高一空间直角坐标系

合集下载

新教材人教A版选择性必修第一册 1.3.1 空间直角坐标系 课件(49张)

新教材人教A版选择性必修第一册 1.3.1 空间直角坐标系 课件(49张)

【习练·破】 已知两点P(1,0,1)与Q(4,3,-1),则P,Q之间的距离为_______.
【解析】因为P(1,0,1),Q(4,3,-1), 所以 OP=(1,0,1)=i+k, OQ=(4,3,-1)=4i+3j-k, 所以 PQ=(4i+3j-k)-(i+k)=3i+3j-2k,
PQ 3i2 3j2 (-2k)2 22,
2
【类题·通】 1.空间对称问题的特点 空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化 规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余 坐标相反”这个结论.
2.利用向量法求空间两点距离的方法 (1)建系,确定两点坐标. (2)求出以向量 OA,OB 的坐标. (3)求 AB 的坐标. (4)根据公式求出 AB 的模,即AB的距离.
2
M是A1C1的三分之一分点且靠近A1点, 所以M(1,1,2).
所以AM=(1,1,2)=i+j+2k,
AN (3i+,33,1)j+k,
2
所以 MN (3 i -3(ji+ kj+) 2k)
2
= 1 i+2j-k,
2
所以 | MN | (1 i)2 2j2 (-k)2 21,
2
2
即|MN|= 21 .
【思考】 什么是右手直角坐标系? 提示:右手直角坐标系是指的让右手的拇指指向x轴正方向,食指指向y轴正方向, 中指指向z轴正方向所建立的坐标系;高中阶段所用的空间直角坐标系都是右手 直角坐标系.
2.空间向量的坐标表示 (1)点的坐标 在空间直角坐标系Oxyz中,i,j,k为坐标向量,对空间任意一点A,存在唯一有序实 数组(x,y,z),使OA=xi+yj+zk,则 OA 对应的有序实数组(x,y,z)叫做点A在空间坐 标系中的坐标. (2)向量的坐标 给定向量a,若OA =a,则a=xi+yj+zk, 有序实数组(x,y,z)叫做a在空间直角坐标系Oxyz中的坐标,记作a=(x,y,z).

高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析1.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.2.求证:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)为顶点的三角形是等腰直角三角形.【答案】见解析【解析】先利用空间两点的距离公式分别求出AB,AC,BC的长,然后利用勾股定理进行判定是否为直角三角形,以及长度是否有相等,从而判定是否是等腰直角三角形.证明:,,,∵d2(A,B)+d2(A,C)=d2(B,C)且d(A,B)=d(A,C).∴△ABC为等腰直角三角形.点评:本题主要考查了两点的距离公式和勾股定理的应用,考查空间想象能力、运算能力和推理论证能力,属于基础题.3.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.4.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()A.B.C.D.【答案】D【解析】过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,写出要求点的坐标.解:空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,∴Q(1,,0)故选D.点评:不同考查空间中点的坐标,是一个基础题,这种题目一般不会单独出现,它只是立体几何与空间向量中所出现的题目的一个小部分.5.坐标原点到下列各点的距离最小的是()A.(1,1,1)B.(1,2,2)C.(2,﹣3,5)D.(3,0,4)【答案】A【解析】利用两点间的距离分别求得原点到四个选项中点的距离,得出答案.解:到A项点的距离为=,到B项点的距离为=3到C项点的距离为=到D项点的距离为=5故选A点评:本题主要考查了两点间的距离公式的应用.属基础题.6.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.7.已知点A(1,2,1),B(﹣1,3,4),D(1,1,1),若=2,则||的值是.【答案】.【解析】设出P点的坐标,根据所给的=2和A、B两点的坐标求出P点的坐标,写出向量的坐标,利用求模的公式得到结果.解:设P(x,y,z),∴=(x﹣1,y﹣2,z﹣1).=(﹣1﹣x,3﹣y,4﹣z)由=2得点P坐标为P(﹣,,3),又D(1,1,1),∴||=.点评:认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.空间向量在立体几何中作用不可估量.8.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.9.已知空间三点的坐标为A(1,5,﹣2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p= ,q= .【答案】3;2【解析】根据所给的三个点的坐标,写出两个向量的坐标,根据三个点共线,得到两个向量之间的共线关系,得到两个向量之间的关系,即一个向量的坐标等于实数倍的另一个向量的坐标,写出关系式,得到结果.解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2),∴=(1,﹣1,3),=(p﹣1,﹣2,q+4)∵A,B,C三点共线,∴∴(1,﹣1,3)=λ(p﹣1,﹣2,q+4),∴1=λ(p﹣1)﹣1=﹣2λ,3=λ(q+4),∴,p=3,q=2,故答案为:3;2点评:本题考查向量共线,考查三点共线与两个向量共线的关系,考查向量的坐标之间的运算,是一个基础题.10.求到两定点A(2,3,0),B(5,1,0)距离相等的点的坐标(x,y,z)满足的条件.【答案】6x﹣4y﹣13=0即为所求点所满足的条件.【解析】直接利用空间坐标系中两点间的距离公式得关于x,y的方程式,化简即可得所求的点的坐标(x,y,z)满足的条件.解:设P(x,y,z)为满足条件的任一点,则由题意,得,.∵|PA|=|PB|,平方后化简得:6x﹣4y﹣13=0.∴6x﹣4y﹣13=0即为所求点所满足的条件.点评:本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题.11.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.12.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.【答案】点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:设点M(x,1﹣x,0)则=∴当x=1时,.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题主要考查了空间两点的距离公式,以及二次函数研究最值问题,同时考查了计算能力,属于基础题.13.试解释方程(x﹣12)2+(y+3)2+(z﹣5)2=36的几何意义.【答案】在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.【解析】题中式子可化为:,只要利用两点间的距离公式看看它所表示的几何意义即可得出答案.解:在空间直角坐标系中,方程(x﹣12)2+(y+3)2+(z﹣5)2=36即:方程表示:动点P(x,y)到定点(12,﹣3,5)的距离等于定长6,所以该方程几何意义是:在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.点评:本题主要考查了球的性质和数形结合的数学思想,是一道好题.14.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.15.设点B是点A(2,﹣3,5)关于xOy面的对称点,则A、B两点距离为()A.10B.C.D.38【答案】A【解析】点B是A(2,﹣3,5)关于xoy平面对称的点,B点的横标和纵标与A点相同,竖标相反,写出点B的坐标,根据这条线段与z轴平行,得到A、B两点距离.解:点B是A(2,﹣3,5)关于xoy平面对称的点,∴B点的横标和纵标与A点相同,竖标相反,∴B(2,﹣3,﹣5)∴AB的长度是5﹣(﹣5)=10,故选A.点评:本题看出空间中点的坐标和两点之间的距离,本题解题的关键是根据关于坐标平面对称的点的特点,写出坐标,本题是一个基础题.16.点P(x,y,z)满足=2,则点P在()A.以点(1,1,﹣1)为圆心,以2为半径的圆上B.以点(1,1,﹣1)为中心,以2为棱长的正方体上C.以点(1,1,﹣1)为球心,以2为半径的球面上D.无法确定【答案】C【解析】通过表达式的几何意义,判断点P的集合特征即可得到选项.解:式子=2的几何意义是动点P(x,y,z)到定点(1,1,﹣1)的距离为2的点的集合.故选C.点评:本题考查空间两点间距离公式的应用,空间轨迹方程的求法.17.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= .【答案】2【解析】由题意求出P关于坐标平面xOz的对称点为P2的坐标,即可求出|P1P2|.解:∵点P(1,2,3)关于y轴的对称点为P1,所以P1(﹣1,2,﹣3),P关于坐标平面xOz的对称点为P2,所以P2(1,﹣2,3),∴|P1P2 |==2.故答案为:2点评:本题是基础题,考查空间点关于点、平面的对称点的求法,两点的距离的求法,考查计算能力.18.已知x,y,z满足(x﹣3)2+(y﹣4)2+z2=2,那么x2+y2+z2的最小值是.【答案】27﹣10.【解析】利用球心与坐标原点的距离减去半径即可求出表达式的最小值.解:由题意可得P(x,y,z),在以M(3,4,0)为球心,为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|﹣=﹣=5,所以|OP|2=27﹣10.故答案为:27﹣10.点评:本题考查空间中两点间的距离公式的应用,考查计算能力.19.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.【答案】A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),E(,﹣,1),F().【解析】由题意直接写出B的坐标,利用对称性以及中点坐标公式分别求出A、B、C、D、E、F 的坐标.解:如图所示,B点的坐标为(1,1,0),因为A点关于x轴对称,得A(1,﹣1,0),C点与B点关于y轴对称,得C(﹣1,1,0),D与C关于x轴对称,的D(﹣1,﹣1,0),又P(0,0,2),E为AP的中点,F为PB的中点,由中点坐标公式可得E(,﹣,1),F().点评:本题考查空间点的坐标的求法,中点坐标公式的应用,对称知识的应用,考查计算能力.20.已知空间直角坐标系O﹣xyz中的点A(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点.(1)求点P的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.【答案】(1)x+y+z=3.(2)【解析】(1)通过平面α过点A且与直线OA垂直,利用勾股定理即可求点P的坐标满足的条件;(2)求出平面α与坐标轴的交点坐标,即可利用棱锥的体积公式求出所求几何体体积.解:(1)因为OA⊥α,所以OA⊥AP,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x﹣1)2+(y﹣1)2+(z﹣1)2=x2+y2+z2,化简得:x+y+z=3.(2)设平面α与x轴、y轴、z轴的点分别为M、N、H,则M(3,0,0)、N(0,3,0)、H(0,0,3).所以|MN|=|NH|=|MH|=3,所以等边三角形MNH的面积为:=.又|OA|=,故三棱锥0﹣MNH的体积为:=.点评:本题考查空间想象能力,计算能力,转化思想,空间两点距离公式的应用.。

空间直角坐标系

空间直角坐标系

第 1 页 共 2 页空间直角坐标系1、空间直角坐标系:从空间某一个定点O 引三条 且有 单位长度的数轴Ox 、Oy 、Oz ,这样的坐标系叫做空间直角坐标系O-xyz ,点O 叫做 ,x 轴、y 轴、z 轴叫做 。

在画空间直角坐标系O-xyz 时,一般使∠xOy=135°,∠yOz=90°。

2、坐标平面:通过每两个坐标轴的平面叫做 ,分别称为xOy 平面、yOz 平面、 zOx 平面。

3、在空间直角坐标系中,空间一点M 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点M 在空间直角坐标系中的坐标,记作M(x ,y ,z),其中x 叫做 坐标,y 叫做 坐标,z 叫做 坐标.4、右手直角坐标系:在空间直角坐标系中,令右手大拇指、食指和中指相互垂直时,让右手大拇指指向为x 轴的正方向,食指指向y 轴的正方向,中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。

注意:(1)在空间直角坐标系中,坐标平面xOy ,xOz ,yOz 上非原点的坐标有什么特点?(2)y 轴、z 轴上非原点的坐标有什么特点?5(1)空间中任意一点),,(1111z y x P 到点),,(2222z y x P 之间的距离公式: 22122122121)()()(z z y y x x P P -+-+-=(2)在空间直角坐标系O-xyz 中,设点P(x ,y ,z)、()111,,z y x A 、()222,,z y x B , 则:点P 到原点O 的距离|OP|=222z y x ++ A 与B 两点间距离公式|AB|=212212212)()()(z z y y x x -+-+- 点A 与B 的中点()000,,z y x P 坐标公式:2,2,2210210210z z z y y y x x x +=+=+= 专题例题与练习:例1. 在空间直角坐标系中,到点M(3,—1,2),N(0,2,1)距离相等且在y 轴上的点的坐标为___________例2. 与点P(1,3,5)关于原点对称的点是( )A 、(—1,—3,5)B 、(1,—3,5)C 、(—1,3,—5)D 、(—1,—3,—5) 例3. 已知空间两点M(2,3,6),N(—m ,3,—2n)关于xOy 平面对称,则m+n=_________例4. 如图右侧,已知正方体ABCD -A′B′C′D′的棱长为a ,|BM|=|2MD’|,点N 在A′C′上,且|A′N|=3|NC′|,试求MN 的长.练习1.若已知点A(1,1,1),B(-3,-3,-3),则线段AB 的长为( )A .4 3B .2 3C .4 2D .3 22.在空间直角坐标系中,点P(-5,-2,3)到x 轴的距离为( )第 2 页 共 2 页 A .5 B.29 C.13 D.343.在空间直角坐标系中,已知点P(x ,y ,z)满足方程(x +2)2+(y -1)2+(z -3)2=3, 则点P 的轨迹是( )A .直线B .圆C .球面D .线段4.已知点A(-3,1,4),B(5,-3,-6),则点B 关于点A 的对称点C 的坐标为________.5.以正方体ABCD -A1B1C1D1的棱AB 、AD 、AA1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1的中点的坐标为( ) A.(21,1,1). B.(1,21,1). C. (1,1,21). D. (21,21,1).6.空间直角坐标系中,x 轴上到点P(4,1,2)的距离为30的点有( )A .2个B .1个C .0个D .无数个7.已知A(1,-2,11),B(4,2,3),C(6,-1,4),则△ABC 的形状是( )A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形8.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是() A.62 B.3 C.32 D.63。

22人教版高中数学新教材选择性必修第一册--1.3.1 空间直角坐标系

22人教版高中数学新教材选择性必修第一册--1.3.1 空间直角坐标系
22人教版高中数学新教材选择性必修第一册
第一章 空间向量与立体几何
1.3 空间向量及其运算的坐标表示
1.3.1 空间直角坐标系
课标要求
素养要求
1.在平面直角坐标系的基础上,了
解空间直角坐标系,感受建立空间
课 直角坐标系的必要性.
1.数学运算——会求空间中点的坐
标 2.会用空间直角坐标系刻画点的 标.
1
2
1
(
2
1
4
+ )
= ( + ) + ( − )
=
1

4
1
+
4
=
1

4
1
4
=
1
1
+
4
2
1
+
2
1
2
+ × 2 + × 3
+
3
,
2
1 1 3
所以点 的坐标为 ( , , ) .
4 2 2
1
+
2
4. 已知 {, , } 是空间的一个基底, { + , − , } 是空间的另外一个基底,
2, = 3, , 分别为 , 的中点,建立空间直角坐标系 ,则线段
1 1 3
( , , )
的中点 的坐标为_______________.
4 2 2
[解析] 令 轴, 轴, 轴正方向上的单位向量分别为 , , ,
因为 = + =
别以 , , 的方向为正方向、以它们的长为单位长度建立三条数轴: 轴、
坐标轴
轴、 轴,它们都叫做①__________________这时我们就建立了一个空间

空间直角坐标系PPT课件

空间直角坐标系PPT课件
通过透视变换将三维图形投影 到某一平面上,产生近大远小
的效果。
二面投影
将三维图形分别投影到两个互 相垂直的平面上,得到两个二
维图形。
三面投影
将三维图形分别投影到三个互 相垂直的平面上,得到三个二
维图形。
05
空间直角坐标系与向量代数
向量的线性运算
向量的加法
向量加法满足交换律和结合律,即向量a+b=b+a, (a+b)+c=a+(b+c)。
描述向量场中某点处场量旋转程度的大小和方向,其方向垂直于该 点处的场量。
06
空间直角坐标系与微积分
微分学在空间直角坐标系中的应用
空间直角坐标系中的导数
导数描述了函数在某一点处的切线斜率,在空间直角坐标 系中,导数可以用来研究函数在三维空间中的变化趋势。
空间曲线在某点的切线方向
通过求导数,可以得到空间曲线在某一点的切线方向向量, 从而确定该点处曲线的变化趋势。
曲线和曲面的长度
通过使用一重积分,可以计算三维空间中曲线和曲面的长度。
重积分在空间直角坐标系中的应用
01
重积分在解决实际问题中的应用
重积分在解决实际问题中有着广泛的应用,例如计算物体的质量、质心、
转动惯量等。
02 03
重积分的物理意义
重积分的结果具有明确的物理意义,例如三重积分的结果表示三维空间 的体积,二重积分的结果表示二维平面的面积,一重积分的结果表示一 维线段的长度。
性质
空间直角坐标系具有方向性、正 交性和无限延展性,是描述空间 中点位置的数学工具。
坐标系的建立
01
02
03
确定原点
选择一个点作为原点,该 点是空间直角坐标系的起 点。

空间直角坐标系及坐标运算

空间直角坐标系及坐标运算

基础知识梳理
4.空间向量坐标表示及应用 (1)数量积的坐标运算 则a·b若=aa=1b(1a+1,a2ab22,+aa33)b,3 .b=(b1,b2,b3), (2)共线与垂直的坐标表示 设a=(a1,a2,a3),b=(b1,b2,b3), 则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3= λb3,a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3= 0(a,b均为非零向量).
课堂互动讲练
2.证明空间四点共面的方法 对空间四点P,M,A,B可通过 证明下列结论成立来证明四点共面 (1)M→P=xM→A+yM→B; (2)对空间任一点 O,O→P=O→M+xM→A +yM→B;
课堂互动讲练
(3)对空间任一点 O,O→P=xO→M+yO→A +zO→B(x+y+z=1);
A.x=1,y=1 B.x=12,y=-12 C.x=16,y=-32
D.x=-16,y=32 答案:C
三基能力强化
3.已知空间四边形 OABC 中,点 M 在 线段 OA 上,且 OM=2MA,点 N 为 BC 的中
点,设O→A=a,O→B=b,O→C=c,则M→N等于
() A.12a+12b-23c
【解】 法一:(1)原式可变形为 O→P=O→M+(O→A-O→P)+(O→B-O→P) =O→M+P→A+P→B. ∴O→M=O→P-P→A-P→B. 由共面向量定理的推论知 M 与 P、A、 B 共面.
课堂互动讲练
(2)






→ OP

2
→ OA

→ OA

O→B+O→A-O→M=2O→A+B→A+M→A.
基础知识梳理
3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角

高一数学空间直角坐标系知识点

高一数学空间直角坐标系知识点

高一数学空间直角坐标系知识点空间直角坐标系是由三个坐标轴构成的,分别为x轴,y轴和z轴。

通过将这三个轴相交于一点,我们就可以在三维空间中描述任意一个点的位置。

在空间直角坐标系中,每个点都可以表示成一个由三个有序实数(x,y,z)构成的三元组。

其中,x表示点在x轴上的距离,y表示点在y轴上的距离,z表示点在z轴上的距离。

除此之外,空间直角坐标系还有一些重要的知识点,以下列举三个例子:1. 距离公式在空间直角坐标系中,我们可以通过勾股定理计算两个点之间的距离。

假设点A的坐标为(x1,y1,z1),点B的坐标为(x2,y2,z2),则它们之间的距离d可以表示为:d=sqrt[(x2-x1)²+(y2-y1)²+(z2-z1)²]其中sqrt表示开方运算。

这个距离公式在计算空间中两个点之间的距离时非常有用。

2. 长度、面积和体积的计算在空间直角坐标系中,我们可以通过计算线段长度、平面面积和立体体积来解决很多实际问题。

例如,我们可以使用勾股定理来计算线段的长度,使用向量积(叉积)来计算平面的面积,使用三元组的符号体积来计算立体体积。

3. 点、直线、平面的方程在空间直角坐标系中,点、直线、平面可以用方程来表示。

例如,点P的坐标为(x0,y0,z0),则可以表示为P(x0,y0,z0)。

而直线和平面的方程则需要根据其特点来确定。

例如,一条直线可以表示为L:(x,y,z)=(x1,y1,z1)+t(a,b,c),其中(x1,y1,z1)表示直线上一点的坐标,(a,b,c)表示直线的方向向量,t为参数。

而一个平面可以表示为Ax+By+Cz=D的形式,其中A、B、C为平面的法向量,D为平面的截距。

通过这些方程,我们可以方便地求解点、直线、平面的位置关系和交点等问题。

总之,空间直角坐标系是数学中非常重要的概念,对于工程学科、自然科学等领域的问题都有广泛的应用。

通过学习空间直角坐标系的知识点,我们可以更好地理解和解决很多实际问题。

《空间直角坐标系》知识讲解

《空间直角坐标系》知识讲解

《空间直角坐标系》知识讲解1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i jk 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O 叫原点,向量 ,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面; 2.空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使O A x i y j z k =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.3.空间向量的直角坐标运算律: (1)若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++,112233//,,()a b a b a b a b R λλλλ⇔===∈,1122330a b a b a b a b ⊥⇔++=.(2)若111(,,)A x y z ,222(,,)B x y z , 则212121(,,)AB x x y y z z =---. 4模长公式:若123(,,)a a a a =,123(,,)b b b b =, 则222123||a a a a a a =⋅=++,yk i ABB(x2,y2,z2)A(x1,y1,z1)O jxzyk i A(x,y,z)O jxzyk iABB(x2,y2,z2)A(x1,y1,z1)O jxz222123||b b b b b b =⋅=++.5.夹角公式:112233222222123123cos ||||a b a b a b a ba b a b a a a b b b ++⋅⋅==⋅++++.6.两点间的距离公式: 若111(,,)A x y z ,222(,,)B x y z ,则2222212121||()()()AB AB x x y y z z ==-+-+-,或222,212121()()()A B d x x y y z z =-+-+-.例1 已知(3,3,1)A ,(1,0,5)B ,求:(1)线段AB 的中点坐标和长度;(2)到,A B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足的条件例2.如图正方体1111ABCD A B C D -中, (1)若E 1∈A 1B 1,F 1∈C 1D 1,且11111114B E D F A B ==,求1BE 与1DF 所成角的余弦 (2)若P 为DD 1的中点,O 1,O 2,O 3分别是面ABCD ,B 1B 1C 1C 1,AB 1C 1D ,ABCD 的中心. 求证:B 1O 3⊥PA;并求PO 3与O 1O 2所成的角.(3)若E,F 分别是BB 1、CD 的中点,判断点A 、D 、C 1、E 四点是否共面?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间直角坐标系
1.在平面直角坐标系中,如何表示一个点: .
2.在平面直角坐标系中,已知两点()()1122,,,A x y B x y ,则||AB = ,线段AB 的中点坐标为 .
要点一、空间直角坐标系
1.空间直角坐标系
从空间某一定点O 引三条互相 且有相同 长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做 ,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是 平面、 平面、
平面.
2.右手直角坐标系
在空间直角坐标系中,让右手拇指指向x 轴的 方向,食指指向y 轴的 方向,如果中指指向z 轴的 方向,则称这个坐标系为右手直角坐标系.
3.空间点的坐标
空间一点A 的坐标可以用有序数组(x ,y ,z )来表示,有序数组(x ,y ,z )叫做点A 的坐标,记作A (x ,y ,z ),其中x 叫做点A 的 坐标,y 叫做点A 的 坐标,z 叫做点A 的 坐标.
要点二、空间直角坐标系中点的坐标
1.空间直角坐标系中点的坐标的求法
通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标.
特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为 , , ;坐标平面,,xOy yOz xOz 上的点的坐标分别为 , , .
2.空间直角坐标系中对称点的坐标
在空间直角坐标系中,点(),,P x y z ,则有
点P 关于原点的对称点是1P ;关于横轴(x 轴)的对称点是2P ; 于纵轴(y 轴)的对称点是3P ;关于竖轴(z 轴)的对称点是4P ; 要点三、空间两点间距离公式
1.空间两点间距离公式
空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离d=|AB|= . 特别地,点(),,A x y z 与原点间的距离公式为OA = .
2.空间线段中点坐标
空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为 类型一:空间坐标系
例1.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,棱长为1,建立空间直角坐标系,求点E 、F 的坐标。

举一反三:
【变式1】在如图所示的空间直角坐标系中,OABC—D1A1B1C1是单位正方体,N是BB1的中点,求这个单位正方体各顶点和点N的坐标.
例2.在平面直角坐标系中,点P(x,y)的几种特殊的对称点的坐标如下:
(1)关于原点的对称点是P'(-x,-y);
(2)关于x轴的对称点是P"(x,-y);
(3)关于y轴的对称点是P'''(-x,y).
那么,在空间直角坐标系内,点P(x,y,z)的几种特殊的对称点坐标为:
①关于原点的对称点是P1________;
②关于横轴(x轴)的对称点是P2________;
③关于纵轴(y轴)的对称点是P3________;
④关于竖轴(z轴)的对称点是P4________;
⑤关于xOy坐标平面的对称点是P5________;
⑥关于yOz坐标平面的对称点是P6________;
⑦关于zOx坐标平面的对称点是P7________.
举一反三:
【变式1】(1)在空间直角坐标系中,点P(-2,1,4)关于x轴对称的点的坐标是().
A.(-2,1,-4)B.(-2,-1,-4)C.(2,-1,4)D.(2,1,-4)
(2)在空间直角坐标系中,点P(-2,1,4)关于xOy平面对称的点的坐标是().
A.(-2,1,-4)B.(-2,-l,-4)C.(2,-1,4)D.(2,1,-4)类型二:两点间的距离公式
例3.给定空间直角坐标系,在x轴上找一点P,使它与点P0(4,1,2)的距离为30.
举一反三:
【变式1】在空间中,已知点A(1,0, -1),B(4,3, -1),求A、B两点之间的距离.
【变式2】已知点A(0,1,0),B(-1,0,-1),C(2,1,1),若P(x,0,z)满
足PA⊥AB,PA⊥AC,试求点P的坐标.
例4.在正方体ABCD—A1B1C1D1中,P为平面A1B1C1D1的中心,求证:PA⊥PB1.
举一反三:
【变式1】如下图所示,已知PA⊥平面ABCD,平面ABCD为矩形,M、N分别是AB、
PC的中点,求证:MN⊥AB。

我的收获
习题整理
题目或题目出处 所属类型或知识点 分析及注意问题
经典题

易错题
自我反馈 学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整理.如有问题,请到北京四中网校的“名师答疑”或“互帮互学”交流.。

相关文档
最新文档