目设计方案问题探索果园土地规划和销售利润问题素材1 某农户承包了一块长方形果园ABCD,图1是果园的平面图,其中200AB 米,300BC 米.准备在它的四周铺设道路,上下两条横向道路的宽度都为2x米,左右两条纵向道路的宽度都为x米,中间部分种植水果.出于货车通行等因素的考虑,道路宽度x不超过12米,且不小于5米.素材2 该农户发现某一种草莓销售前景比较不错,经市场调查,草莓培育一年可产果,若每平方米的草莓销售平均利润为100元,每月可销售5000平方米的草莓;受天气原因,农户为了快速将草莓出手,决定降价,若每平方米草莓平均利润下调5元,每月可多销售500平方米草莓.果园每月的承包费为2万元.问题解决任务1 解决果园中路面宽度的设计对种植面积的影响.(1)请直接写出纵向道路宽度x的取值范围.(2)若中间种植的面积是244800m,则路面设置的宽度是否符合要求.任务2 解决果园种植的预期利润问题.(总利润销售利润承包费)(3)若农户预期一个月的总利润为52万元,则从购买草莓客户的角度应该降价多少元?2清明果销售价格的探究素材1 清明节来临之际,某超市以每袋30元的价格购进了500袋真空包装的清明果,第一周以每袋50元的价格销售了150袋.素材2 第二周如果价格不变,预计仍可售出150袋,该超市经理为了增加销售,决定降价,据调查发现:每袋清明果每降价1元,超市平均可多售出10袋,但最低每袋要盈利15元,第二周结束后,该超市将对剩余的清明果一次性赔钱甩卖,此时价格为每袋25元.解决问题任务1 若设第二周单价为每袋降低x元,则第二周的单价每袋元,销量是袋.任务2①经两周后还剩余清明果袋.(用x的代数式表示)②若该超市想通过销售这批清明果获利5160元,那么第二周的单价每袋应是多少元?3如何设计实体店背景下的网上销售价格方案?素材1 某公司在网上和实体店同时销售一种自主研发的小商品,成本价为40元/件.素材2 该商品的网上销售价定为60元/件,平均每天销售量是200件,在实体店的销售价定为80元/件,平均每天销售量是100件.按公司规定,实体店的销售价保持不变,网上销售价可按实际情况进行适当调整,需确保网上销售价始终高于成本价.素材3 据调查,网上销售价每降低1元,网上销售每天平均多售出20件,实体店的销售受网上影响,平均每天销售量减少2件.问题解决任务1 计算所获利润当该商品网上销售价为50元/件时,求公司在网上销售该商品每天的毛利润与实体店销售该商品每天的毛利润各是多少元?任务2 平衡市场方案该商品的网上销售价每件_________元时,该公司网上销售该商品每天的毛利润与实体店销售该商品每天的毛利润相等任务3 拟定价格方案公司要求每天的总毛利润(总毛利润=网上毛利润+实体店毛利润)达到8160元,求每件商品的网上销售价是多少元?。

一元二次方程应用题精选含答案

一元二次方程应用题精选含答案

一元二次方程应用题精选一、数字问题1、有两个连续整数,它们的平方和为25,求这两个数。

2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.二、销售利润问题3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?三、平均变化率问题增长率(1)原产量+增产量=实际产量.(2)单位时间增产量=原产量×增长率.(3)实际产量=原产量×(1+增长率).6.某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?7. 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?四、形积问题8、有一块长方形的铝皮,长24cm、宽18cm,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高.9、如图,在一块长为32m,宽为20m长方形的土地上修筑两条同样宽度的道路,余下部分作为耕地要使耕地的面积是540m2,求小路宽的宽度.五、围篱笆问题10、如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?六、相互问题(传播、循环)11、(1)参加一次聚会的每两人都握了一次手,所有人共握手15次,有多少人参加聚会?(2)要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?(3) 某初三毕业班的每一个同学都把自己的照片向全班其他的同学各送一张留作纪念,全班共送了3080张照片.如果该班有x 名同学,根据题意可列出方程为?12、有一人患了流感,经过两轮传染后共有169人患了流感.(1)求每一轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患上流感?第21题图13、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?七.行程问题:14、甲、乙两艘旅游客轮同时从台湾省某港出发来厦门。

一元二次方程应用题专题训练

一元二次方程应用题专题训练

一元二次方程应用题专题训练一、面积问题1. 题目- 一个矩形的长比宽多2cm,面积是100cm²,求这个矩形的长和宽。

- 解析:设矩形的宽为x cm,因为长比宽多2cm,所以长为(x + 2)cm。

根据矩形面积公式:面积=长×宽,可得到方程x(x + 2)=100。

展开方程得到x²+2x - 100 = 0。

对于一元二次方程ax²+bx + c = 0(这里a = 1,b = 2,c=-100),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac = 2^2-4×1×(- 100)=4 + 400=404。

则x=(-2±√(404))/(2)=(-2±2√(101))/(2)=-1±√(101)。

因为矩形的宽不能为负数,所以取x=-1+√(101)≈ - 1+10 = 9(这里√(101)≈10),长为x + 2=9+2 = 11cm。

2. 题目- 有一块正方形铁皮,从四个角各剪掉一个边长为2分米的正方形后,所剩部分正好围成一个无盖的正方体盒子,这个盒子的容积是27立方分米,求原来正方形铁皮的边长。

- 解析:设原来正方形铁皮的边长为x分米。

那么围成无盖正方体盒子底面的边长为(x - 2×2)=(x - 4)分米,盒子的高为2分米。

根据正方体容积公式V=a^3(这里a为正方体棱长),可得方程(x - 4)^2×2 = 27,即(x - 4)^2=(27)/(2),展开得到x^2-8x + 16=(27)/(2),整理为2x^2-16x+32 - 27 = 0,即2x^2-16x + 5 = 0。

这里a = 2,b=-16,c = 5,判别式Δ=b^2-4ac=(-16)^2-4×2×5=256 - 40 = 216,x=(16±√(216))/(4)=(16±6√(6))/(4) = 4±(3√(6))/(2),因为边长不能为负,所以x =4+(3√(6))/(2)分米。

一元二次方程练习及应用题(很全)

一元二次方程练习及应用题(很全)

教师辅导教案学员姓名 年 级 初三 辅导课目 数学 学科教师班主任课时数教学课题一元二次方程练习和应用题教 学 目 标 1.根的判别式和根与系数的关系熟练掌握 2.一元二次方程应用题教 学 重 难 点1.根与系数的关系的应用2.一元二次方程应用题教学内容课堂收获一、根与系数的关系(一)直接应用根与系数的关系若已知条件或待证结论中含有a +b 和a ·b 形式的式子,可考虑直接应用根与系数的关系.例1 已知a +a 2-1=0,b +b 2-1=0,a ≠b ,求ab +a +b 的值.(二)先恒等变形,再应用根与系数的关系若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a +b 、a ·b 形式的式子,则可考虑应用根与系数的关系.例2 若实数x 、y 、z 满足x =6-y ,z 2=xy -9.求证:x =y .例3 已知2380x x +-=,2380y y +-=。

求y xx y+的值。

(三)已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑根与系数的关系例4 已知方程x 2+px +q =0的二根之比为1∶2,方程的判别式的值为1.求p 与q 之值,解此方程.例5 设方程x 2+px +q =0的两根之差等于方程x 2+qx +p =0的两根之差,求证:p =q 或p +q =-4.(四)关于两个一元二次方程有公共根的题目,可考虑根与系数的关系 例6 m 为问值时,方程x 2+mx -3=0与方程x 2-4x -(m -1)=0有一个公共根?并求出这个公共根.练习:1.若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,(x 1-x 2)2=3.已知方程2x 2-3x+k=0的两根之差为212,则k= ;4.解方程组56x y x y +=⎧⎨⋅=⎩5.一个三角形的两边长是方程的两根,第三边长为2,求k 的取值范围。

一元二次方程应用题专题训练

一元二次方程应用题专题训练

一元二次方程应用题专题训练类型一:数字的运算例1、有两个连续整数,它们的平方和为25,求这两个数。

例2、有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之和的3倍刚好等于这个两位数。

求这个两位数。

例3、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。

举一反三1.两个相邻偶数的积为168,则这两个偶数是多少?2.一个两位数,十位数字与个位数字之和为5,把这个数的十位数字与个位数字对调后,所得的新两位数与原两位数乘积为736,求原两位数。

3.有一个两位数,它十位上的数字与个位上的数字的和是8。

如把十位上的数字和个位上的数字调换后,所得的两位数乘以原来的两位数,就得到1855。

求原来的两位数。

类型二:面积问题例4、用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的边长为xcm的小正方形,然后做成底面积为1500cm2的无盖的长方形盒子,求x的值。

例5、要在长32m ,宽20m 的长方形绿地上修建宽度相同的道路,六块绿地面积共570m 2,问道路宽应为多宽?例6、在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少?举一反三1、如图,在长为32m ,宽为20m 的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m 2,道路的宽应为多少?2、在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,求金色纸边的宽为多少?3.要在100m 、宽90m 的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448平方米,求道路的宽?4.借助一面长6米的墙,用一根13米长的铁丝围成一个面积为20平方米的长方形,求长方形的两边?类型三:增长率问题例7、某新华书店计划第一季度共发行图书122万册,其中一月份发行图书32万册,二、三月份平均每月增长率相同,求二、三月份各应发行图书多少万册?例8、某校2003年捐款1万元给希望工程,以后每年都捐款,计划到2005年共捐款4.75万元,问该校捐款的平均年增长率是多少?举一反三1.某电脑公司2001年的各项经营中,一月份的营业额约为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率。

一元二次方程试题及实际应用题总括

一元二次方程试题及实际应用题总括

一元二次方程练习题一、填空1. 一元二次方程 化为一般形式为: , 二次项系数为: , 一次项系数为: , 常数项为: 。

2. 关于x 的方程 ,当 时为一元一次方程;当时为一元二次方程。

3. 已知直角三角形三边长为连续整数, 则它的三边长是 。

4. ; 。

5. 直角三角形的两直角边是3︰4, 而斜边的长是15㎝, 那么这个三角形的面积是 。

6. 若方程 的两个根是 和3, 则 的值分别为 。

7. 若代数式 与 的值互为相反数, 则 的值是 。

8. 方程 与 的解相同, 则 = 。

9. 当 时, 关于 的方程 可用公式法求解。

二、10. 若实数 满足 , 则 = 。

三、11.若 , 则 = 。

四、12.已知 的值是10, 则代数式 的值是 。

五、选择1. 下列方程中, 无论取何值, 总是关于x 的一元二次方程的是( )(A )02=++c bx ax (B )x x ax -=+221(C )0)1()1(222=--+x a x a (D )0312=-+=a x x 2. 若 与 互为倒数, 则实数 为( )(A )±21(B )±1 (C )±22 (D )±2 3. 若 是关于 的一元二次方程 的根, 且 ≠0, 则 的值为( )(A )1- (B )1 (C )21- (D )21 4. 关于 的一元二次方程 的两根中只有一个等于0, 则下列条件正确的是( )(A )0,0==n m (B )0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m5. 关于 的一元二次方程 有实数根, 则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤06. 已知 、 是实数, 若 , 则下列说法正确的是( )(A )x 一定是0 (B )y 一定是0 (C )0=x 或0=y (D )0=x 且0=y7. 若方程 中, 满足 和 , 则方程的根是( )(A )1, 0 (B )-1, 0 (C )1, -1 (D )无法确定六、解方程1. 选用合适的方法解下列方程(1))4(5)4(2+=+x x (2)x x 4)1(2=+(3)22)21()3(x x -=+ (4)31022=-x x四、解答题已知等腰三角形底边长为8, 腰长是方程 的一个根, 求这个三角形的腰。

完整版)一元二次方程的应用练习题及答案

完整版)一元二次方程的应用练习题及答案1.这道题目需要求出某地区在20XX年至20XX年期间投入教育经费的年平均增长率,以及预计20XX年该地区投入教育经费的金额。

首先,我们可以通过计算两个年份的投入教育经费差值,再除以两年的平均值,得出年平均增长率。

其次,通过使用年平均增长率,我们可以预测20XX年该地区的投入教育经费金额。

2.这道题目需要求出白溪镇在2012年至20XX年期间绿地面积的年平均增长率,以及预测20XX年该镇绿地面积是否能够达到100公顷。

首先,我们可以通过计算两个年份的绿地面积差值,再除以两年的平均值,得出年平均增长率。

其次,通过使用年平均增长率,我们可以预测20XX年该镇绿地面积是否能够达到100公顷。

3.这道题目需要求出某商品的销售单价,以便商家在满足顾客实惠的前提下获得6080元的利润。

首先,我们可以通过计算商品的总成本和总销售额之间的差值,除以销售件数,得出商品的平均利润。

然后,我们可以通过不断降低销售单价,直到平均利润达到所需利润的目标。

4.这道题目需要求出将某种水果的售价降低x元后,每天的销售量是多少斤,以及降价多少元才能每天盈利300元。

首先,我们可以通过不断降低售价,直到每天销售量达到260斤,得出售价和销售量之间的关系。

然后,我们可以通过计算每天销售量和售价之间的总收入和总成本之间的差值,得出每天的利润。

最后,我们可以通过不断降低售价,直到每天利润达到300元的目标。

5.这道题目需要求出每件衬衫应该降价多少元,以便商场平均每天赢利1200元,并且降价多少元时商场平均每天赢利最多。

首先,我们可以通过计算每件衬衫降价1元所带来的额外销售量和额外利润,得出降价和利润之间的关系。

然后,我们可以通过计算商场每天的总销售额和总成本之间的差值,得出商场每天的利润。

最后,我们可以通过比较不同降价方案的利润,得出商场平均每天赢利最多的降价方案。

6.这道题目需要求出某种品牌玩具的销售单价,以便商场获得元的销售利润。

一元二次方程解法练习题

一元二次方程解法练习题在数学学习中,我们经常会遇到一元二次方程,它是一个常见而重要的数学概念。

掌握一元二次方程的解法对于解决实际问题和提高数学思维能力都具有重要意义。

在本文中,我们将通过一些练习题来巩固和应用我们对一元二次方程解法的理解。

练习题1:解下列一元二次方程:1. x^2 - 4x + 3 = 02. 2x^2 + 5x - 3 = 03. 3x^2 - 6x - 9 = 04. -x^2 + 7x - 10 = 0练习题2:根据以下条件列出一元二次方程,并求解:1. 已知方程有两个实数解,且解为3和-1。

2. 已知方程有一个实数解x=4,并且另一个解是方程x^2 + bx + c = 0的解。

练习题3:解下列一元二次方程组:1.x^2 - y^2 = 16x + y = 62.2x^2 + xy = 153x - y = 2练习题4:解下列应用题:1. 一个长方形的长比宽多2cm,长方形的周长是26cm,求长和宽分别是多少?2. 小明和小红两人总共获得了36个奖牌,小明获得的奖牌数是小红的两倍,小红获得了几个奖牌?练习题5:解下列一元二次不等式:1. x^2 - 4x > 02. 2x^2 - 3x < 03. x^2 + 6x + 8 ≥ 0以上是一些一元二次方程解法的练习题。

通过解这些题目,我们可以巩固和提高对一元二次方程解法的掌握程度。

在解题过程中,我们要注意将方程转化为标准形式,分离出x的系数、常数项,并应用求根公式或配方法进行求解。

此外,对于一些实际问题,我们需要将问题抽象为一元二次方程,再进行求解。

掌握一元二次方程的解法不仅仅是为了解答数学题目,更重要的是培养我们的逻辑思维和解决实际问题的能力。

通过反复练习和深入理解解题过程,我们可以在数学学习和实际生活中更加灵活地应用一元二次方程解法,进一步提高自己的数学水平。

这些练习题只是一元二次方程解法的一小部分,希望大家能够通过这些练习题加深对一元二次方程解法的理解,提高解题的准确性和效率。

一元二次方程应用题(含答案)整理版

一元二次方程应用题1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?解:设边长x则(19-2x)(15-2x)=774x^2-68x+208=0x^2-17x+52=0(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=45.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。

一元二次方程的应用题专练

一元二次方程的应用题专练(七大类型)一、解一元二次方程应用题的步骤1.“审、设、列、解、验、答”.2.审一定要清晰不是所有的条件都要用上, 还有用来验根的, 再有就是等量关系。

3.设可以直接设也可以间接设, 有单位的, 一定要记得带单位;4.列列方程时一定要用题中的原数;5.验一元二次方程两个根, 一定要看是否都符合;6.答回到实际问题中二、各种类型题训练(一)利润问题1.公式: 售价—进价=单个利润单个利润×销售量=总利润2.降价销售例: 西瓜经营户以2元/千克的价格购进一批小型西瓜, 以3元/千克的价格出售, 每天可售出200千克。

为了促销, 该经营户决定降价销售。

经调查发现, 这种小型西瓜每降价0.1元/千克, 每天可多售出40千克。

另外, 每天的房租等固定成本共24元。

该经营户要想每天盈利200元, 应将每千克小型西瓜的售价降低多少元?练习: (1).某商店购进一种商品, 进价30元. 试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系: P=100-2X, 若商店每天销售这种商品要获得200元的利润, 那么每件商品的售价应定为多少元?每天要售出这种商品多少件?(2)服装柜在销售中发现某品牌童装平均每天可售出20件, 每件盈利40元。

为了迎接“六一”儿童节, 商场决定采取适当的降价措施, 扩大销售量, 增加盈利, 减少库存。

经市场调查发现, 如果每件童装每降价4元, 那么平均每天就可多售出8件。

要想平均每天在销售这种童装上盈利1200元, 那么每件童装应降价多少元?(3)某商场礼品柜台购进大量贺卡,一种贺卡平均每天可销售500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的措施,调查发现,如果每降价0.1元,那么商场平均每天多售出300张,商场要想每天盈利160元,每张贺卡应该降价多少元?(4).利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源, 待货物售出后再进行结算, 未售出的由厂家负责处理)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、增长率问题1.某种产品原价是每件700元,连续两次降价后每件448元,若每次降价的百分率相同,求每次降价的百分率.2.某农场去年种植了10亩地的南瓜,亩产量为2000千克,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000千克,求南瓜亩产量的增长率.3.某商厦2月份的销售额为100万元,3月份的销售额下降了20%,商厦从4月份起改进经营措施,销售额稳步上升,5月份销售额达到135.2万元,试求4、5两个月的平均增长率.4.据某公司统计,该公司2009年底用户的数量为50万人,2011年底用户的数量达72万人,请你解答下列问题:(1)求2009年底至2011年底用户数量的年平均增长率;(2)由于该公司扩大业务,要求到2013年底用户的数量不少于103.98万人,据调查,估计从2011年底起,用户每年减少的数量是上年底总数量的5%,那么该公司每年新增用户的数量至少要多少万人?(假定每年新增用户的数量相同)5.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2011年,A市在省财政补贴的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2013年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”资金的年平均增长率;(2)从2011年到2013年,A市三年共投资“改水工程”多少万元?6.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年的建设成本不变,求到2012年底共建设了多少万平方米廉租房.7.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问那种方案更优惠?二、几何图形问题:1.如图,这是上海世博园内的一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图内阴影部分)种植的是不同的花草,已知种植花草部分的面积是3600平方米,那么花园各角处的正方形观光休息亭的边长为多少米?2.如图,矩形ABCD的周长是20厘米,以AB、AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68平方厘米,求矩形ABCD的面积.3.如图,某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧的侧内墙保留3米宽的空地,其他三侧内侧各保留1米宽的通道,当矩形温室的长与宽各为多少时,蔬菜种植区域(图中阴影部分)的面积为288平方米?第3题图第2题图第1题图E4.如图,在一幅长8分米、宽6分米的矩形风景画的四周镶宽度相同金色纸边,制成一幅举行挂图,如果要使整个挂图的面积为80平方分米,求金色纸边的宽.5.如图,一条水管内壁均匀地形成一层厚3mm 的矿物沉淀物,导致水管的横截面积减少到原来的九分之四,求该水管原来的内径.6.如图,这是一张长9cm ,宽5cm 的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积为12cm 2的一个无盖长方形纸盒,求减去的正方形的边长.7.如图,在一个正方形铁板正中间,割去一块小正方形铁板后剩余部分面积为32cm 2,并且已知小正方形的边长为大正方形边长的三分之一,求大正方形铁板的边长.8.如图,邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙(围墙的长度超过6米),另外三边所围的栅栏的总长度是6米,若矩形的面积为4平方米,求AB 的长度.9.建造一个池底为正方形,深度为2米的长方体无盖水池,池壁的造价为100元/m 2,池底的造价为200元/m 2,总造价为6400元,求正方形池底的边长.10.如图,在宽为20m ,长为32m 的矩形地面ABCD 上,修筑同样宽的几条道路,余下部分作为耕地,要使耕地的面积为540m 2,求道路的宽度.11.要建一个面积为130平方米的仓库,仓库一边靠墙(墙长16米),并在与墙平行的一边开一道1米宽的门,现在有32米长的木板,求仓库的长和宽.第6题图第5题图第4题图三、销售问题:1.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?2.某商场将某种商品的售价从原来的每件40元经过两次调价后降至32.4元,(1)若该商店两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件,若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?3.某旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:如果人数不超过25人,人均旅游费用为1000元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.某单位组织员工去天水湾风景区旅游,共支付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?四、动点问题:1.如图,已知甲、乙两人分别从正方形广场ABCD 的顶点C 、B 同时出发,甲由C 向D运动,乙由B 向C 运动,甲的速度为100米/分,乙的速度为200米/分,若正方形广场的周长为4000米,问几分钟后,两人相距10200 米?2.如图,在△ABC 中,∠B=90°,AB=6cm ,BC=8cm ,点P 从点A 出发沿AB 边向点B 以1cm/秒的速度移动,点Q 从点B 出发沿BC 边向点C 以2cm/秒的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,经过多长时间,△PBQ 的面积为8cm 2?(2)如果P 、Q 分别从A 、B 同时出发,当P 、Q 两点运动几秒时,PQ 有最小值,并求这个最小值.五、其他问题:1.某人将2000元人民币按一年定期存入银行,到期后支取1000元用作购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后将本金和利息共1320(均不计利息税),求这种存款方式的年利率.2.一个菱形水池,它的两条对角线长的差为2米,水池的边长都是5米,求较长的对角线的度?3.市工会组织篮球比赛,赛制为单循环形式(每两队之间都要赛一场),共进行了45场比赛,求参加比赛的队伍数量.4.在一个QQ 群内,每一个网友向其他网友发布一条消息,共发90条消息,求这个QQ 群里有多少人?5.有一只鸡患了禽流感,经过两轮传染后共有625只鸡患了禽流感.(1)每轮传染中平均一只鸡传染给了多少只鸡;(2)如果按照这样的速度传染,3轮后共有多少只鸡被传染?6.某地举行一次女子乒乓球比赛,在单打的第一轮比赛中,每一个选手都和其他选手进行一次比赛,优胜者将参加下一轮比赛.(1)如果第一轮有10名选手参加比赛,则一共要比赛多少场?(2)如果第一轮有n 名选手参加比赛,则一共要比赛多少场?(3)如果第一轮共进行了300场比赛,则参加这次比赛的选手有多少名?7.一个两位数等于它的两个数字积的3倍,且十位上的数字比个位上的数字小2,求这个两位数.第2题图C Q8.小明养了一群鸽子,小刚问他养了几只.小明说:“如果你给我一只鸽子,那么现在的鸽子总数的平方恰是鸽子总数的9倍”,请问小明养了多少只鸽子?9.某空房地面图形是正方形,其边长为x 米,办理此房产权费用需10000元,装修费用满足如图所示的函数关系式,装修后将此房出租,租期5年,租金每年200元/平方米,五年到期时,将获利润70000元,求此房面积.补充练习 解下列方程:()()75.8212512525)1(2=++++x x ()[]{}12%6.190%601)2(=⨯-+-x x()()222456075)3(+=x x ()80005109060140)4(=⎪⎭⎫ ⎝⎛⨯--+x x()()()1101440%101%201530)5(2=--+-x(1) 将左图中△ABC 绕点O 顺时针旋转90°,记△A 1B 1C 1;(2) 作左图中△DEF 关于点P 的中心对称图形△D 1E 1F 1.2(m )x专练:列一元二次方程解应用题(一)列方程解应用题的步骤为:1.审题;目的是审清题目中的已知量和求知量。

2.设未知数;包括直接设未知数和间接设未知数两种;3.找等量关系列方程;4.解方程;5.判断解是否符合题意;一、面积问题:关于面积问题一般都是画出平面示意图,结合图形,利用“数形结合”的思想,来解决实际问题,对于图形进行平移是常用的方法。

(同时还要注意验根)例1:如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?例2、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。

①鸡场的面积能达到150m2吗?②鸡场的面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由。

(3)若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用?作业:1一块长和宽分别为40厘米和25厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体纸盒,使它的底面积为450平方厘米.那么纸盒的高是多少?2、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.二、增长率问题:关于增长率的问题,一般有三个常用量,原产量;增长率(降低率);增长后的产量(降低后的产量)。

如果把原产量叫做基数(也做始数)用A表示,把增长后的产量叫做末数用B表示,增长率(下降率)用x表示,时间间隔用n增长率问题的数量关系A(1±x)n=B, 在初中阶段,n通常取 2 .例1、某油田今年的产量可达5000万吨,如果计划两年内把产量翻一番,那么平均今后两年内每年需增产百分之几?例2、.某公司一月份营业额100万元,第一季度总营业额为331万元,求该公司二、三月份营业额平均增长率是多少?作业:1、某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,求平均每月降低率?2、某商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.专练:列一元二次方程解应用题(二)三、循环问题:例1、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了多少人。

相关文档
最新文档