《空间直角坐标系》典型例题解析
高中数学 必修二 同步练习 专题4.3 空间直角坐标系(解析版)

一、选择题1.在空间直角坐标系中,M(–2,1,0)关于原点的对称点M′的坐标是A.(2,–1,0)B.(–2,–1,0)C.(2,1,0)D.(0,–2,1)【答案】A【解析】∵点M′与点M(–2,1,0)关于原点对称,∴M′(2,–1,0).故选A.2.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于A.13B.14C.23D.13【答案】A3.点B30,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为A.2B.2C.3D.5【答案】A【解析】点B30,0)是点A(m,2,5)在x轴上的射影,可得m3A到原点的距离222++2.故选A.(3)254.在空间直角坐标系中,点A(5,4,3),则A关于平面yOz的对称点坐标为A.(5,4,–3)B.(5,–4,–3)C.(–5,–4,–3)D.(–5,4,3)【答案】D【解析】根据关于坐标平面yOz 的对称点的坐标的特点,可得点A (5,4,3),关于坐标平面yOz 的对称点的坐标为(–5,4,3).故选D .5.空间中两点A (1,–1,2)、B (–1,1,22+2)之间的距离是A .3B .4C .5D .6【答案】B【解析】∵A (1,–1,2)、B (–1,1,22+2),∴A 、B 两点之间的距离d =222(11)(11)(2222)++--+--=4,故选B .6.在空间直角坐标系中,P (2,3,4)、Q (–2,–3,–4)两点的位置关系是A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对【答案】C7.点P (1,1,1)关于xOy 平面的对称点为P 1,则点P 1关于z 轴的对称点P 2的坐标是A .(1,1,–1)B .(–1,–1,–1)C .(–1,–1,1)D .(1,–1,1)【答案】B【解析】∵点P (1,1,1)关于xOy 平面的对称点为P 1,∴P 1(1,1,–1),∴点P 1关于z 轴的对称点P 2的坐标是(–1,–1,–1).故选B .8.已知点A (2,–1,–3),点A 关于x 轴的对称点为B ,则|AB |的值为A .4B .6C 14D .10【答案】D【解析】点A (2,–1,–3)关于平面x 轴的对称点的坐标(2,1,3),由空间两点的距离公式可知:AB ()()()222221133-++++10,故选D .9.在空间直角坐标系Oxyz 中,点M (1,2,3)关于x 轴对称的点N 的坐标是A.N(–1,2,3)B.N(1,–2,3)C.N(1,2,–3)D.N(1,–2,–3)【答案】D【解析】∵点M(1,2,3),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点M(1,2,3)关于x轴对称的点的坐标为(1,–2,–3),故选D.10.空间点M(1,2,3)关于点N(4,6,7)的对称点P是A.(7,10,11)B.(–2,–1,0)C.579222⎛⎫⎪⎝⎭,,D.(7,8,9)【答案】A11.在空间直角坐标系中,已知点A(1,0,2),B(1,–4,0),点M是A,B的中点,则点M的坐标是A.(1,–1,0)B.(1,–2,1)C.(2,–4,2)D.(1,–4,1)【答案】B【解析】∵点M是A,B的中点,∴M110420222+-+⎛⎫⎪⎝⎭,,,即M(1,–2,1).故选B.二、填空题12.空间中,点(2,0,1)位于___________平面上(填“xOy”“yOz”或“xOz”)【答案】xOz【解析】空间中,点(2,0,1)位于xOz平面上.故答案为:xOz.13.在正方体ABCD–A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为___________.29【解析】∵在正方体ABCD –A 1B 1C 1D 1中,D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),∴C 1(0,2,3),∴对角线AC 1的长为|AC 1|=222(04)2329-++=.故答案为:29.14.在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作平面xOy 的垂线PQ ,则垂足Q 的坐标为___________. 【答案】(1,2,0)【解析】空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则点Q 的坐标为(1,2,0),如图所示.故答案为:(1,2,0).15.若A (1,3,–2)、B (–2,3,2),则A 、B 两点间的距离为___________.【答案】5【解析】由题意,A 、B 两点间的距离为222(12)(33)(22)++-+--=5.故答案为:5. 16.已知A (1,a ,–5),B (2a ,–7,–2)(a ∈R ),则|AB |的最小值为___________.【答案】3617.点A (–1,3,5)关于点B (2,–3,1)的对称点的坐标为___________.【答案】(5,–9,–3)【解析】设点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(a,b,c),则12 2332512abc-+⎧=⎪⎪+⎪=-⎨⎪+⎪=⎪⎩,解得a=5,b=–9,c=–3,∴点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(5,–9,–3).故答案为:(5,–9,–3).三、解答题18.若点P(–4,–2,3)关于坐标平面xOy及y轴的对称点的坐标分别是A和B.求线段AB的长.19.在Z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.【解析】设M(0,0,z),∵Z轴上一点M到点A(1,0,2)与B(1,–3,1)的距离相等,∴()222221021(03)(1)z z++-=+++-,解得z=–3,∴M的坐标为(0,0,–3).20.如图建立空间直角坐标系,已知正方体的棱长为2,(1)求正方体各顶点的坐标;(2)求A1C的长度.【解析】(1)∵正方体的棱长为2,∴A (0,0,2),B (0,2,2),C (2,2,2),D (2,0,2), A 1(0,0,0),B 1(0,2,0),C 1(2,2,0),D 1(2,0,0). (2)由(1)可知,A 1(0,0,0),C (2,2,2),A 1C 的长度|A 1C |=222222++=23.21.求证:以A (4,1,9),B (10,–1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.。
高一数学空间直角坐标系试题答案及解析

高一数学空间直角坐标系试题答案及解析1.已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()A.(﹣3,﹣1,4)B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)【答案】A【解析】根据在空间直角坐标系中关于x轴对称的点的坐标是横标不变,纵标和竖标变为原来的相反数,写出点A关于x轴对称的点的坐标.解:∵在空间直角坐标系中关于x轴对称的点的坐标横标不变,纵标和竖标变为原来的相反数,∵点A(﹣3,1,﹣4),∴关于x轴对称的点的坐标是(﹣3,﹣1,4),故选A.点评:本题是一个空间直角坐标系中坐标的变化特点,关于三个坐标轴对称的点的坐标特点,关于三个坐标平面对称的坐标特点,我们一定要掌握,这是一个基础题.2.求证:以A(﹣4,﹣1,﹣9),B(﹣10,1,﹣6),C(﹣2,﹣4,﹣3)为顶点的三角形是等腰直角三角形.【答案】见解析【解析】先利用空间两点的距离公式分别求出AB,AC,BC的长,然后利用勾股定理进行判定是否为直角三角形,以及长度是否有相等,从而判定是否是等腰直角三角形.证明:,,,∵d2(A,B)+d2(A,C)=d2(B,C)且d(A,B)=d(A,C).∴△ABC为等腰直角三角形.点评:本题主要考查了两点的距离公式和勾股定理的应用,考查空间想象能力、运算能力和推理论证能力,属于基础题.3.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.4.在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()A.B.C.D.【答案】D【解析】过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,写出要求点的坐标.解:空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则P,Q两个点的横标和纵标相同,只有竖标不同,在xoy平面上的点的竖标为0,∴Q(1,,0)故选D.点评:不同考查空间中点的坐标,是一个基础题,这种题目一般不会单独出现,它只是立体几何与空间向量中所出现的题目的一个小部分.5.坐标原点到下列各点的距离最小的是()A.(1,1,1)B.(1,2,2)C.(2,﹣3,5)D.(3,0,4)【答案】A【解析】利用两点间的距离分别求得原点到四个选项中点的距离,得出答案.解:到A项点的距离为=,到B项点的距离为=3到C项点的距离为=到D项点的距离为=5故选A点评:本题主要考查了两点间的距离公式的应用.属基础题.6.点(2,0,3)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一卦限内【答案】C【解析】从选项中可以看出,此题是考查空间坐标系下坐标平面上点的特征,此点的纵坐标为0,故此点是直角坐标系中xOz平面上的点.解:∵点(2,0,3)的纵坐标为0∴此点是xOz平面上的点故应选C点评:空间直角坐标系下,xOy平面上的点的竖坐标为0,xOz平面上的点的纵坐标为0,yOz平面上的点的横坐标为0,本题考查是空间直角坐标系中点的坐标中三个分量与在坐标系中的位置的对应关系.7.已知点A(1,2,1),B(﹣1,3,4),D(1,1,1),若=2,则||的值是.【答案】.【解析】设出P点的坐标,根据所给的=2和A、B两点的坐标求出P点的坐标,写出向量的坐标,利用求模的公式得到结果.解:设P(x,y,z),∴=(x﹣1,y﹣2,z﹣1).=(﹣1﹣x,3﹣y,4﹣z)由=2得点P坐标为P(﹣,,3),又D(1,1,1),∴||=.点评:认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.空间向量在立体几何中作用不可估量.8.在空间直角坐标系中,在Ox轴上的点P1的坐标特点为,在Oy轴上的点P2的坐标特点为,在Oz轴上的点P3的坐标特点为,在xOy平面上的点P4的坐标特点为,在yOz平面上的点P5的坐标特点为,在xOz平面上的点P6的坐标特点为.【答案】(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).【解析】考查空间坐标系中坐标轴与坐标平面上点的坐标的结构,Ox轴上的点只有横坐标不为0;Oy轴上的点只有纵坐标不为0;Oz轴上的点只有竖坐标不为0;在xOy平面上的点竖坐标一定为0;yOz平面上的点横坐标一定为0;xOz平面上的点纵坐标一定为0;解:由空间坐标系的定义知;Ox轴上的点P1的坐标特点为(x,0,0),在Oy轴上的点P2的坐标特点为(0,y,0),在Oz轴上的点P3的坐标特点为(0,0,z),在xOy平面上的点P4的坐标特点为(x,y,0),在yOz平面上的点P5的坐标特点为(0,y,z),在xOz平面上的点P6的坐标特点为(x,0,z).故答案应依次为(x,0,0),(0,y,0),(0,0,z),(x,y,0),(0,y,z),(x,0,z).点评:考查空间坐标系的定义,训练对空间坐标系中坐标轴上的点的坐标结构与坐标平面上的点的坐标结构.9.已知空间三点的坐标为A(1,5,﹣2),B(2,4,1),C(p,3,q+2),若A,B,C三点共线,则p= ,q= .【答案】3;2【解析】根据所给的三个点的坐标,写出两个向量的坐标,根据三个点共线,得到两个向量之间的共线关系,得到两个向量之间的关系,即一个向量的坐标等于实数倍的另一个向量的坐标,写出关系式,得到结果.解:∵A(1,5,﹣2),B(2,4,1),C(p,3,q+2),∴=(1,﹣1,3),=(p﹣1,﹣2,q+4)∵A,B,C三点共线,∴∴(1,﹣1,3)=λ(p﹣1,﹣2,q+4),∴1=λ(p﹣1)﹣1=﹣2λ,3=λ(q+4),∴,p=3,q=2,故答案为:3;2点评:本题考查向量共线,考查三点共线与两个向量共线的关系,考查向量的坐标之间的运算,是一个基础题.10.求到两定点A(2,3,0),B(5,1,0)距离相等的点的坐标(x,y,z)满足的条件.【答案】6x﹣4y﹣13=0即为所求点所满足的条件.【解析】直接利用空间坐标系中两点间的距离公式得关于x,y的方程式,化简即可得所求的点的坐标(x,y,z)满足的条件.解:设P(x,y,z)为满足条件的任一点,则由题意,得,.∵|PA|=|PB|,平方后化简得:6x﹣4y﹣13=0.∴6x﹣4y﹣13=0即为所求点所满足的条件.点评:本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题.11.如图,长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,A'C'于B'D'相交于点P.分别写出C,B',P的坐标.【答案】C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.【解析】别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图.根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3和长方体在坐标系中的位置,写出B′点的顶点坐标是(3,4,3)和C的坐标,根据中点的坐标公式写出中点P的坐标.解:分别以OA,OC,OD′作为空间直角坐标系的x轴,y轴,z轴,建立空间直角坐标系,如图,根据长方体OABC﹣D'A'B'C'中,|OA|=3,|OC|=4,|OD'|=3,则C点的坐标为(0,4,0),D′点的坐标为(0,0,3),B'点的坐标为(3,4,3),由中点坐标公式得:P的坐标为.故答案为:C,B',P各点的坐标分别是:(0,4,0),(3,4,3),.点评:本题考查空间中点的坐标,考查在坐标系中表示出要用的点的坐标,考查中点坐标公式,是一个基础题,这种题目是以后利用空间向量解决立体几何的主要工具.12.在xOy平面内的直线x+y=1上确定一点M;使M到点N(6,5,1)的距离最小.【答案】点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.【解析】先设点M(x,1﹣x,0),然后利用空间两点的距离公式表示出距离,最后根据二次函数研究最值即可.解:设点M(x,1﹣x,0)则=∴当x=1时,.∴点M的坐标为(1,0,0)时到点N(6,5,1)的距离最小.点评:本题主要考查了空间两点的距离公式,以及二次函数研究最值问题,同时考查了计算能力,属于基础题.13.试解释方程(x﹣12)2+(y+3)2+(z﹣5)2=36的几何意义.【答案】在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.【解析】题中式子可化为:,只要利用两点间的距离公式看看它所表示的几何意义即可得出答案.解:在空间直角坐标系中,方程(x﹣12)2+(y+3)2+(z﹣5)2=36即:方程表示:动点P(x,y)到定点(12,﹣3,5)的距离等于定长6,所以该方程几何意义是:在空间中以点(12,﹣3,5)为球心,球半径长为6的球面.点评:本题主要考查了球的性质和数形结合的数学思想,是一道好题.14.已知点P的坐标为(3,4,5),试在空间直角坐标系中作出点P.【答案】见解析【解析】找出P点在横轴和纵轴上的投影,以这两个投影为邻边的矩形的一个顶点是点P在xOy坐标平面上的射影,过这个射影对应的点作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到要求的点.解:由P(3,4,5)可知点P在Ox轴上的射影为A(3,0,0),在Oy轴上射影为B(0,4,0),以OA,OB为邻边的矩形OACB的顶点C是点P在xOy坐标平面上的射影C(3,4,0).过C作直线垂直于xOy坐标平面,并在此直线的xOy平面上方截取5个单位,得到的就是点P.点评:本题考查空间直角坐标系,考查空间中点的坐标,是一个基础题,解题的关键是能够想象出空间图形,是一个送分题目.15.设点B是点A(2,﹣3,5)关于xOy面的对称点,则A、B两点距离为()A.10B.C.D.38【答案】A【解析】点B是A(2,﹣3,5)关于xoy平面对称的点,B点的横标和纵标与A点相同,竖标相反,写出点B的坐标,根据这条线段与z轴平行,得到A、B两点距离.解:点B是A(2,﹣3,5)关于xoy平面对称的点,∴B点的横标和纵标与A点相同,竖标相反,∴B(2,﹣3,﹣5)∴AB的长度是5﹣(﹣5)=10,故选A.点评:本题看出空间中点的坐标和两点之间的距离,本题解题的关键是根据关于坐标平面对称的点的特点,写出坐标,本题是一个基础题.16.点P(x,y,z)满足=2,则点P在()A.以点(1,1,﹣1)为圆心,以2为半径的圆上B.以点(1,1,﹣1)为中心,以2为棱长的正方体上C.以点(1,1,﹣1)为球心,以2为半径的球面上D.无法确定【答案】C【解析】通过表达式的几何意义,判断点P的集合特征即可得到选项.解:式子=2的几何意义是动点P(x,y,z)到定点(1,1,﹣1)的距离为2的点的集合.故选C.点评:本题考查空间两点间距离公式的应用,空间轨迹方程的求法.17.点P(1,2,3)关于y轴的对称点为P1,P关于坐标平面xOz的对称点为P2,则|P1P2|= .【答案】2【解析】由题意求出P关于坐标平面xOz的对称点为P2的坐标,即可求出|P1P2|.解:∵点P(1,2,3)关于y轴的对称点为P1,所以P1(﹣1,2,﹣3),P关于坐标平面xOz的对称点为P2,所以P2(1,﹣2,3),∴|P1P2 |==2.故答案为:2点评:本题是基础题,考查空间点关于点、平面的对称点的求法,两点的距离的求法,考查计算能力.18.已知x,y,z满足(x﹣3)2+(y﹣4)2+z2=2,那么x2+y2+z2的最小值是.【答案】27﹣10.【解析】利用球心与坐标原点的距离减去半径即可求出表达式的最小值.解:由题意可得P(x,y,z),在以M(3,4,0)为球心,为半径的球面上,x2+y2+z2表示原点与点P的距离的平方,显然当O,P,M共线且P在O,M之间时,|OP|最小,此时|OP|=|OM|﹣=﹣=5,所以|OP|2=27﹣10.故答案为:27﹣10.点评:本题考查空间中两点间的距离公式的应用,考查计算能力.19.如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.【答案】A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),E(,﹣,1),F().【解析】由题意直接写出B的坐标,利用对称性以及中点坐标公式分别求出A、B、C、D、E、F 的坐标.解:如图所示,B点的坐标为(1,1,0),因为A点关于x轴对称,得A(1,﹣1,0),C点与B点关于y轴对称,得C(﹣1,1,0),D与C关于x轴对称,的D(﹣1,﹣1,0),又P(0,0,2),E为AP的中点,F为PB的中点,由中点坐标公式可得E(,﹣,1),F().点评:本题考查空间点的坐标的求法,中点坐标公式的应用,对称知识的应用,考查计算能力.20.已知空间直角坐标系O﹣xyz中的点A(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点.(1)求点P的坐标满足的条件;(2)求平面α与坐标平面围成的几何体的体积.【答案】(1)x+y+z=3.(2)【解析】(1)通过平面α过点A且与直线OA垂直,利用勾股定理即可求点P的坐标满足的条件;(2)求出平面α与坐标轴的交点坐标,即可利用棱锥的体积公式求出所求几何体体积.解:(1)因为OA⊥α,所以OA⊥AP,由勾股定理可得:|OA|2+|AP|2=|OP|2,即3+(x﹣1)2+(y﹣1)2+(z﹣1)2=x2+y2+z2,化简得:x+y+z=3.(2)设平面α与x轴、y轴、z轴的点分别为M、N、H,则M(3,0,0)、N(0,3,0)、H(0,0,3).所以|MN|=|NH|=|MH|=3,所以等边三角形MNH的面积为:=.又|OA|=,故三棱锥0﹣MNH的体积为:=.点评:本题考查空间想象能力,计算能力,转化思想,空间两点距离公式的应用.。
空间向量复习精选例题(含答案解析)

∴二面角 B1-BE-F 的大小为 arccos(
2 )。 3
(4)∵ GD1 =(-1,0,2),而 GD1 n1 =-2+0+2=0,
z D1 A1 F E B1 C1
∴直线 GD1∥平面 BEFD。 (5) DD1 =(0,0,2), | n1 | 4 4 1 3 , ∴ n1 的单位向量为(
空间向量
2 2 2 0, 0 0 0, 0 设 AB a ,则 A 2 a, ,B 0,2 a, ,C 2 a, . 设 OP h ,则 P(0, 0,h) . 2 1 a , 0 , h . ∵ D 为 PC 的中点,∴ OD 4 2 2 1 PA 0, h 2 a, ,∴ OD 2 PA .
∵ PA n1 2 2 0, PA n1,又PA 平面BDE, PA // 平面BDE. (2)由(Ⅰ)知 n1 (1, 1,1) 是平面 BDE 的一个法向量, 又 n 2 DA (2,0,0) 是平面 DEC 的一个法向量. 设二面角 B—DE—C 的平面角为 ,由图可知 n1 , n 2
(2) DA =(2,0,0) ,设 DA 与面 EFG 所成的角为θ, 则 sin
∴直线 C1D 与平面 A1C1B 的所成角为 arcsin
| DA n | 4 21 4 21 = ,∴ arcsin 21 21 | DA || n |
(2)平面 A1C1B 的法向量 n =(2,1,2),平面 AA1C1C 的法向量 n ' =(2,1,0), 设二者夹角为θ ,∴ cos
∴ cos PA ,n PA ·n PA n 210 . 30
空间直角坐标系例题

空间直角坐标系例题于是,小明拿出他的笔记本,画了个大大的坐标系,X轴、Y轴、Z轴都清晰可见。
看着这些线条,朋友们个个眉头紧皱,心里想着:“这是什么鬼?难道我们要在这儿打坐?”小明哈哈大笑:“别担心,咱们就把这当成一个大地图,找到每一个宝藏点就行了!”听了这话,大家的紧张情绪稍微缓解了些,心想,这地图总比坐着干等要好得多。
于是,他们决定从坐标(1, 2, 3)开始。
小明指着地图,兴奋地说:“我们先往右走一格,然后向上走两格,最后再往前走三格。
”小伙伴们点点头,心里琢磨着,跟着小明的指引走,感觉就像在玩寻宝游戏一样,心里那个期待啊,简直要飞起来了。
一路上,他们嬉闹着,偶尔还会有小鸟飞过,仿佛在为他们的探险加油。
可是,事情并没有那么简单。
小明带着大家走到(1, 2, 3)时,发现眼前是一片空荡荡的地方。
哦,真是个意外,大家都愣住了。
小明耸耸肩:“没关系,这只是第一步。
我们去(4, 5, 6)看看。
”话音刚落,大家又开始朝新的坐标点进发。
这时候,小王调皮地说:“要是每个坐标都有宝藏,那我就发达了!”这话让大家都笑了,气氛一下子轻松了许多。
他们按照小明的计划继续前进。
走到(4, 5, 6)时,竟然看到了一棵巨大的老树,树下还有个破旧的箱子。
大家的心都提到了嗓子眼,难道这就是传说中的宝藏?小明激动地跑过去,打开箱子,发现里面竟然是一堆旧玩具和几本发黄的书。
虽然不是金银财宝,但大家还是围着箱子,乐呵呵地翻看起来。
小李拿起一个破损的玩具车,感慨道:“这让我想起小时候的快乐啊!”过了一会儿,大家决定继续探险,目标是(7, 8, 9)。
在路上,小王突然冒出一句:“这就像是在解密,每一个坐标点都是一个谜。
”大家纷纷点头,确实是这样。
他们就这样快乐地在坐标系中穿梭,偶尔碰到小动物,偶尔发出欢笑,仿佛整个世界都在和他们一起玩耍。
终于,他们到达了最后一个坐标点,(7, 8, 9)。
在这里,竟然发现了一片美丽的花丛,五颜六色的花朵让人目不暇接。
3.1.1点在空间直角坐标系中的...

3.1.1点在空间直角坐标系中的...1.1 点在空间直角坐标系中的坐标 1.2 空间两点间的距离公式1.在空间直角坐标系中,点P(1,-2,5)到坐标平面xOz的距离为()A.2B.1C.5D.32.在空间直角坐标系O-xyz中,点A(2,-1,3)关于yOz平面对称的点的坐标是()A.(2,1,3)B.(-2,-1,3)C.(2,1,-3)D.(2,-1,-3)3.在空间直角坐标系O-xyz中,对于点(0,m2+2,m),下列结论正确的是()A.此点在xOy坐标平面上B.此点在xOz坐标平面上C.此点在yOz坐标平面上D.以上都不对4.与A(3,4,5),B(-2,3,0)两点距离相等的点M(x,y,z)满足的条件是()A.10x+2y+10z-37=0B.5x-y+5z-37=0C.10x-y+10z+37=0D.10x-2y+10z+37=05.点P(3,-2,2)在xOz平面内的投影为B(x,y,z),则x+y+z=.6.点M(-1,2,3)是空间直角坐标系O-xyz中的一点,点M1与点M关于x轴对称,点M2与点M关于xOy平面对称,则|M1M2|=.7.在空间直角坐标系O-xyz中,已知点A(1,2,2),则|OA|=;点A到坐标平面yOz的距离是.8.(1)写出点P(1,3,-5)关于原点对称的点的坐标;(2)写出点P(1,3,-5)关于x轴对称点的坐标.9.如图,在正方体ABCD-A1B1C1D1中,E,F分别是BB1,D1B1的中点,棱长为1.试建立适当的空间直角坐标系,写出点E,F的坐标.能力达标10.在空间直角坐标系O-xyz中,点A在z轴上,它到点(22,5,1)的距离是13,则点A的坐标是()A.(0,0,-1)B.(0,1,1)C.(0,0,1)D.(0,0,13)11.在空间直角坐标系O-xyz中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对12.点P(a,b,c)到坐标平面xOy的距离是()A.a2+b2B.cC.|c|D.a+b13.已知点A(1,a,-5),B(2a,-7,-2),则|AB|的最小值为()A.33B.36C.23D.2614.(多选题)已知点A(-2,3,4),在z轴上求一点B,使|AB|=7,则点B 的坐标为()A.(0,0,10)B.(0,10,0)C.(0,0,-2)D.(0,0,2)15.已知A(4,3,1),B(7,1,2),C(5,2,3),则△ABC是三角形.(填三角形的形状)16.设y为任意实数,相应的所有点P(1,y,3)的集合图形为.17.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,|AP|=|AB|=2,|BC|=22,E,F分别是AD,PC的中点.求证:PC⊥BF,PC⊥EF.18.已知在直三棱柱ABC-A1B1C1(侧棱与底面垂直)中,AC=2,CB=CC1=4,AC⊥BC,E,F,M,N分别是A1B1,AB,C1B1,CB的中点,连接EF,MN.如图所示,建立空间直角坐标系.(1)在平面ABB1A1内找一点P,使△ABP为等边三角形;(2)能否在线段MN上求得一点Q,使△AQB为以AB为斜边的直角三角形?若能,请求出点Q的坐标;若不能,请予以证明.1.在空间直角坐标系中,点P(1,-2,5)到坐标平面xOz的距离为()A.2B.1C.5D.3答案A解析在空间直角坐标系中,点P(1,-2,5)到坐标平面xOz的距离为d=(1-1)2+(-2-0)2+(5-5)2=2.故选A.2.在空间直角坐标系O-xyz中,点A(2,-1,3)关于yOz平面对称的点的坐标是()A.(2,1,3)B.(-2,-1,3)C.(2,1,-3)D.(2,-1,-3)答案B3.在空间直角坐标系O-xyz中,对于点(0,m2+2,m),下列结论正确的是()A.此点在xOy坐标平面上B.此点在xOz坐标平面上C.此点在yOz坐标平面上D.以上都不对答案C解析若m=0,点(0,2,0)在y轴上;若m≠0,点的横坐标为0,纵坐标大于0,竖坐标不为0,点(0,m2+2,m)在yOz坐标平面上.综上所述,点(0,m2+2,m)一定在yOz平面上.故选C.4.与A(3,4,5),B(-2,3,0)两点距离相等的点M(x,y,z)满足的条件是()A.10x+2y+10z-37=0B.5x-y+5z-37=0C.10x-y+10z+37=0D.10x-2y+10z+37=0答案A解析由|MA|=|MB|,得(x-3)2+(y-4)2+(z-5)2=(x+2)2+(y-3)2+z2,化简得10x+2y+10z-37=0,故选A.5.点P(3,-2,2)在xOz平面内的投影为B(x,y,z),则x+y+z=.答案5解析因为点P(3,-2,2)在xOz平面内的射影为B(3,0,2),所以x=3,y=0,z=2,所以x+y+z=3+0+2=5.6.点M(-1,2,3)是空间直角坐标系O-xyz中的一点,点M1与点M关于x轴对称,点M2与点M关于xOy平面对称,则|M1M2|=.答案4解析∵点M1与点M关于x轴对称,点M2与点M关于xOy平面对称,∴M1(-1,-2,-3),M2(-1,2,-3),∴|M1M2|=(-1+1)2+(-2-2)2+(-3+3)2=4.7.在空间直角坐标系O-xyz中,已知点A(1,2,2),则|OA|=;点A 到坐标平面yOz的距离是.答案3 1解析根据空间两点间的距离公式,得|OA|=(1-0)2+(2-0)2+(2-0)2=3.∵点A(1,2,2),∴点A到平面yOz 的距离为1.8.(1)写出点P(1,3,-5)关于原点对称的点的坐标;(2)写出点P(1,3,-5)关于x轴对称点的坐标.解(1)点P(1,3,-5)关于原点对称的点的坐标为(-1,-3,5);(2)点P(1,3,-5)关于x轴对称点的坐标为(1,-3,5).9.如图,在正方体ABCD-A1B1C1D1中,E,F分别是BB1,D1B1的中点,棱长为1.试建立适当的空间直角坐标系,写出点E,F的坐标.解建立如图所示空间直角坐标系.点E在xDy平面上的投影为点B,点B坐标为(1,1,0),点E的竖坐标为12,所以E1,1,12.点F在xDy平面上的投影为BD的中点G,点G的坐标为12,12,0,点F的竖坐标为1,所以F12,12,1.能力达标10.在空间直角坐标系O-xyz中,点A在z轴上,它到点(22,5,1)的距离是13,则点A的坐标是()A.(0,0,-1)B.(0,1,1)C.(0,0,1)D.(0,0,13)答案C解析选项A的距离为8+5+4=17,选项C的距离为8+5+0=13,选项D的距离为8+5+144≠13,故选C.11.在空间直角坐标系O-xyz中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对答案A12.点P(a,b,c)到坐标平面xOy的距离是()A.a2+b2B.cC.|c|D.a+b答案C解析点P在xOy平面的投影点的坐标是P'(a,b,0),∴|PP'|2=(a-a)2+(b-b)2+(c-0)2=c2,∴点P(a,b,c)到坐标平面xOy的距离是|c|.故选C.13.已知点A(1,a,-5),B(2a,-7,-2),则|AB|的最小值为()A.33B.36C.23D.26答案B解析|AB|=(2a-1)2+(-7-a)2+(-2+5)2=5a2+10a+59=5(a+1)2+54,当a=-1时,|AB|min=54=36.14.(多选题)已知点A(-2,3,4),在z轴上求一点B,使|AB|=7,则点B的坐标为()A.(0,0,10)B.(0,10,0)C.(0,0,-2)D.(0,0,2)答案AC解析设点B的坐标为(0,0,c),由空间两点间距离公式可得|AB|=(-2)2+32+(4-c)2=7,解得c=-2或10,所以B点的坐标为(0,0,10)或(0,0,-2).15.已知A(4,3,1),B(7,1,2),C(5,2,3),则△ABC是三角形.(填三角形的形状)答案等腰解析由空间两点间距离公式可求得三角形三边长分别为|AB|=14,|AC|=6,|BC|=6.所以△ABC为等腰三角形.16.设y为任意实数,相应的所有点P(1,y,3)的集合图形为.答案过点(1,0,3)且平行于y轴的一条直线解析由空间中点的坐标特点可知,由于x轴上坐标与z轴上坐标已确定,所以点P的集合为过(1,0,3)且平行于y轴的一条直线.17.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,|AP|=|AB|=2,|BC|=22,E,F分别是AD,PC的中点.求证:PC⊥BF,PC⊥EF.证明如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.∵|AP|=|AB|=2,|BC|=22,四边形ABCD是矩形,∴A(0,0,0),B(2,0,0),C(2,22,0),D(0,22,0),P(0,0,2),∴|PB|=(0-2)2+(0-0)2+(2-0)2=22,∴|PB|=|BC|,又F为PC的中点,∴PC⊥BF.∵E(0,2,0),∴|PE|=(0-0)2+(2-0)2+(0-2)2=6,|CE|=(0-2)2+(2-22)2+(0-0)2=6,∴|PE|=|CE|,又F为PC的中点,∴PC⊥EF.18.已知在直三棱柱ABC-A1B1C1(侧棱与底面垂直)中,AC=2,CB=CC1=4,AC⊥BC,E,F,M,N分别是A1B1,AB,C1B1,CB的中点,连接EF,MN.如图所示,建立空间直角坐标系.(1)在平面ABB1A1内找一点P,使△ABP为等边三角形;(2)能否在线段MN上求得一点Q,使△AQB为以AB为斜边的直角三角形?若能,请求出点Q的坐标;若不能,请予以证明.解(1)因为直线EF 是AB的垂直平分线,所以在平面ABB1A1内只有线段EF上的点到A,B 两点的距离相等,又A(2,0,0),B(0,4,0),设点P坐标为(1,2,m),由|PA|=|AB|得(1-2)2+(2-0)2+(m-0)2=20.所以m2=15.因为m∈[0,4],所以m=15.故平面ABB1A1内的点P(1,2,15),使得△ABP为等边三角形.(2)设MN 上的点Q(0,2,n)满足题意,由AB为Rt△AQB斜边,且F为AB中点,所以|QF|=12|AB|,又F(1,2,0),则(0-1)2+(2-2)2+(n-0)2=12(0-2)2+(4-0)2+(0-0)2,整理得n2+1=5.所以n2=4.因为n∈[0,4],所以n=2.故MN上存在点Q(0,2,2)使得△AQB为以AB为斜边的直角三角形.。
空间直角坐标系

华翰教辅
教辅旗舰
题型三中点坐标公式 例 3 如图所示,在正方体 ABCD-A1B1C1D1 中,E、F 分别是 BB1、D1B1 的中点,棱长为 1.求 E、F 点的坐标.
华翰教辅
解析 1 标为 . 2
教辅旗舰
解法一:E 点在 xOy 面上的射影为 B,则 B(1,1,0),竖坐
华翰教辅
教辅旗舰
2.确定点 M 的坐标和由点 M 坐标确定 M 位置的步骤 (1)确定空间定点 M 的坐标的步骤:①过点 M 分别作垂直于 x 轴、y 轴和 z 轴的平面,依次交 x 轴、y 轴和 z 轴于 P、Q 和 R.②确 定 P、Q 和 R 在 x 轴、y 轴和 z 轴上的坐标 x、y 和 z 轴.③得出点 M 的坐标为(x,y,z). (2)已知点 M 坐标为(x,y,z),确定点 M 位置的步骤:①在 x 轴、y 轴和 z 轴上依次取坐标为 x、y 和 z 的点 P、Q、R.②过 P、Q、 R 分别作垂直于 x 轴、y 轴和 z 轴的平面,那么三个平面交于一点, 这点就是坐标(x,y,z)对应的点 M.
华翰教辅
教辅旗舰
典 例 对 对 碰 反思例题有法宝 变式迁移有技巧
华翰教辅
教辅旗舰
题型一坐标轴及坐标平面内点的特征 例 1 有下列叙述: ①在空间直角坐标系中,在 Ox 轴上的点的坐标一定可记为(0,b,0); ②在空间直角坐标系中,在 yOz 平面上的点的坐标一定可记为(0,b, c); ③在空间直角坐标系中,在 Oz 轴上的点的坐标一定可记为(0,0,c); ④在空间直角坐标系中, xOz 平面上的点的坐标一定可记为(a,0, 在 c). 其中正确叙述的个数是( ) A.1 B.2 C.3 D.4
空间直角坐标系与空间向量典型的的例题

空间直角坐标系与空间向量一、建立空间直角坐标系的几种方法 构建原如此:遵循对称性,尽可能多的让点落在坐标轴上。
作法:充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下:〔一〕用共顶点的互相垂直的三条棱构建直角坐标系例1 直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值.解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,如此C 1〔0,1,2〕、B 〔2,4,0〕, ∴1(232)BC =--,,,(010)CD =-,,.设1BC 与CD 所成的角为θ, 如此11317cos 17BC CD BC CDθ==. 〔二〕利用线面垂直关系构建直角坐标系例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π,∴在三棱柱ABC -A 1B 1C 1中,有B 〔0,0,0〕、A 〔0,0,2〕、B 1〔0,2,0〕、31022c ⎛⎫- ⎪ ⎪⎝⎭,,、133022C ⎛⎫⎪ ⎪⎝⎭,,.设302E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<,由EA ⊥EB 1,得10EAEB =,即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,即12a =或32a =〔舍去〕.故31022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(002)B A BA ==,,,31222EA ⎛⎫=-- ⎪ ⎪⎝⎭,,故11112cos 3EA B A EA B A θ==,即2tan 2θ=〔三〕利用面面垂直关系构建直角坐标系例3 如图3,在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . 〔1〕证明AB ⊥平面VAD ;〔2〕求面VAD 与面VDB 所成的二面角的余弦值.解析:〔1〕取AD 的中点O 为原点,建立如图3所示的空间直角坐标系.设AD =2,如此A 〔1,0,0〕、D 〔-1,0,0〕、B 〔1,2,0〕、V 〔0,0,3〕,∴AB =〔0,2,0〕,VA =〔1,0,-3〕.由(020)(103)0AB VA =-=,,,,,得AB ⊥VA .又AB ⊥AD ,从而AB 与平面VAD 内两条相交直线VA 、AD 都垂直, ∴AB ⊥平面VAD ;〔2〕设E 为DV 的中点,如此13022E ⎛⎫- ⎪ ⎪⎝⎭,,∴33022EA ⎛⎫=- ⎪ ⎪⎝⎭,,,33222EB ⎛⎫=- ⎪ ⎪⎝⎭,,,(103)DV =,,. ∴332(103)022EB DV ⎛⎫=-= ⎪ ⎪⎝⎭,,,,, ∴EB ⊥DV .又EA ⊥DV ,因此∠AEB 是所求二面角的平面角. ∴21cos7EA EB EA EB EA EB==,. 故所求二面角的余弦值为217. 〔四〕利用正棱锥的中心与高所在直线构建直角坐标系例4 正四棱锥V -ABCD 中,E 为VC 中点,正四棱锥底面边长为2a ,高为h . 〔1〕求∠DEB 的余弦值;〔2〕假如BE ⊥VC ,求∠DEB 的余弦值.解析:〔1〕如图4,以V 在平面AC 的射影O 为坐标原点建立空间直角坐标系,其中O x ∥BC ,O y ∥AB ,如此由AB =2a ,OV =h ,有B 〔a ,a ,0〕、C 〔-a ,a ,0〕、D 〔-a ,-a ,0〕、V 〔0,0,h 〕、222a a h E ⎛⎫- ⎪⎝⎭,, ∴3222a h BE a ⎛⎫=-- ⎪⎝⎭,,,3222a h DE a ⎛⎫= ⎪⎝⎭,,.∴22226cos 10BE DEa h BE DE a hBE DE -+==+,, 即22226cos 10a h DEB a h-+=+∠; 〔2〕因为E 是VC 的中点,又BE ⊥VC , 所以0BEVC =,即3()0222a h a a a h ⎛⎫----= ⎪⎝⎭,,,,,∴22230222a h a --=,∴2h a =. 这时222261cos 103a h BE DE a h -+==-+,,即1cos 3DEB =-∠.引入空间向量坐标运算,使解立体几何问题防止了传统方法进展繁琐的空间分析,只需建立空间直角坐标系进展向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.下面以高考考题为例,剖析建立空间直角坐标系的三条途径.〔五〕利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系〔如正三棱柱、正四棱柱等〕,利用自身对称性可建立空间直角坐标系.例5两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. 〔1〕证明:PQ ⊥平面ABCD ; 〔2〕求异面直线AQ 与PB 所成的角; 〔3〕求点P 到面QAD 的距离. 简解:〔1〕略;〔2〕由题设知,ABCD 是正方形,且AC ⊥BD .由〔1〕,PQ ⊥平面ABCD ,故可分别以直线CADB QP ,,为x ,y ,z 轴建立空间直角坐标系〔如图1〕,易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PBAQ PB AQ PB <>==,.所求异面直线所成的角是1arccos3. 〔3〕由〔2〕知,点(0220)(22220)(004)D AD PQ -=--=-,,,,,,,,设n =〔x ,y ,z 〕是平面QAD 的一个法向量,如此00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==n n.点评:利用图形所具备的对称性,建立空间直角坐标系后,相关点与向量的坐标应容易得出.第〔3〕问也可用“等体积法〞求距离. 二、向量法解立体几何(一)知识点向量的数量积和坐标运算b a,是两个非零向量,它们的夹角为θ,如此数θcos ||||⋅⋅b a 叫做a 与b 的数量积〔或内积〕,记作b a ⋅,即.cos ||||θ⋅⋅=⋅b a b a 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是:假如),,(),,,(222111z y x b z y x a ==,如此①212121z z y y x x b a ++=⋅;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<(二)例题讲解 题型:求角度相关1. 异面直线n m ,所成的角分别在直线n m ,上取定向量,,b a如此异面直线n m ,所成的角θ等于向量b a ,所成的角或其补角〔如图1所示〕,如此.||||||cos b a b a⋅⋅=θ 2. 直线L 与平面α所成的角在L 上取定AB ,求平面α的法向量n 〔如图2所示〕,再求||||cos n AB n AB ⋅=θ如此θπβ-=2为所求的角.3. 二面角方法一:构造二面角βα--l 的两个半平面βα、的法向量21n n 、〔都取向上的方向,如图3所示〕,如此图1图①假如二面角βα--l 是“钝角型〞的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即||||cos 2121n n n n ⋅=θ② 假如二面角βα--l 是“锐角型〞的如图3乙所示,那么其大小等于两法向量21n n 、的夹角,即||||cos 2121n n n n ⋅=θ.方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面βα、内求出与l 垂直的向量21n n 、〔如图4所示〕,如此二面角βα--l 的大小等于向量21n n 、的夹角,即 ||||cos 2121n n n n ⋅=θ题型:求距离相关1. 异面直线n m 、的距离分别在直线n m 、上取定向量,,b a求与向量b a 、都垂直的向量n ,分别在n m 、上各取一个定点B A 、,如此异面直线n m 、的距离d 等于AB 在n 上的射影长,即||n n AB d=证明:设CD 为公垂线段,取b DB a CA==,||||)(n AB n CD n BD AB CA n CD BD AB CA CD ⋅=⋅∴⋅++=⋅∴++= ||||n n AB CD d ==∴设直线n m ,所成的角为θ,显然.||||||cos b a b a⋅⋅=θ 2. 平面外一点p 到平面α的距离n 图图4图1求平面α的法向量n ,在面内任取一定点A ,点p 到平面α的距离d 等于AP 在n 上的射影长,即||||n n AP d ⋅=.三、法向量 例题解析题型:求空间角1、运用法向量求直线和平面所成角设平面α的法向量为n =〔x, y, 1),如此直线AB 和平面α所成的角θ的正弦值为 sin θ= cos(2π-θ) = |cos<AB , n >| =AB AB n n••2、运用法向量求二面角设二面角的两个面的法向量为12,n n ,如此<12,n n >或π-<12,n n >是所求角。
空间直角坐标系练习题含详细答案

空间直角坐标系(11月21日)一、选择题1、有下列叙述:①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c);②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c);③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c);④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。
其中正确的个数是( C )A、1B、2C、3D、42、已知点A(-3,1,4),则点A关于原点的对称点的坐标为( C )A、(1,-3,-4)B、(-4,1,-3)C、(3,-1,4)D、(4,-1,3)3、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为( A )A、(-3,-1,4)B、(-3,-1,-4)C、(3,1,4)D、(3,-1,-4)4、点(1,1,1)关于z轴的对称点为( A )A、(-1,-1,1)B、(1,-1,-1)C、(-1,1,-1)D、(-1,-1,-1)5、点(2,3,4)关于xoz平面的对称点为( C )A、(2,3,-4)B、(-2,3,4)C、(2,-3,4)D、(-2,-3,4)6、点P(2,0,3)在空间直角坐标系中的位置是在( C )A.y轴上 B.xOy平面上 C.xOz平面上D.x轴上7、以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( C )A、(12,1,1) B、(1,12,1) C、(1,1,12) D、(12,12,1)8、点P(22,33,-66)到原点的距离是( B )A.306B.1 C.336D.3569、点M(4,-3,5)到x轴的距离为( B )A.4 B.34 C.5 2 D.41 10、在空间直角坐标系中,点P(1,2,3),过点P作平面xOy的垂线PQ,垂足为Q,则Q 的坐标为( D )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)11、点M(-2,1,2)在x轴上的射影的坐标为( B )A.(-2,0,2) B.(-2,0,0)C.(0,1,2) D.(-2,1,0)12、在长方体ABCD-A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为( B )A.9 B.29C.5 D.2 6二、填空题1、在空间直角坐标系中, 点P的坐标为(1, 32,),过点P作yOz平面的垂线PQ, 则垂足Q 的坐标是________________.2、已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________.3、已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________.4、已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.小组: 组号: 姓名:__________一、选择题(本题共12小题,每题5分,共60分)题号 12345678910 11 12答案二、填空题(共4小题,每题5分,共20分)请把正确答案填写在相应的位置上.1、______________2、____________3、________________4、______________ 三、解答题1、 如图,在长方体OABC -D ′A ′B ′C ′中,|OA |=1,|OC |=3,|OD ′|=2,点E 在线段AO 的延长线上,且|OE |=12,写出B ′,C ,E 的坐标.2、求证:以(419)A ---,,,(1016)B --,,,(243)C ---,,为顶点的三角形是等腰直角三角形.【选做题】1、已知点A (2,3,5),B (-2,1,a ),则|AB |的最小值为( )A. 6 B .2 5 C. 2 D .2 22、如图所示,BC =4,原点O 是BC 的中点,点A 的坐标为(32,12,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°,求AD 的长度.答案:二、填空: 1. (0, ); 2. ; 3. 3 , 2; 4 (0,三、解答题:1、解:点C 在y 轴上,x 坐标,z 坐标均为0,且|OC |=3,故点C 的坐标为(0,3,0). 因为B ′B 垂直于xOy 平面,垂足为B ,所以点B ′与B 的x 坐标和y 坐标都相同,又|BB ′|=|OD ′|=2,且点B ′在xOy 平面的上方,所以点B ′的坐标为(1,3,2).点E 在x 轴负半轴上,且|OE |=12,所以点E 的坐标为(-12,0,0).2、选做题:1、解析:选B.|AB |=2+22+3-12+5-a2=20+a -52,当且仅当a =5时,|AB |min =20=2 5.2、解 由题意得B (0,-2,0),C (0,2,0),设D (0,y ,z ),则在Rt △BDC 中,∠DCB =30°, ∴BD =2,CD =23,z =3,y =-1.∴D (0,-1,3).又∵A (32,12,0), ∴|AD |=322+12+12+32=6.Welcome !!! 欢迎您的下载,资料仅供参考!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《空间直角坐标系》典型例题解析
例1:在空间直角坐标系中,作出点M(6,
-2, 4)。
点拨点M 的位置可按如下步骤作出:先在x
轴上作出横坐标是6的点1M ,再将1M 沿与y
轴平行的方向向左移动2个单位得到点2M ,然
后将2M 沿与z 轴平行的方向向上移动4个单位
即得点M 。
解答M 点的位置如图所示。
总结对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力。
变式题演练
在空间直角坐标系中,作出下列各点:A(-2,3,3);B(3,-4,2);C(4,0,-3)。
答案:略
例2:已知正四棱锥P-ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标。
点拨先由条件求出正四棱锥的高,再根据正
四棱锥的对称性,建立适当的空间直角坐标系。
解答 正四棱锥P-ABCD 的底面边长为4,侧
棱长为10,
∴正四棱锥的高为232。
以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为x 轴、y 轴,建立如图所示
的空间直角坐标系,则正四棱锥各顶点的坐标分别为A(2,-2,0)、B(2,2,0)、C(-2,2,0)、D(-2,-2,0)、P(0,0,232)。
总结在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标。
1M 2M M (6,-2,4) O x y z 6 2 4 O A B C D P x y z
变式题演练
在长方体1111D C B A ABCD -中,AB=12,AD=8,1AA =5,试建立适当的空间直角坐标系,写出各顶点的坐标。
答案:以A 为原点,射线AB 、AD 、1AA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A(0,0,0)、B(12,0,0)、C(12,8,0)、D(0,8,0)、1A (0,0,
5)、1B (12,0,5)、1C (12,8,5)、1D (0,8,5)。
例3:在空间直角坐标系中,求出经过A(2,3,1)且平行于坐标平面yOz 的平面α的方程。
点拨求与坐标平面yOz 平行的平面的方程,即寻找此平面内任一点所要满足的条件,可利用与坐标平面yOz 平行的平面内的点的特点来求解。
解答 坐标平面yOz ⊥x 轴,而平面α与坐标平面yOz 平行,
∴平面α也与x 轴垂直,
∴平面α内的所有点在x 轴上的射影都是同一点,即平面α与x 轴的交点, ∴平面α内的所有点的横坐标都相等。
平面α过点A(2,3,1),∴平面α内的所有点的横坐标都是2,
∴平面α的方程为x=2。
总结对于空间直角坐标系中的问题,可先回忆与平面直角坐标系中类似问题的求解方法,再用类比方法求解空间直角坐标系中的问题。
本题类似于平面直角坐标系中,求过某一定点且与x 轴(或y 轴)平行的直线的方程。
变式题演练
在空间直角坐标系中,求出经过B(2,3,0)且垂直于坐标平面xOy 的直线方程。
答案:所求直线的方程为x=2,y=3.。