2018年九年级数学中考模拟试题附答案

合集下载

2018中考数学模拟考试题和答案解析(精选两套)

2018中考数学模拟考试题和答案解析(精选两套)

图1初中2018届九年级数学第一次模拟第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分) 1. 若m-n=-1,则(m-n )2-2m+2n 的值是( )A. 3B. 2C. 1D. -12. 已知点A (a ,2013)与点A′(-2014,b )是关于原点O 的对称点,则b a +的值为A. 1B. 5C. 6D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12,B .15,C .12或15,D .18 4. 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个D. 4个5. 如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A=40°, ∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35° 6. 下列关于概率知识的说法中,正确的是 A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨. B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上. C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖.D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61. 7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m 的值为A. 2012B. 2013C. 2014D. 20158. 用配方法解方程0142=++x x ,配方后的方程是A. 3)2(2=-xB. 3)2(2=+xC. 5)2(2=-xD. 5)2(2=+x9. 要使代数式12-a a有意义,则a 的取值范围是 A. 0≥aB. 21≠a C. 0≥a 且21≠a D. 一切实数 10. 如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6 cm ,则AB 的长为A. 4 cmB. 23cmC. 32cmD. 62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是 A .625)1(4502=+x B. 625)1(450=+xC .625)21(450=+xD. 450)1(6252=+x12. 如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b+c>0;④2c <3b ; ⑤a +b <m (am +b)(m ≠1的实数). 其中正确结论的有 A. ①②③ B. ①③④C. ③④⑤D. ②③⑤第Ⅱ卷 非选择题(84分)二、填空题(本大题共6个小题,每小题3分,满分18分)只要求填写最后结果. 13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________. 14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________. 15. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x , 则21____y y (填“>”、“=”或“<”).17. 如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD=4,则弦AC 的长为 . 18. 已知101=-aa ,则a a 1+的值是______________.三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分)19.(1)计算题:20)1(3112)3(----+--; (2)解方程:1222+=-x x x .20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点Q 的坐标(x ,y ).(1)画树状图或列表,写出点Q 所有可能的坐标; (2)求点Q (x ,y )在函数y =-x +5的图象上的概率;(3)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分)21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,3)、B (1,2),△AOB 绕点O 逆时针旋转90°后得到△11OB A . (1)画出△11OB A ,直接写出点1A ,1B 的坐标; (2)在旋转过程中,点B 经过的路径的长; (3)求在旋转过程中,线段AB 所扫过的面积.22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个. (1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元? (2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?BE五、几何题(本大题满分12分)23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E . (1)求证:CD 为⊙O 的切线; (2)求证:∠C=2∠DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)六、综合题(本大题满分14分) 24. 如图,抛物线y=21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). (1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是x 轴上的一个动点,当△DCM 的周长最小时,求点M 的坐标.2018年初三年级学业水平考试数学全真模拟试卷3一、选择题(本大题共15个小题,每小题3分,共45分.1.|-2 014|等于( )A.-2 014B.2 014C.±2 014D.2 0142.下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是A.a-c>b-cB.a+c<b+cC.ac>bcD.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( )A.1颗B.2颗C.3颗D.4颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A.10,10B.10,12.5C.11,12.5D.11,106.一个几何体的三视图如图所示,则这个几何体是( )7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是( )8.对于非零的两个实数a ,b ,规定a b=11b a -,若2(2x-1)=1,则x 的值为( )5531A. B. C. D.6426- 9.已知2x y 30-++=(),则x+y 的值为( )A.0B.-1C.1D.5 10.如图,已知⊙O 的两条弦AC 、BD 相交于点E ,∠A =70°, ∠C =50°,那么sin ∠AEB 的值为( )A.231D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8, 则阴影部分的面积是( )A.48B.60C.76D.8012.如图,点D 为y 轴上任意一点,过点A(-6,4)作AB 垂直于x 轴交x 轴于点B ,交双曲线6y x-=于点C,则△ADC 的面积为( )A.9B.10C.12D.1513.2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小 14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( ) A.60° B.90° C.120° D.180°15.如图,在正方形ABCD 中,AB=3 cm ,动点M 自A 点出发沿AB 方向以每秒1 cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3 cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2),运动时间为x (s ),则下列图象中能大致反映y 与x 之间的函数关系的是第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.a 10a b -+=-,则=___________.17.命题“相等的角是对顶角”是____命题(填“真”或“假”). 18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(5,3),则这束光从点A 到点B 所经过的路径的长为______.20.若圆锥的母线长为5 cm ,底面半径为3 cm ,则它的侧面展开图的面积为________cm 2(结果保留π).21.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF , ∠B=∠F=72°,则∠D=______度.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组:x 3y 1,3x 2y 8.+=-⎧⎨-=⎩ (2)解不等式组2x 312x 0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.(本小题满分7分)(1)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;(2)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.(本小题满分8分)一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?27.(本小题满分9分)已知如图,一次函数1y x 12=+的图象与x 轴交于点A ,与y 轴交于点B ,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为(1,0). (1)求二次函数的解析式.(2)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值;若不存在,请说明理由.(3)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值;若不存在,说明理由.28.(本小题满分9分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为2 43(,),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标.(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由.(3)以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案1.B2.C3.B4.B5.D6.D7.C8.A9.C 10.A 11.C 12.A 13.A 14.D 15.C16.4 17.假18.2 19.π 21.3622.(1)解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,(2)解:2x312x0+>⎧⎨-≥ ⎩,①,②由①得:x>-1;由②得:x≤2.不等式组的解集为:-1<x≤2, 在数轴上表示为:23.(1)证明:连接OE.∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠OEC=∠C=90°,∴AC是⊙O的切线.(2)证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°.∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.24.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.1.5x=30,故甲、乙两公司单独完成此项工程,各需20天、30天. (2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元.根据题意得:12(y+y-1 500)=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费:30×(5 000-1 500)=105 000(元);故甲公司的施工费较少.25.解:(1)张老师一共调查了:(6+4)÷50%=20(人);(2)C 类女生人数:20×25%-3=2(人);D 类男生人数:20-3-10-5-1=1(人);将条形统计图补充完整如图所示:(3)列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12. 26.解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP.又∵∠B=∠C=90°,∴△ABP ∽△PCE ,2AB BP 2x 1m ,,y x x.PC CE m x y 22∴==∴=-+-即 (2)2221m 1m m y x x (x ),22228=-+=--+ ∴当m x 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上,2m1,m 8∴≤≤解得∴m 的取值范围为:0m <≤(3)由折叠可知,PG=PC ,EG=EC ,∠GPE=∠CPE.又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC ,∴∠GAP=∠APB ,∴∠GAP=∠APG ,∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG ,交于点H ,则易知ABCH 为矩形,HE=CH-CE=2-y ,GH=AH-AG=4-(4-x )=x ,在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2,即:x 2+(2-y )2=y 2,化简得:x 2-4y+4=0①.2221m 1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC .∵AG ∥PC ,AG=PC ,∴四边形APCG 为平行四边形,∴AP=CG .易证△ABP ≌GNC ,∴CN=BP=x .过点G 作GN ⊥PC 于点N ,则GH=2,PN=PC-CN=4-2x .在Rt △GPN 中,由勾股定理得:PN 2+GN 2=PG 2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C的坐标为(4,3).设符合条件的点P存在,令P(a,0).当P 为直角顶点时,如图,过C 作CF ⊥x 轴于F.∵∠BPC=90°,∴∠BPO+∠CPF=90°.又∵∠OBP+∠BPO=90°,∴∠OBP=∠CPF,∴Rt △BOP ∽Rt △PFC ,BO OP 1t ,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0,解得:t=1或t=3,∴所求的点P 的坐标为(1,0)或(3,0),∴运动时间为1秒或3秒.(3)存在符合条件的t 值,使△APQ 与△ABD 相似.设运动时间为t ,则AP=2t ,AQ=at.∵∠BAD=∠PAQ , ∴当AP AQ AP AQ AB AD AD AB==或时,两三角形相似. at 2t AB 5AD 333aa 53====∴==,,或∴存在a 使两三角形相似且a a 53== 28.解:(1)由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()() ∵抛物线经过(0,2),22a 042,3∴--=() 解得:a=16, 22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时, 解得:x=2或x=6,∴A (2,0),B (6,0).(2)存在,如图2,由(1)知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P ,则AP=BP ,∴AP+CP=BC 的值最小.∵B (6,0),C (0,2) ,∴OB=6,OC=2,BC AP CP BC ∴=∴+==∴AP+CP的最小值为(3)如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE ,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE,∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM.设OD=x,则CD=DM=OM-OD=4-x,则Rt △COD 中,OD 2+OC 2=CD 2,∴x 2+22=(4-x )2.33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b,∵直线CE 过C (0,2),D(3,02)两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,,∴直线CE 的解析式为4y x 2.3=-+。

最新-2018年九年级数学中考最新模拟试卷及答案 精品

最新-2018年九年级数学中考最新模拟试卷及答案 精品

2018年中考数学模拟试卷2018.4.18(总分 150分 时间 120分钟)一、选择题:(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一...项.是符合题目要求的,请将正确选项的代号填在括号内.) 1.|3|-的相反数是( ) A .3 B .13C .13-D . 3-2.下列各式运算结果为8x 的是( )A . x 4·x 4 B . (x 4)4 C .x 16÷x 2 D .x 4+x 43.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中既是轴对称图形又是中心对称图形的是( )4.某几何体的三视图如左图所示,则此几何体是( ) A .正三棱柱 B .圆柱 C .长方体 D .圆锥 5.在Rt△ABC 中,∠C=90°,sinA=41,则tanB 的值是( ) A .415 B .1515C .15D .416.在2018年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1000个成年人,结果其中有150个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( )A .调查的方式是普查 B .本地区约有15%的成年人吸烟 C .样本是150个吸烟的成年人 D .本地区只有850个成年人不吸烟7.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )A .相交 B .内含 C .内切 D .外切8.如图,点A 是函数y=x1的图象上的点,点B 、C 的坐标分别为B(-2,-2)、C(2,2).试利用性质:“函数y=x1的图象上任意一点A 都满足|AB -AC|=22”求解下面问题:“作∠BAC 的内角平分线AE ,过B 作AE 的垂线交AE 于F ,已知当点A 在函数y=x1的第4题图图象上运动时,点F 总在一条曲线上运动,则这条曲线为( )A .抛物线 B .圆 C .反比例函数的曲线 D .以上都不对二、填空题:(本大题共10小题,每小题3分共30分.不需写出解答过程,请将最后结果填写在题目中的横线上.) 9.分解因式:24x y y -=____________________ .10.在函数52-=x x y 中,自变量x 的取值范围是___________.11.2018年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43681000000元人民币.这笔款额用科学记数法表示(保留三个有效数字)为 元.12.一个圆锥形的圣诞帽高为10cm ,母线长为15cm ,则圣诞帽的表面积为_______cm 2(结果保留π).13.如果代数式b a 35+的值为-4,那么代数式)2(4)(2b a b a +++的值为 . 14.已知二次函数2(0)y ax bx c a =++≠的图像向左平移2个单位,向下平移1个单位后得到二次函数22y x x =+的图像,则二次函数2(0)y ax bx c a =++≠的解析式为______________.15.有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.下图是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.开挖 小时后,甲队所挖掘河渠的长度开始超过乙队. 16.观察下列等式:第一个等式是1+2=3, 第二个等式是2+3=5,第三个等式是4+5=9, 第四个等式是8+9=17,……猜想:第n 个等式是 .17.一个定滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升20cm 时,滑轮的一条半径OA 绕轴心按逆时针方向旋转的角度(假设绳索之间没有滑动,结果精确到1°)约为_______.18.Rt△ABC 中,∠BAC=90°,AB=3,AC=4,P 为边BC 上一动点,PE⊥AB 于E ,PF⊥AC 于F ,M 为EF 中点,则AM 的最小值为 . 第17题图 第15题图 A B CPEFM 第18题图 第8题图三、解答题:(本大题共10小题,共96分.解答时,在答题纸的相应的位置上写出文字说明、证明过程或演算步骤) 19.(本题共8分)(1)计算:102006)21()23(1-+--- (2) 解方程:xx x 212112--=-20.(本题共8分)先化简分式23111xx x x x x ⎛⎫-÷⎪-+-⎝⎭,再从-1、0、1、2、3这五个数据中选一个合适的数作为x 的值代入求值. 21.(本题共8分)某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2∶3∶4∶6∶4∶1.请你回答: (1)本次活动共有 件作品参赛;上交作 品最多的组有作品 件;(2)经评比,第四组和第六组分别有10件和2件 作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?1222.(本题共8分)如图某幢大楼顶部有广告牌CD .张老师目高MA 为1.60米,他站立在离大楼45米的A 处测得大楼顶端点D 的仰角为30;接着他向大楼前进14米站在点B 处,测得广告牌顶端点C 的仰角为45.(计算结果保留一位小数) (1)求这幢大楼的高DH ; (2)求这块广告牌CD 的高度.23.(本题共10分)王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m .(1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最 大高度不变且球刚好进洞,则球飞行路线应满足怎样 的抛物线,求出其解析式.24.(本题共10分)张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘)。

【中考模拟】2018年 九年级数学中考模拟试卷 一(含答案)

【中考模拟】2018年 九年级数学中考模拟试卷 一(含答案)

2018年九年级数学中考模拟试卷一、选择题:1.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c2.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是()A.丽B.连C.云D.港3.下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D. +2=34.在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A.12B.13C.14D.165.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°6.把多项式x2+ax+b分解因式,得(x+1)(x-3).则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3 C.a=-2,b=3 D.a=2,b=-37.下列函数中y随x的增大而减小的是()A.y=x﹣m2 B.y=(﹣m2﹣1)x+3 C.y=(|m|+1)x﹣5 D.y=7x+m8.如图,AD=AB=BC,那么∠1和∠2之间的关系是( ).A.∠1=∠2 B.2∠1+∠2=180° C.∠1+3∠2=180° D.3∠1-∠2=180°9.下列说法正确的是()A.如果两个三角形全等,则它们是关于某条直线成轴对称的图形B.如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C.等边三角形是关于一条边上的中线成轴对称的图形D.一条线段是关于经过该线段中点的中线成轴对称的图形10.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°11.已知a,b,c,d,e的平均分是m,则a+5,b+12,c+22,d+9,e+2的平均分是( )A.m-1 B.m+3 C.m+10 D.m+1212.二次函数y=ax2+bx下列结论:①ac<0(b-1)x+c=0的一个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为( )A.4个B.3个C.2个D.1个二、填空题:13.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S=2,则k= .△AOB14.如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为.15.已知一次函数y=(k﹣1)x|k|+3,则k=______.16.已知m是方程x2-x-2=0的一个根,则代数式m2-m+1的值为 .17.在矩形ABCD中,对角线AC、BD交于点O,若∠AOB=100°,则∠OAB= .18.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则ANAM 11 =________.三、解答题:19.解方程:2(2x -2)+1=2x -(x -3)20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?21.老师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:请你通过计算,比较谁的学期总评成绩高?22.如图,港口A在观测站O的正东方向,OA=40海里,某船从港口A出发,沿北偏东15°方向航行半小时后到达B处,此时从观测站O处测得该船位于北偏东60°的方向.求该船航行的速度.23.某种拖拉机的油箱可储油40升,加满油并开始工作3小时后,余下25升,假设每小时耗油量一定.(1)设油箱中的余油量y(升),工作时间x(时),求y与x的函数解析式,并写出自变量的取值范围;(2)画出(1)中的函数图象.24.如图,平行四边形ABCD中,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.(1)求证:△ABE≌△CDF;(2)当四边形ABCD满足什么条件时,四边形AECF是菱形?证明你的结论.25.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.26.已知抛物线y=x2﹣4x﹣m(m>0)与x轴交于A.B两点,与y轴交于点C,D为抛物线的顶点,C点关于抛物线对称轴的对称点为C′点.(1)若m=5时,求△ABD的面积.(2)若在(1)的条件下,点E在线段BC下方的抛物线上运动,求△BCE面积的最大值.(3)写出C点(,)、C′点(,)坐标(用含m的代数式表示)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C′、P、Q为顶点的四边形是平行四边形,直接写出Q点和P点的坐标(可用含m的代数式表示)参考答案1.C2.C.3.C4.B.5.B6.D7.B8.C9.C10.B11.C.12.B.13.答案为:-4;14.答案为:(6+2)a.15.答案为:﹣116.答案为:3.17.答案为:40°.18.答案为:1;19.x=6;20.解:设应分配x人生产甲种零件,则生产乙种零件(62-x)人,由题意得:2×12x=3×23(62-x)解得x=46,62-x=62-46=16因此应分配46人生产甲种零件,16人生产乙种零件.21.解:小丽的成绩是80×10%+75×30%+71×25%+88×35%=79.05(分),小明的成绩是76×10%+80×30%+70×25%+90×35%=80.6(分),79.05<80.6,所以小明的学期总评成绩高.22.解:23.解:(1)∵3小时耗油(40﹣25)升,∴每小时耗油5升,∴余油量y=40﹣5x.0≤x≤8.(2)图象如右图:24.(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∠BAD=∠BCD,∵MA⊥AN,NC⊥BC,∴∠BAM=∠DCN,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:四边形ABCD是菱形时,四边形AECF是菱形.∵△ABE≌△CDF,∴AE=CF,∵MA⊥AN,NC⊥BC,∴AM∥CN,∴四边形AECF为平行四边形,∵四边形ABCD是菱形,∴AC⊥EF,∴四边形AECF为菱形.25.26.解:(1)若m=5时,抛物线即为y=x2﹣4x﹣5,令y=0,得x2﹣4x﹣5=0,解得x=5或x=﹣1,则A(﹣1,0),B(5,0),AB=6.∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴顶点D的坐标为(2,﹣9),∴△ABD的面积=0.5×AB×|y D|=0.5×6×9=27;(2)如图1,过点E作y轴的平行线交BC于F.在(1)的条件下,有y=x2﹣4x﹣5,则C(0,﹣5),设直线BC的解析式为y=kx﹣5(k≠0).把B(5,0)代入,得0=5k﹣5,解得k=1.故直线BC的解析式为:y=x﹣5.设E(m,m2﹣4m﹣5),则F(m,m﹣5),∴S△BCE=0.5EF•OB=0.5×(m﹣5﹣m2+4m+5)×5=﹣2.5(m﹣2.5)2+125/8,即S△BCE=﹣2.5(m﹣2.5)2+125/8,∴当m=2.5时,△BCE面积的最大值是125/8;(3)∵y=x2﹣4x﹣m(m>0),∴x=0时,y=﹣m,对称轴为直线x=2,∴C(0,﹣m),∵C点关于抛物线对称轴的对称点为C′点,∴C′(4,﹣m).以点C、C′、P、Q为顶点的四边形是平行四边形分两种情况:①线段CC′为对角线,如图2,∵平行四边对角线互相平分,∴PQ在对称轴上,此时P点为抛物线的顶点,与D点重合,∵y=x2﹣4x﹣m=(x﹣2)2﹣4﹣m,∴P(2,﹣4﹣m),∵线段PQ与CC′中点重合,C(0,﹣m),C′(4,﹣m),设Q(2,y),∴=﹣m,解得y=4﹣m,∴Q(2,4﹣m);②线段CC′为边,如图3,∵以点C、C′、P、Q为顶点的四边形是平行四边形,∴PQ=CC′=4,设点Q的坐标为(2,y),则点P坐标为(6,y)或(﹣2,y),∵点P在抛物线上,将x=6和x=﹣2分别代入y=x2﹣4x﹣m中,解得y均为12﹣m,故点P的坐标为(6,12﹣m)或(﹣2,12﹣m),Q(2,12﹣m).综上所述,如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C′、P、Q为顶点的四边形是平行四边形,Q点和P点的坐标分别是:Q(2,4﹣m),P(2,﹣4﹣m)或Q(2,12﹣m),P(6,12﹣m)或Q(2,12﹣m),P(﹣2,12﹣m).故答案为0,﹣m,4,﹣m.。

2018年中考数学模拟试卷及答案(4) 2018年九年级模拟试卷及答案(4)

2018年中考数学模拟试卷及答案(4)  2018年九年级模拟试卷及答案(4)

绝密★启用前2018年中考模拟试卷及答案数学试卷(4)(考试时间:120分钟 总分:150分)一.精心选一选,你会开心(共10小题,每小题3分,计30分。

每小题只有一个选项是符合题意的)1.41-的倒数是( ) A .4B.41-C.41 D.4-2.关于近似数3104.2⨯,下列说法正确的是( )A .精确到十分位,有2个有效数字 B. 精确到百位,有4个有效数字 C. 精确到百位,有2个有效数字 D. 精确到十分位,有4个有效数字3.下列运算正确的是( )A .32a -2a =3B .32)(a =5aC .⋅3a 6a =9aD .22)2(a =24a4.下列各等式中,正确的是( )A .16 =±4;B .±16 =4C .(-5 )2=-5D .-(-5)2=-55.函数x y -=2的自变量的取值范围是 ( )A.0≥xB.2≠x C.2<x D.2≤x6.有一组数据3,4,2,1,9,4,则下列说法正确的是( )A.众数和平均数都是4B.中位数和平均数都是4C.极差是8,中位数是3.5D.众数和中位数都是47.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )ABCD8.已知,420930a b c a b c -+=++=,,则二次函数2y ax bx c =++图象的顶点可能在A.第一或第四象限B.第三或第四象限C.第一或第二象限D.第二或第三象限9. 如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A.21B.43C.23D.5410.已知圆锥的底面半径为1cm ,母线长为3cm ,则其全面积为 ( ) A .π B .3π C .4π D .7π二. 细心填一填,你会轻松。

(共10小题,每小题4分,共计40分)11.因式分解:x x x 4423++=___________________. 12.分式方程12421=-+-xx 的解是_________________. 13.袋子中装有3个红球,5个黄球,1个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是____________14.如图,AB 为⊙O 的直径,点C,D 在⊙O 上,∠BAC=50°,则∠ADC=_________第16题15.如图,A,B 是双曲线)0(>=k xky 上的点,A,B 两点的横坐标分别是a,2a,线段AB 的延长线交x 轴于点C ,若6=AOC S △,则k=___________。

2018九年级中考模拟数学试题卷附答案

2018九年级中考模拟数学试题卷附答案

中考模拟数学试题卷(满分120分)一、仔细选一选(本题有10个小题,每小题3分,共30分) 1.9的平方根是( ).A.B.C. ±3D. 32.下列图形中既是轴对称图形,又是中心对称图形的是( )3.一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( ) A .4 B .5 C .6 D .74.下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( ) A.1个 B.2个 C.3个 D.4个5.2010年3月5日,温家宝总理在“政府工作报告”中说,2009年我国国内生产总值达到33.5万亿元,这个数字用科学记数法表示为( )A .3.35×1013元B .3.35×1012元C .33.5×1012元D .33.5×1013元 6.现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( ) A.3种 B.4种 C.5种 D.6种 7.如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( )GH E(F)ABCD10A B C D8.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A .6 B .7 C .8 D .99.定义新运算: a ⊕b=⎪⎩⎪⎨⎧≠>-≤-)0()(1b b a ba b a a 且,则函数y=3⊕x 的图象大致是( )10.m 的值是( )A .38B .52C .66D .74 二、认真填一填(本题有6个小题,每小题4分,共24分) 11.方程280x +=的解是 .12. 如图,点A 、B 、C 在⊙O 上,︒=∠45A ,则=∠BOC 13.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四边形,例如图①中的四边形ABCD ,则BAD ∠的大小是_______度. 14.如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.2 8 424 622 46 844D ①②第13题图C15.在如图所示的12×12的网格图形中任意画一个圆,则所画的圆最多能经过169个格点中的 个格点. 16.如图所示,在ABC Rt ∆中,︒=∠90C ,8,6==BC AC ,若以C 为圆心,R 为半径所得的圆与斜边AB 只有一个公共点,则R 的取值范围是: 。

最新-2018年九年级数学中考全真模拟试题及答案【江西省】 精品

最新-2018年九年级数学中考全真模拟试题及答案【江西省】 精品

2018年江西省中考数学仿真模拟试题说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分。

每小题只有一个正确答案,请将正确答案的序号填在题后的括号内)1.32-的相反数是( ) A.23- B.23 C.32D.32-2.下列运算正确的是( )A. 236x x x ⋅= B. 22232x x x -+= C. 236()x x -= D. 221(2)4x x --=-3.下列A 、B 、C 、D 四幅“福牛乐乐”图案中,能通过顺时针旋转180°图案(1)得到的是( )B4.某运动场的面积为3002m ,则它的万分之一的面积大约相当于( )A .课本封面的面积B .课桌桌面的面积C .黑板表面的面积D .教室地面的面积 5.已知一次函数y=kx+b(k 、b 为常数,且k ≠0),x 与y 的部分对应值如下表所示,那么不等式kx+b<0的解集是( )6. 如图是由相同小正方体组成的立体图形,它的主视图为( )7.教室地面的瓷砖如图所示,一把钥匙被藏在某种颜色的一块瓷砖下面,则下列判断正确的是( )A.被藏在白色瓷砖下的概率大 B.被藏在黑色瓷砖下的概率大C.被藏在两种瓷砖下的概率一样大 D.无法确定A .B .C .D .8.若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-81my nx ny mx 的解,则m,n 的值分别为( )A.m=2,n=1B.m=2,n=3C.m=1,n=8D.m=-2,n=39.将一副三角板按如图所示的位置叠放,则△AOB 与△DOC 的面积之比等于( )A. B. 12 C. 13 D. 1410. 如图,一量角器放置在∠AOB 上,角的一边OA 与量角器交于点C 、D ,且点C 处的度数是20°,点D 处的度数为110°,则∠AOB 的度数是( )A.20°B. 25°C.45°D. 55°二、填空题(本大题共6小题,每小题3分,共18分)11.新华网济南2月24日电 ,据山东省经贸委提供的数据,截至22日,山东省累计销售并已登录信息系统的家电下乡试点产品140.46万台,实现销售收入超过20.53亿元,居全国第一。

2018年九年级数学模拟试卷及答案

2018年九年级数学模拟试卷及答案

2018年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .06.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,若CD=4,AC=12,则△ABC 的面积 为( ▲ )A .48B .50C .54D .60(第4题) A BCD (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ . 10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算 33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =kx 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m .(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a = ▲ ,初赛成绩为1.70m 所在扇形图形的圆心角为 ▲ °; (2)补全条形统计图;(3)这组初赛成绩的众数是 ▲ m ,中位数是 ▲ m ; (4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n 个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n 的值为 ▲ ;(2)当n =2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E 在AD 上,延长ED 交FG 于点H . (1)求证:△EDC ≌△HFE ; (2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 ▲ 时,四边形BEHC 为菱形.(第21题)ACDGFEH22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点. (1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

2018九年级中考数学模拟试卷及答案

2018九年级中考数学模拟试卷及答案

学校 班级 姓名 考号答……○……题……○……不……○……得……○……超……○……过……○……此……○……密……○……封…○……线…○…2017-2018学年度第二学期九年级数学监测试卷(总分:120 分 考试时间:90分钟)一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项. 1.下列图标中,既是轴对称图形,又是中心对称图形的是 A .B .C .D .2.地球与月球的平均距离为384 000 km ,将384 000这个数用科学计数法表示为 A .31084.3⨯ B .41084.3⨯ C .51084.3⨯ D .61084.3⨯ 3.如图所示的几何体,它的主视图是A .B .C .D .4.4的平方根是A .16B .2C .2±D .2± 5.下列计算,正确的是A .a 2•a 2=2a 2B .a 2+a 2=a 4C .(﹣a 2)2=a 4D .(a+1)2=a 2+16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是A .32°B .58°C .68°D .60°7.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,设△OCD 的面积为m ,△OEB 的面积为,则下列结论中正确的是A . m=5B .m=2C .m=4D .m=10第6题图 第7题图 第10题图 8.已知某公司1月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x ,那么第一季销售总额用代数式可表示为(单位:万元) A .500(1+x )2 B .500+500x+500x 2C .500+500(1+x )+500(1+2x )D .500+500(1+x )+500(1+x )29.已知x=2是关于x 的方程x 2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 的两条边长,则△ABC 的周长为 A .6B .8C .10D .8或1010.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是A .B .C .D .二、填空题:本大题共8个小题,每小题3分,共24分. 11.分解因式:ax 2﹣ay 2= .12.不等式:≥的解集是 .13.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 .14.如图,⊙O 为△ABC 的外接圆,∠A=72°,则∠BCO 的度数为 . 15.如图,在△ABC 中,∠ACB=90°,将△ACD 沿CD 折叠,使点A 恰好落在BC 边上的点E 处.若∠B=25°,则∠BDE= .16.若11622y x x =-+--,则xy 错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试题 (第 1 页 共 8 页)九年级数学中考模拟试题一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.16的算术平方根是 ( ▲ ) A .±4 B .±2 C .4D .-42.下列运算正确的是 ( ▲ )A .(ab )2=ab 2B .a 2·a 3= a 6C .(-2)2=4D .2×3= 63.若a <b ,则下列式子中一定成立的是 ( ▲ ) A .a -3<b -3 B .a 3>b3C .3a >2bD .3+a >3+b4.把多项式x 2+ax +b 分解因式,得(x +1)(x -3),则a ,b 的值分别是 ( ▲ ) A .a =2,b =3 B .a =-2,b =-3C .a =-2,b =3D .a =2,b =-35.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最 后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是 ( ▲ ) A .96,88, B .86,88, C .88,86,D .86,866.tan30°的值为 ( ▲ ) A .12 B .22C .32D .337.将抛物线y =x 2-4x -3向左平移3个单位,再向上平移5个单位,得到抛物线的表达式 为 ( ▲ ) A .y =(x +1)2-2 B .y =(x -5)2-2 C .y =(x -5)2-12 D .y =(x +1)2-12 8.如图,已知BC 是⊙O 的直径,AB 是⊙O 的弦,切线AD 交BC 的延长线于D ,若∠D =400, 则∠B 的度数是 ( ▲ ) A .400 B .500C .250D .11509.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上, ∠BOC =60°,顶点C 的坐标为(m , 33),反比例函数ky x的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是 ( ▲ )参赛者编号 1 2 3 4 5 成绩/分9688869386数学试题 (第 2 页 共 8 页)FE DC BAA .6 3B .-6 3C .12 3D .-123(第8题) (第9题) (第10题)10.如图,在△ABC 中,∠ACB =90°,AB =18,cos B =23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E 处,则线段AE 的长为 ( ▲ ) A .6 5B .7 5C .8 5D .95二、填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题卡相应位......置.上.) 11.在△ABC 中,已知D 、E 分别为边AB 、AC 的中点,若△ADE 的周长为3 cm ,则△ABC的周长为 ▲ cm .12.若圆锥底面圆的直径和母线长均为4cm ,则它的侧面展开图的面积等于 ▲ cm 2. 13.已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为 ▲ . 14.如图,点B 、E 、C 、F 在一条直线上, AC ∥DF ,且AC =DF ,请添加一个条件 ▲ ,使△ABC ≌△DEF .(第16题) (第17题) (第18题)15.如图,在正方形纸片ABCD 中,EF ∥AB ,M ,N 是线段EF 的两个动点,且MN =13EF ,若把该正方形纸片卷成一个圆柱,使点A 与点B 重合,若底面圆的直径为6cm ,则正方形纸片上M ,N 两点间的距离是 ▲ cm .16.如图,在△ABC 中,AB =13cm ,AC =12cm ,BC =5cm .D 是BC 边上的一个动点,连接CB O AN F AE MEABC D AD数学试题 (第 3 页 共 8 页)AD ,过点C 作CE ⊥AD 于E ,连接BE ,在点D 变化的过程中,线段BE 的最小值是 ▲ cm. 三、解答题(本大题共8小题,共计66分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.) 17.计算与化简(6分)(1)||-3-⎝⎛⎭⎫12-2+(1-π)0; (2)(x +2y )2+(x +2y ) (x -2y ) .18.(本题共有2小题,共6分)(1)解方程:2x -32-2+ x2=-1; (2)解不等式组:⎩⎪⎨⎪⎧2-x >0,5x +12+119.(本题满分6分)已知:如图,在平行四边形ABCD 和矩 形ABEF 中, AC 与DF 相交于点G . (1) 试说明DF =CE ;(2) 若AC =BF =DF ,求∠ACE 的度数.20.(本题满分8分)已知:如图,已知⊙O 是△ABC 的外接圆,AB 为⊙O 的直径,AC =6cm ,BC =8cm.(1)求⊙O 的半径;(2)请用尺规作图作出点P ,使得点P 在优弧..CAB ...上时,△PBC 的面积最大,请保留作图痕迹,并求出△PBC 面积的最大值.21.(本题满分8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大 会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写 出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表. 组别 成绩x 分 频数(人数)第1组 50≤x <60 6 第2组 60≤x <70 8 第3组70≤x <8014数学试题 (第 4 页 共 8 页)请结合图表完成下列各题: (1)① 表中a 的值为 ▲ ;② 把频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?22.(本题满分10分)已知:如图,一次函数y =-2x 与二次函数y =ax 2+2ax +c 的图像交于A 、B 两点(点 A 在点B 的右侧),与其对称轴交于点C . (1)求点C 的坐标;(2)设二次函数图像的顶点为D ,点C 与点D关于 x 轴对称,且△ACD 的面积等于2.① 求二次函数的解析式;② 在该二次函数图像的对称轴上求一点P (写出其坐标),使△PBC 与△ACD 相似.第4组 80≤x <90 a 第5组 90≤x <10010xy数学试题 (第 5 页 共 8 页)23.(本题满分10分)如图(1),在矩形ABCD 中,AB =4,BC =3,点E 是射线..CD 上的一个动点,把△BCE 沿BE 折叠,点C 的对应点为F .(1)若点F 刚好落在线段AD 的垂直平分线上时,求线段CE 的长; (2)若点F 刚好落在线段AB 的垂直平分线上时,求线段CE 的长; (3)当射线AF 交线段CD 于点G 时,请直接..写出CG 的最大值 ▲ .24.(本题满分12分)如图(1),在△ABC 中,∠C =90°,AB =5cm ,BC =3cm ,动点P 在线段 AC 上以5cm/s 的速度从点A 运动到点C ,过点P 作PD ⊥AB 于点D ,将△APD 绕PD 的 中点旋转180°得到△A ′DP ,设点P 的运动时间为x (s ). (1)当点A ′落在边BC 上时,求x 的值;(2)在动点P 从点A 运动到点C 过程中,当x 为何值时,△A ′BC 是以A ′B 为腰的等腰三 角形;(3)如图(2),另有一动点Q 与点P 同时出发,在线段BC 上以5cm/s 的速度从点B 运 动到点C ,过点Q 作QE ⊥AB 于点E ,将△BQE 绕QE 的中点旋转180°得到△B ′EQ ,连 结A ′B ′,当直线A ′B ′与△ABC 的一边垂直时,求线段A ′B ′的长.图(1)A图(2)A图(1)C备用图C2017年初三调研考试数学试题参考答案一、选择题(本大题共10小题.每小题3分.共30分)1.C;2.D;3.A;4.B;5.B;6.D;7.A;8.C;9.D;10.C.二、填空题(本大题共6小题,每小题4分,共24分)11.6;12.π8;13.五;61-.14.答案不唯一,如∠A=∠D;15.π2;16.6三、解答题(本大题共8小题.共66分)17(1)原式=3-4+1 =0.(2)原式=x2+4xy+y2+x2-4y2=2x2+4xy.18.(1)去分母,得2x-3-x-2=-2解得x=3.(2)由(1),得x<2,由(2),得x≥-1.∴原不等式组的解集为-1≤x<2.19.(1)∵四边形ABCD是平行四边形,∴AB=DC,AB//DC 又∵四边形ABEF是矩形,∴AB=EF,AB//EF ∴DC=EF,DC//EF.∴四边形DCEF是平行四边形.∴DF=CE.(2)连结AE,∵四边形ABEF是矩形∴BF=AE又∵AC=BF=DF ∴AC=AE=CE .∴△AEC是等边三角形,∴∠ACE=60°. 20.(1)∵AB为⊙O的直径,AC=cm,BC=8cm.∴∠C为直角,AB=10cm.∴AO=5cm.(2)作图正确.作BC的垂直平分线交优弧CAB于P,S△PBC=32.22.(1)∵y=ax2+2ax+c=a(x+1)2+c-a,∴它的对称轴为x=-1.数学试题(第6 页共8 页)数学试题 (第 7 页 共 8 页)又∵一次函数y =-2x 与对称轴交于点C ,∴y =2. ∴C 点的坐标为(-1,2).(2)①∵点C 与点D 关于x 轴对称,∴点D 的坐标为(-1,-2). ∴CD =4,∵△ACD 的面积等于2.∴点A 到CD 的距离为1,C 点与原点重合,点A 的坐标为(0,0)设二次函数为y =a (x+1)2-2过点A ,则a =2, ∴y =2x 2+4x .②交点B 的坐标为(-3,6). 当△PBD ∽△CAD ,点P 的坐标为(-1, 10), 当△PBD ∽△ACD ,点P 的坐标为(-1,92),∴点P 的坐标为(-1, 10),(-1,92).23.(1)∵点F 刚好落在线段AD 的垂直平分线上,∴FB =FC .∵折叠 ,∴FB =BC =3. ∴△FBC 是等边三角形∴∠FBC =60°, ∠EBC =30°. 在Rt △EBC ∴CE =33BC =3. (2)如图(1)∵点F 刚好落在线段AB 的垂直平分线MN 上, ∵折叠,∴FE =EC .∴BM =2,在Rt △MFB 中,MF =5.∵△MBF ∽△NFE , ∴ MB BF =ENEF.∴CE =EN =9-352.如图(2)∵折叠 ,∴FE =EC .同理MF =5,FN =3+5. ∵△MBF ∽△NFE ,∴ MB BF =ENEF. ∴CE =EN =9+352.(3)CG 的最大值是4-7.24.(1)如图(1)当点A ′落在边BC 上时,由题意得四边形AP A ′D 为平行四边形 ∵△APD ∽△ABC ,AP =5x ,图(1)A数学试题 (第 8 页 共 8 页)∴ A ′P =AD =4x ,PC =4-5x . ∵A ′P//AB ∴△A ′PC ∽△ABC . x =2041.当点A ′落在边BC 上时, x =2041.(2)当A ′B =BC 时,()()2223385=+-x x ,解得:x . ∵ x ≤45 ,∴x =.当A ′B =A ′C 时,x =58.(3) 当A ′B ′⊥AB 时,x =514,A 1B 1=514.当A ′B ′⊥BC 时x =1546, A 1B 1=2546 .当A ′B ′⊥AC 时x =2053, A 1B 1=2553.。

相关文档
最新文档