空间直角坐标系与点的坐标
空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系

空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A 和H'B 。
7-1 空间直角坐标系,向量及其线性运算

OM = { x , y , z } 与其终点 的坐标一致. 与其终点M 的坐标一致.
所以要求一个向量的坐标, 所以要求一个向量的坐标 , 可将其起点移至坐标原点, 可将其起点移至坐标原点 , 直接求终点的坐标即可. 直接求终点的坐标即可.
o o
z
M( x, y, z) y
x
利用坐标作向量的线性运算 r r r r r 设a = {ax , ay , az }, 即 a = a x i + a y j + a z k ; r r r r r b = bx i + b y j + bz k ; b = {bx , by , bz },
第七章
空间解析几何与向量代数
空间解析几何: 空间解析几何:通过建立空间直角坐标系 把空间几何图形和代数方程联系起来. 把空间几何图形和代数方程联系起来. 向量:既有大小又有方向的量. 向量:既有大小又有方向的量. 本章知识也为讨论多元函数微积分立下几何 基础。 基础。
第七章 七
第一节 空间直角坐标系、 向量及其线性运算
MD = 1 ( b − a) 2
C
b
A
M a B
∴ MA = − 1 ( a + b) MB = − 1 (b − a) 2 2 MC = 1 ( a + b) 2
向量经过数乘运算后与原向量平行。 反之, 向量经过数乘运算后与原向量平行。 反之, 如果两个向量平行,则它们之间必存在数乘关系. 如果两个向量平行,则它们之间必存在数乘关系. r r r r 定理: 设向量a ≠ 0,那末向量b 平行于a 的
2
Q M 1 P = x2 − x1 ,
z
R
• M2
M1
高等数学《点的坐标与向量的坐标》

aazay称,y ja为z )a向称z k量为a向 的量坐a标的.(坐coo标rd表in示at式es).
若点M的坐标为(x, y, z), 则向径:OM ( x, y, z).
向 量的分 解表达式说明:任何向量可以表 示为 i , j , k 的线性组合,组合系数 ax , ay , az
就是该向量的坐标.
6(cos ,cos ,cos
)
6(1 , 2
2 2
,
1 2
)
(3
,3
2 , 3)
故点 A 的坐标为(3,3 2 ,3).
3. 向量的投影
1) 空间一点在轴上的投影
•A
过点 A 作轴 u 的垂直平面,交点 A 即为点 A 在轴 u 上的投影.
A
u
2) 空间一向量在轴上的投影
A
B
已知向量的起点 A 和终点 B 在
解 设所求点为M (0, y, 0), ∵|MA|= |MB|,
12 (2 y)2 32 22 (3 y)2 22
即 y2 4 y 14 y2 6 y 17, 解得 y 3 , 2
故所求点为M (0, 3 ,0). 2
思考题: (1) 在 xoy 面上求与点A(1,2,3)和点
AB AC , CB 2 AB 2 AC 2 原结论成立.
二、向量的坐标及向量线性运算的坐标的表示
在空 间直角坐标系下, 任意向量 a 可用向径 OM 表示. 以i , j , k 分别表示沿 x, y, z 轴正向的单位向量,称为
Oxyz 坐标系下的基本单位向量.
z
C
设点 M 的坐标为 M (ax , ay , az), 则
给2.定方a向 (角x,与y,方z) 向0余, a弦与三坐标轴正向所成的
空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系

本篇学习了空间直角坐标系、大地坐标系、平面坐标系、高斯平面直角坐标系。
这个个坐标系有时很容易弄混淆!(一)空间直角坐标系空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。
空间直角坐标系可用如下图所示:(二)大地坐标系大地坐标系是采用大地纬度、经度和大地高程来描述空间位置的。
纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高程是空间的点沿着参考椭球的法线方向到参考椭球面的距离。
地面点的高程和国家高程基准(1)绝对高程。
地面点沿垂线方向至大地水准面的距离称为绝对高程或称海拔。
过去我国采用青岛验潮站(tide gauge station)1950~1956年观测成果求得的黄海平均海水面作为高程的零点,称为“1956年黄海高程系”(Huanghai height system 1956水准原点高程为72.289m)。
后经复查,发现该高程系的验潮资料时间过短,准确性较差,改用青岛验潮站1950~1979年的观测资料重新推算,并命名为“1985年国家高程基准”(Chinese height datum 1985)。
国家水准原点(leveling origin高程为72.260m)设于青岛市观象山附近,作为我国高程测量的依据。
它的高程值是以“1985年国家高程基准”所确定的平均海水面为零点测算而得。
在使用原“1956年黄海高程系”的高程成果时,应注意将其换算为新的高程基准系统。
(2)相对高程。
地面点沿铅垂线方向至任意假定的水准面的距离称为该点的相对高程,亦称假定高程。
在图l—5中,地面点A和B的相对高程分别为H'A 和H'B。
(3)高差。
地面上任意两点的高程(绝对高程或相对高程)之差称为高差。
2.3.1 空间直角坐标系的建立 2.3.2 空间直角坐标系中点的坐标

z
1350 o 1350 x y
有了空间直角坐标系,那空间中的任意一点A 有了空间直角坐标系,那空间中的任意一点A怎样来表示它 的坐标呢? 的坐标呢? 经过A 经过A点作三个 平面分别垂直于x 平面分别垂直于x轴、
z
y轴和z轴,它们与x 轴和z 它们与x 轴、y轴和z轴分别交 轴和z 于三点,三点在相应 于三点, 的坐标轴上的坐标
不实心不成事,不虚心不知事,不自是者博 闻,不自满者受益。
z
4 3
墙 墙 地面
4
1
(4,5,3)
5
O 1
y某一个定点0 从空间某一个定点0引三条互相 垂直且有相同单位长度的数轴, 垂直且有相同单位长度的数轴,这样 就建立了空间直角坐标系0 xyz. 就建立了空间直角坐标系0-xyz.
o y x
点O叫作坐标原点,x,y,z轴统称为坐标轴,这三条 叫作坐标原点, 轴统称为坐标轴, 坐标轴中每两条确定一个坐标平面,分别称为xoy平面、 坐标轴中每两条确定一个坐标平面,分别称为xoy平面、 xoy平面 yoz平面、 zox平面 平面. yoz平面、和 zox平面. 平面
右手系:伸出右手, 右手系:伸出右手,让四指与大拇指垂 直,并使四指先指向x轴正方向,然后让 并使四指先指向x轴正方向, 指向y 四指沿握拳方向旋转 90o 指向y轴正方 向,此时大拇指的指向即为z轴正向.我 此时大拇指的指向即为z轴正向. 们也称这样的坐标系为右手系 .
z 说明: 说明:
☆本书建立的坐标系
o
都是右手直角坐标系. 都是右手直角坐标系.
y x
空间直角坐标系的画法: 空间直角坐标系的画法:
1.x轴与y 1.x轴与y轴、x轴与z轴均成135°, 轴与 轴与z轴均成135° 135 而z轴垂直于y轴. 轴垂直于y 2.y轴和z轴的单位长度相同,x 2.y轴和z轴的单位长度相同, 轴和 轴上的单位长度为y 轴上的单位长度为y轴(或z轴) 的单位长度的一半. 的单位长度的一半.
高中数学知识点精讲精析 空间直角坐标系中点的坐标

空间直角坐标系中点的坐标1.空间中点的坐标:P (x ,y ,z ),确定方法:由P 作PP '⊥坐标平面xOy ,则P '点是平面xOy 上的点,其坐标为(x ,y ,O ),这样就确定了P 的横坐标x 和纵坐标y.若PP '与z 轴正半轴在平面xOy 同侧,则z=|PP '|;若PP '与z 轴正半轴在平面xOy 异侧,则z=-|PP '|,这样就确定了P点的竖坐标z.2.坐标平面上点的坐标:①xOy 平面上点的坐标:(x ,y ,0);xOz 平面上点的坐标:(x ,O ,z );yOz 平面上点的坐标:(0,y ,z );②x 轴上点的坐标:(x ,0,0);y 轴上点的坐标:(0,y ,0);z 轴上点的坐标:(0,0,z )3.空间直角坐标系中长方体各顶点的坐标:设长方体ABCD -A 'B 'C 'D '的长.宽.高分别为,将A 点放在坐标原点,AB 放在x 轴正半轴上,AD 放在y 轴正半轴上,如图:则A (0,0,0),B (a ,0,0),C (a ,b ,0),D (0,b ,0),A '(0,0,c ),B '(a ,0,c ),C '(a ,b ,c ),D '(0,b ,c ).例1 已知A (x ,2,3).B (5,4,7),且|AB |=6,求x 的值.解:Q |AB |=6,∴ (x - 5)× (x - 5) + (2 - 4) ×(2 - 4)2+ (3 - 7)×(3 - 7) = 36 ,即 (x - 5)2 = 16 ,解得x =1 或x =9.例3求点P (1,2,3)关于坐标平面xOy 的对称点的坐标.解:设点P 关于坐标平面xOy 的对称点为P ¢ ,连PP ¢ 交坐标平面xOy 于Q , 则PP ¢ ^ 坐标平面xOy ,且|PQ |=| P ¢ Q|,∴ P ¢ 在 x 轴.y 轴上的射影分别与 P 在 x 轴.y 轴上的射影重合, P ¢ 在 z 轴上的射影与 P 在 z 轴上的射影关于原点对称,∴ P ¢ 与P 的横坐标.纵坐标分别相同,竖坐标互为相反数,,,a b c∴点P(1,2,3)关于坐标平面xOy 的对称点的坐标为(1,2,3).。
空间直角坐标系的建立(最新课件)

1.确定空间定点M的坐标的步骤 (1)过点M分别作垂直于x轴、y轴和z轴的平面,依次 交x轴、y轴和z轴于P、Q和R. (2)确定P、Q和R在x轴、y轴和z轴上的坐标x,y和z. (3)得出点M的坐标为(x,y,z).
2.已知M点坐标为(x,y,z)确定点M位置的步骤 (1)在x轴、y轴和z轴上依次取坐标为x,y和z的点P、 Q、R. (2)过P、Q、R分别作垂直于x轴、y轴和z轴的平面. (3)三个平面的唯一交点就是M. 3.对于空间点关于坐标轴和坐标平面对称的问题, 要记住“关于谁对称谁不变”的原则.
4.如图,在棱长为1的正方体ABCD- A1B1C1D1中,E、F分别为D1D、BD的 中点,G在棱CD上,且CG=14CD,H为C1G的中点,试建 立适当的直角坐标系,写出点E、F、G、H的坐标.
解:以D为原点,DA所在直线为x轴,DC 所在直线为y轴,DD1所在直线为z轴建立 空间直角坐标系. ∵点E在z轴上,且为D1D的中点, 故点E坐标为(0,0,12).过F作FM⊥AD、 FN⊥DC,则|FM|=|FN|=12,故点F坐标为(12,12,0);
10.点P在x轴上,它到点P1(0, 2,3)的距离为到点P2 (0,1,-1)的距离的2倍,则点P的坐标是_______. 解析:由已知可设P(x,0,0),则 |PP1|=2|PP2|. ∴x2+( 2)2+32=4[x2+1+(-1)2]. ∴3x2=3. ∴x=±1. ∴P点坐标为(1,0,0)或(-1,0,0). 答案:(1,0,0)或(-1,0,0)
[精解详析] 点M关于xOy平面的对称点M1的坐标为 (a,b,-c),关于xOz平面的对称点M2的坐标为(a,-b, c),关于yOz平面的对称点M3的坐标为(-a,b,c).
关于x轴的对称点M4的坐标为(a,-b,-c), 关于y轴的对称点M5的坐标为(-a,b,-c), 关于z轴的对称点M6的坐标为(-a,-b,c), 关于原点对称的点M7的坐标为(-a,-b,-c).
空间直角坐标系

一、空间向量的基本概念
平面向量
空间向量
定义
具有大小和方向的量
表示法 几何表示:有向线段 AB 字母表示: a
向量的模
向量的大小 AB a
相等向量 相反向量 单位向量 零向量
长度相等且方向相同的向量 长度相等且方向相反的向量 模为1的向量,没有规定方向 模为0的向量,与任何向量共线
空间任意两个向量都可以平移到同一个平面内,
( x y z 1)
判断四点共面,或直线平行 于平面
1.下列命题中正确的有:B
(1) p xa yb p 与 a 、b 共面 ; (2) p 与 a 、b 共面 p xa yb ;
(3) MP x MA y MB P、M、A、B共面;
(4) P、M、A、B共面 MP xMA yMB ;
预备知识
数轴Ox上的点M
实数x
O
直角坐标平面上的点M
y
M
x
x
实数对(x,y)
y A(x,y)
Ox
x
一、空间直角坐标系 —Oxyz
z
竖轴
1
纵轴
o
1
1
y
x
右手直角坐标系
横轴
右手直角坐标系:在空间直角坐标系中,让 右手拇指指向 x 轴的正方向,食指指向 y 轴的 正方向,如果中指指向 z 轴的正方向,则称这 个坐标系为右手直角坐标系.
【温故知新】
平面向量基本定理:
如果e1,e2是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量a,有且只有
一对实数1,2,使a=1e1+2 e2。
(e1、e2叫做表示这一平面内所有向量的一组基底。)
五、共面向量
2. 如果两个向量 a,不b 共线,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请你找出点P 的确定位置
(1)
P
O
x
x
z
P (x,y,z)
y
O
P(x,y)
x (2) x
y
(3)
说明:
☆我们建立的坐标系都是右手直角坐标系.
z
o
y
x
请你找出点P 的确定位置
P
O
x
x
z
P (x,y,z)
y
O
B
P(x,y)
作业:
教科书P93习题2---3 A组
1,2,3,4题
A
x
y
p1 (x,y, 0 )
x
z
xO
x
A
z
z
M
M
y Oy x
By
C
z
M
O
y
x
z
R M
O
Q
y
P
M
x
例1 点P′在x轴正半轴上,|OP′|=2,P′P在 xOz平面上,且垂直于x轴,|P′P|=1,求点 P′和P的坐标.
思考:在空间直角坐标系中,给定点 的坐标,如何确定点的位置呢?
例2.在空间直角坐标系中作出点 P(3,-2,4).
抽象概括:在空间直角坐标系中,对
于空间任意一点P,都可以用一个三元 有序数组(x,y,z)来表示:反之,任何 一个三元有序数组(x,y,z),都可以确 定空间中的一个点P.这样,在空间直角
坐标系中,点与三元有序数组之间就建 立了一一对应的关系
活动探究
在空间直角坐标系中,给定点M(1,-2,3),求
(4)与M点关于X轴对称的点为 (x,-y,-z) (5)与M点关于Y轴对称的点为 (-x,y,-z) (6)与M点关于Z轴对称的点 为 (-x,-y,z) (7)与M点关于原点对称的点 为 (-1.空间直角坐标系 2.如何求空间中点的坐标 3.如何在空间直角坐标系下作出已知点 4.空间点的对称性
它关于坐标平面xoy,平面xoz,平面yoz的对称点
的坐标
在空间直角坐标系中,给定点M(1,-2,3),求它
关于坐标轴x轴,y轴,z轴的 对称点的坐标
在空间直角坐标系中,给定点M(1,-2,3),求它 关于原点的 对称点的坐标
点M(x,y,z)是空间直角坐标系中的一点,则有
• (1)与M点关于xoy平面对称的点为 (x,y,-z) • (2)与M点关于xoz平面对称的点 为 (x,-y,z) • (3)与M点关于yoz平面对称的点 为 (-x,y,z)