高一物理曲线运动重难点解析及典型例题

合集下载

【物理】高中必备物理曲线运动技巧全解及练习题(含答案)及解析

【物理】高中必备物理曲线运动技巧全解及练习题(含答案)及解析

【物理】高中必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,水平屋顶高H =5 m ,围墙高h =3.2 m ,围墙到房子的水平距离L =3 m ,围墙外空地宽x =10 m ,为使小球从屋顶水平飞出落在围墙外的空地上,g 取10 m/s 2.求: (1)小球离开屋顶时的速度v 0的大小范围; (2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v 0≤13 m/s ; (2)55m/s ; 【解析】 【分析】 【详解】(1)若v 太大,小球落在空地外边,因此,球落在空地上,v 的最大值v max 为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t 1. 则小球的水平位移:L+x=v max t 1, 小球的竖直位移:H=gt 12 解以上两式得 v max =(L+x )=(10+3)×=13m/s .若v 太小,小球被墙挡住,因此, 球不能落在空地上,v 的最小值v min为球恰好越过围墙的最高点P 落在空地上时的平抛初速度,设小球运动到P 点所需时间为t 2,则此过程中小球的水平位移:L=v min t 2 小球的竖直方向位移:H ﹣h=gt 22 解以上两式得v min =L=3×=5m/s因此v 0的范围是v min ≤v 0≤v max , 即5m/s≤v 0≤13m/s .(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min ′===5m/s3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.5.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5;由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s6.如图甲所示,粗糙水平面与竖直的光滑半圆环在N 点相切,M 为圈环的最高点,圆环半径为R =0.1m ,现有一质量m =1kg 的物体以v 0=4m/s 的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g =10m/s 2,求:(1)物体能从M 点飞出,落到水平面时落点到N 点的距离的最小值X m(2)设出发点到N 点的距离为S ,物体从M 点飞出后,落到水平面时落点到N 点的距离为X ,作出X 2随S 变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ(3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半固轨道,求出发点到N 点的距离S 应满足的条件【答案】(1)0.2m ;(2)0.2;(3)0≤x ≤2.75m 或3.5m ≤x <4m . 【解析】 【分析】(1)由牛顿第二定律求得在M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;(2)根据动能定理得到M 点速度和x 的关系,然后由平抛运动规律得到y 和M 点速度的关系,即可得到y 和x 的关系,结合图象求解;(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解. 【详解】(1)物体能从M 点飞出,那么对物体在M 点应用牛顿第二定律可得:mg ≤2M mv R,所以,v M gR 1m /s ;物体能从M 点飞出做平抛运动,故有:2R =12gt 2,落到水平面时落点到N 点的距离x =v M t 2RgR g2R =0.2m ; 故落到水平面时落点到N 点的距离的最小值为0.2m ;(2)物体从出发点到M 的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02; 物体从M 点落回水平面做平抛运动,故有:2R =12gt 2,M y v t === 由图可得:y 2=0.48-0.16x ,所以,μ=0.160.8=0.2; (3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R 或物体能通过M 点;物体能到达的最大高度0<h≤R 时,由动能定理可得:−μmgx −mgh =0−12mv 02, 所以,2200122mv mghv h x mg g μμμ--==,所以,3.5m≤x <4m ;物体能通过M 点时,由(1)可知v M1m /s , 由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02; 所以2222001124222M M mv mv mgR v v gR x mg gμμ----==, 所以,0≤x≤2.75m ; 【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.7.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理曲线运动的技巧及练习题及练习题(含答案)及解析

高考物理曲线运动的技巧及练习题及练习题(含答案)及解析

高考物理曲线运动的技巧及练习题及练习题 ( 含答案 ) 及分析一、高中物理精讲专题测试曲线运动1. 一质量 M =0.8kg 的小物块,用长 l=0.8m 的细绳悬挂在天花板上,处于静止状态.一质量 m=0.2kg 的粘性小球以速度 v 0=10m/s 水平射向小物块,并与物块粘在一同,小球与小物 块互相作用时间极短能够忽视.不计空气阻力,重力加快度g 取 10m/s 2.求:( 1)小球粘在物块上的瞬时,小球和小物块共同速度的大小; ( 2)小球和小物块摇动过程中,细绳拉力的最大值;( 3)小球和小物块摇动过程中所能达到的最大高度.【答案】( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m【分析】(1)因为小球与物块互相作用时间极短,因此小球和物块构成的系统动量守恒.mv 0 (Mm)v 共得: v 共 =2.0 m / s (2)小球和物块将以v共开始运动时,轻绳遇到的拉力最大,设最大拉力为F ,F (M m) g ( M m)v 共2L得: F 15N(3)小球和物块将以v 共 为初速度向右摇动,摇动过程中只有重力做功,因此机械能守恒,设它们所能达到的最大高度为h ,依据机械能守恒:( m+M ) gh 1( m M )v 共 22解得 : h 0.2m综上所述此题答案是 : ( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m点睛 :( 1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. ( 2)对小球和物块协力供给向心力,可求得轻绳遇到的拉力( 3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2. 如下图,质量为 M 4kg 的平板车 P 的上表面离地面高 h 0.2m ,质量为 m 1kg的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面 上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于 Q 正上方高为 R 处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。

高一物理曲线运动重难点解析及典型例题

高一物理曲线运动重难点解析及典型例题

第五章 曲线运动第五节 圆周运动 第六节 向心加速度二. 知识要点:1. 认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算。

理解线速度、角速度、周期之间的关系:v=rω=2πr /T 。

理解匀速圆周运动是变速运动。

2. 理解速度变化量和向心加速度的概念,知道向心加速度和线速度、角速度的关系式。

能够运用向心加速度公式求解有关问题。

3. 运用极限法理解线速度的瞬时性。

掌握运用圆周运动的特点如何去分析有关问题。

体会有了线速度后。

为什么还要引入角速度。

运用数学知识推导角速度的单位。

三. 重难点解析: 1. 线速度(1)定义:质点沿圆周运动通过的弧长Δl 与所用时间Δt 之比叫做线速度。

它描述质点沿圆周运动的快慢。

(2)大小:t lv ∆∆=单位:m/s(3)方向:质点在某点的线速度方向沿着圆周上该点的切线方向。

2. 匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。

(2)因线速度方向不断发生变化,故匀速圆周运动是变速运动,这里的“匀速”是指速率不变。

3. 角速度(1)定义:在匀速圆周运动中,连接质点和圆心的半径转过的角度与所用时间的比值,就是指点的角速度。

描述质点转过圆心角的快慢。

匀速圆周运动是角速度不变的圆周运动。

(2)大小:t ∆∆=θω,单位:rad /s 4. 周期T 、频率f 和转速n定义:做圆周运动的物体运动一周所用的时间叫做周期,用T 表示,单位为秒(s )。

做圆周运动的物体运动一秒,所转过圆周的次数叫做频率,用f 表示,单位为赫兹(Hz )。

1 Hz=11-S 。

做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做转速。

用n 表示,单位为转每秒(r /s ),或转每分(r /min )。

周期频率和转速都是描述物体做圆周运动快慢的物理量。

5. 描述圆周运动各物理量的关系 (1)线速度和角速度间的关系。

高考物理曲线运动解题技巧讲解及练习题(含答案)

高考物理曲线运动解题技巧讲解及练习题(含答案)

高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L=3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.【答案】(1)5 m/s≤v0≤13 m/s;(2)55m/s;【解析】【分析】【详解】(1)若v太大,小球落在空地外边,因此,球落在空地上,v的最大值v max为球落在空地最右侧时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t1.则小球的水平位移:L+x=v max t1,小球的竖直位移:H=gt12解以上两式得v max=(L+x)=(10+3)×=13m/s.若v太小,小球被墙挡住,因此,球不能落在空地上,v的最小值v min为球恰好越过围墙的最高点P落在空地上时的平抛初速度,设小球运动到P点所需时间为t2,则此过程中小球的水平位移:L=v min t2小球的竖直方向位移:H﹣h=gt22解以上两式得v min=L=3×=5m/s因此v0的范围是v min≤v0≤v max,即5m/s≤v0≤13m/s.(2)根据机械能守恒定律得:mgH+=解得小球落在空地上的最小速度:v min′===5m/s2.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。

设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。

(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。

【答案】(1)(2)【解析】【分析】(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B点,则水平位移应该是2L的整数倍,通过平抛运动公式列式求解初速度可能值。

高考物理高考物理曲线运动解题技巧讲解及练习题(含答案)

高考物理高考物理曲线运动解题技巧讲解及练习题(含答案)

高考物理高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,光滑的水平地面上停有一质量,长度的平板车,平板车左端紧靠一个平台,平台与平板车的高度均为,一质量的滑块以水平速度从平板车的左端滑上平板车,并从右端滑离,滑块落地时与平板车的右端的水平距离。

不计空气阻力,重力加速度求:滑块刚滑离平板车时,车和滑块的速度大小; 滑块与平板车间的动摩擦因数。

【答案】(1),(2)【解析】 【详解】设滑块刚滑到平板车右端时,滑块的速度大小为,平板车的速度大小为, 由动量守恒可知:滑块滑离平板车后做平抛运动,则有:解得:,;由功能关系可知:解得:【点睛】本题主要是考查了动量守恒定律;对于动量守恒定律,其守恒条件是:系统不受外力作用或某一方向不受外力作用;解答时要首先确定一个正方向,利用碰撞前系统的动量和碰撞后系统的动量相等列方程进行解答。

2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+,解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.4.如图所示,半径为R 的四分之三光滑圆轨道竖直放置,CB 是竖直直径,A 点与圆心等高,有小球b 静止在轨道底部,小球a 自轨道上方某一高度处由静止释放自A 点与轨道相切进入竖直圆轨道,a 、b 小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b 经过C 点水平抛出落在离C 点水平距离为22R 的地面上,重力加速度为g ,小球均可视为质点。

高考必备物理曲线运动技巧全解及练习题(含答案)

高考必备物理曲线运动技巧全解及练习题(含答案)

高考必备物理曲线运动技巧全解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,水平长直轨道AB与半径为R=0.8m的光滑14竖直圆轨道BC相切于B,BC与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,4.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.5.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J (3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小3.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.4.一位网球运动员用网球拍击球,使网球沿水平方向飞出.如图所示,第一个球从O 点水平飞出时的初速度为v 1,落在自己一方场地上的B 点后,弹跳起来,刚好过网上的C 点,落在对方场地上的A 点;第二个球从O 点水平飞出时的初速度为V 2,也刚好过网上的C 点,落在A 点,设球与地面碰撞时没有能量损失,且不计空气阻力,求:(1)两个网球飞出时的初速度之比v 1:v 2; (2)运动员击球点的高度H 与网高h 之比H :h【答案】(1)两个网球飞出时的初速度之比v 1:v 2为1:3;(2)运动员击球点的高度H 与网高h 之比H :h 为4:3. 【解析】 【详解】(1)两球被击出后都做平抛运动,由平抛运动的规律可知,两球分别被击出至各自第一次落地的时间是相等的,设第一个球第一次落地时的水平位移为x 1,第二个球落地时的水平位移为x 2由题意知,球与地面碰撞时没有能量损失,故第一个球在B 点反弹瞬间,其水平方向的分速度不变,竖直方向的分速度以原速率反向,根据运动的对称性可知两球第一次落地时的水平位移之比x 1:x 2=1:3,故两球做平抛运动的初速度之比v 1:v 2=1:3(2)设第一个球从水平方向飞出到落地点B 所用时间为t 1,第2个球从水平方向飞出到C 点所用时间为t 2,则有H =2112gt ,H -h =2212gt 又:x 1=v 1t 1O 、C 之间的水平距离:x '1=v 2t 2第一个球第一次到达与C 点等高的点时,其水平位移x '2=v 1t 2,由运动的可逆性和运动的对称性可知球1运动到和C 等高点可看作球1落地弹起后的最高点反向运动到C 点;故 2x 1=x '1+x '2可得:t 1=2t 2 ,H =4(H -h ) 得:H :h =4:35.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.6.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。

高考物理曲线运动解题技巧讲解及练习题(含答案)及解析

高考物理曲线运动解题技巧讲解及练习题(含答案)及解析

高考物理曲线运动解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.2.光滑水平轨道与半径为R 的光滑半圆形轨道在B 处连接,一质量为m 2的小球静止在B 处,而质量为m 1的小球则以初速度v 0向右运动,当地重力加速度为g ,当m 1与m 2发生弹性碰撞后,m 2将沿光滑圆形轨道上升,问:(1)当m 1与m 2发生弹性碰撞后,m 2的速度大小是多少?(2)当m 1与m 2满足21(0)m km k =>,半圆的半径R 取何值时,小球m 2通过最高点C 后,落地点距离B 点最远。

【答案】(1) 2m 1v 0/(m 1+m 2) (2) R =v 02/2g (1+k )2 【解析】 【详解】(1)以两球组成的系统为研究对象, 由动量守恒定律得:m 1v 0=m 1v 1+m 2v 2, 由机械能守恒定律得:12m 1v 02=12m 1v 12+12m 2v 22, 解得:102122m v v m m =+;(2)小球m 2从B 点到达C 点的过程中, 由动能定理可得:-m 2g ×2R =12m 2v 2′2-12m 2v 22, 解得:2221002212224()4()41m v vv v gR gR gR m m k'=-=-=-++小球m 2通过最高点C 后,做平抛运动,竖直方向:2R =12gt 2, 水平方向:s =v 2′t ,解得:22024()161v Rs R k g=-+, 由一元二次函数规律可知,当2022(1)v R g k =+时小m 2落地点距B 最远.3.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大?②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)415T = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得cos mgT α=解得:41515T mg =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 曲线运动第五节 圆周运动 第六节 向心加速度二. 知识要点:1. 认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算。

理解线速度、角速度、周期之间的关系:v=rω=2πr /T 。

理解匀速圆周运动是变速运动。

2. 理解速度变化量和向心加速度的概念,知道向心加速度和线速度、角速度的关系式。

能够运用向心加速度公式求解有关问题。

3. 运用极限法理解线速度的瞬时性。

掌握运用圆周运动的特点如何去分析有关问题。

体会有了线速度后。

为什么还要引入角速度。

运用数学知识推导角速度的单位。

三. 重难点解析: 1. 线速度(1)定义:质点沿圆周运动通过的弧长Δl 与所用时间Δt 之比叫做线速度。

它描述质点沿圆周运动的快慢。

(2)大小:t lv ∆∆=单位:m/s(3)方向:质点在某点的线速度方向沿着圆周上该点的切线方向。

2. 匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。

(2)因线速度方向不断发生变化,故匀速圆周运动是变速运动,这里的“匀速”是指速率不变。

3. 角速度(1)定义:在匀速圆周运动中,连接质点和圆心的半径转过的角度与所用时间的比值,就是指点的角速度。

描述质点转过圆心角的快慢。

匀速圆周运动是角速度不变的圆周运动。

(2)大小:t ∆∆=θω,单位:rad /s 4. 周期T 、频率f 和转速n定义:做圆周运动的物体运动一周所用的时间叫做周期,用T 表示,单位为秒(s )。

做圆周运动的物体运动一秒,所转过圆周的次数叫做频率,用f 表示,单位为赫兹(Hz )。

1 Hz=11-S 。

做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做转速。

用n 表示,单位为转每秒(r /s ),或转每分(r /min )。

周期频率和转速都是描述物体做圆周运动快慢的物理量。

5. 描述圆周运动各物理量的关系 (1)线速度和角速度间的关系。

v= rω。

(2)线速度与周期的关系。

T r v π2=。

(3)角速度与周期的关系。

T πω2=。

(4)考虑频率f 则有:f πω2=,v=2πfr 。

(5)而频率f 与n 的关系为f=n 。

以上各物理量关系有:v=ωr=2πfr=2πnr 。

6. 两个有用的结论(1)在同一个转盘上的角速度相同。

(2)同一个轮子的边缘上,线速度相同,传动中线速度相同。

7. 匀速圆周运动向心加速度(1)定义:做匀速圆周运动的物体,加速度指向圆心,称作向心加速度。

描述线速度改变的快慢。

(2)公式:r v a 2==ω2r=r T 224π=4π2n 2r=4π2f 2r=ωv 。

(3)方向:总是沿着半径指向圆心。

(4)向心加速度公式也适用于非匀速圆周运动。

【典型例题】[例1] 如图所示为录音机在工作时的示意图,轮子1是主动轮,轮子2为从动轮,轮1和轮2就是磁带盒内的两个转盘,空带一边半径为r 1=0.5 cm ,满带一边半径为r 2=3cm ,已知主动轮转速不变,恒为n l =36r /min ,试求: (1)从动轮2的转速变化范围;(2)磁带运动的速度变化范围。

解析:本题应抓住主动轮(r 1)的角速度恒定不变这一特征,再根据同一时刻两轮磁带走动的线速度相等,从磁带转动时半径的变化来求解。

(1)因为v=rω,且两轮边缘上各点的线速变相等,所以r 26022n π=r 16021n π,即n 2=21r r n 1当r 2=3cm 时,从动轮2的转速最小,n min =min/3635.0r ⨯=6r /min.当磁带走完即r 2=0.5cm ,r 1=3cm 时,从动轮2的转速最大,为n 2max=21r r n 1=min /365.03r ⨯=216r /min ,故从动轮2的转速变化范围是6r /min ~216r /min 。

(2)由v=r 12πn l 得知:r 1=0.5cm 时,v 1=0.5×10-2×2π×6036m/s=0.019m/sr 1=3cm 时,v 2=3×10-2×2π×6036=0.113m /s 。

故磁带运动的速度变化范围是0.0 l 9m /s ~0.1 1 3 m /s 。

[例2] 一半径为R 的雨伞绕柄以角速度ω匀速旋转,如图所示,伞边缘距地面高h ,甩出的水滴在地面上形成一个圆,求此圆半径r 为多少?解析:雨滴飞出的速度大小为v=ωR , ①雨滴做平抛运动。

在竖直方向上有 h=221gt ②在水平方向上有 S=vt ③由几何关系知,雨滴半径 r=22s R + ④解以上几式得 r=Rg h 221ω+点评:雨滴离开伞边缘后沿切线方向水平抛出,做平抛运动,特别注意不是沿半径飞出,其间距关系见俯视图.。

值得注意的是把立体图转化为平面图这个思想很重要,有助于我们弄清各物理量间的几何关系。

[例3] 一质点沿着半径r=1 m 的圆周以n=2r /s 的转速匀速转动,如图。

试求:(1)从A 点开始计时,经过41s 的时间质点速度的变化;(2)质点的向心加速度的大小。

解析:① 求出41s 的时间连接质点的半径转过的角度是多少?② 求出质点在A 点和41s 末线速度的大小和方向。

③ 由矢量减法作出矢量三角形。

④ 明确边角关系,解三角形求得△v 的大小和方向。

⑤ 根据r v a n 2=或a n =ω2r 求出向心加速度的大小。

答案:(1)△v=22πm/s 方向与OA 连线成45º角指向圆心O (2)a=l6π2[例4] 如图所示,一个球绕中心轴线'OO 的角速度ω做匀速圆周转动,则( )A. a 、b 两点线速度相同B. a 、b 两点角速度相同C. 若θ=30º,则a 、b 两点的速度之比v a :v b =3:2D. 若θ=30º,则a 、b 两点的向心加速度之比a a :a b =3:2解析:由于a 、b 两点在同一球上,因此a 、b 两点的角速度ω相同,选项B 正确.而据v=ωr.可知v a <v b ,选项A 错误.由几何关系有r a =r b ·cosθ,当θ=30º时,r a =23r b ,则v a :v b =3:2,选项C 正确,由a=ω2r ,可知a a :a b =r a :r b =3:2,选项D 正确。

[例5] 如图所示,定滑轮的半径r=2cm ,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a=2m/s 2做匀加速运动,在重物由静止下落距离为1 m 的瞬间,滑轮边缘上的点的角速度ω= rad /s ,向心加速度a= m/s 2。

(滑轮质量不计)解析:根据机械能守恒有mgh=221mv,v=2m /s 。

显然,滑轮边缘上每一点的线速度也都是2m/s ,故滑轮转动的角速度,即滑轮边缘上每一点的转动角速度为ω=r v =02.02rad/s=100rad /s ,向心加速度为 a=ω2r=1002×0.02m/s 2=200m /s 2【模拟试题】1. 质点做匀速圆周运动,则( )A. 在任何相等时间里,质点的位移都相等B. 在任何相等的时间里,质点通过的路程都相等C. 在任何相等的时间里,质点运动的平均速度都相同D. 在任何相等的时间里,连接质点和圆心的半径转过的角度都相等2. 机械手表的分针与秒针从重合至第二次重合,中间经历的时间为( )A. min 6059B. 1 minC. 5960minD. 6061min3. 如图所示的皮带传动装置中,右边两轮是连在一起同轴转动,图中三轮半径的关系为:r 1=2r 2,r 3=1.5r 1,A 、B 、C 三点为三个轮边缘上的点,皮带不打滑,则A 、B 、C 三点的线速度之比为。

角速度之比为。

周期之比为。

4. 如图所示是生产流水线上的皮带传输装置,传输带上等间距地放着很多半成品产品。

A 轮处装有光电计数器,它可以记录通过A处的产品数目。

已知测得轮A、B的半径分别为r A=20cm,r B=l0cm,相邻两产品距离为30cm,lmin内有41个产品通过A处,求:(1)产品随传输带移动的速度大小;(2)A、B轮轮缘上的两点P、Q及A轮半径中点M的线速度和角速度大小,并在图中画出线速度方向;(3)如果A轮是通过摩擦带动C轮转动,且r C=5 cm,在图中描出C轮的转动方向,求出C轮的角速度(假设轮不打滑)。

5. 如图所示,直径为d的纸制圆筒以角速度ω绕垂直纸面的轴O匀速运动(图示为截面)。

从枪口发射的子弹沿直径穿过圆筒。

若子弹在圆筒旋转不到半周时,在圆周上留下a、b两个弹孔,已知aO与bO夹角为θ,求子弹的速度。

6. 如图所示,M、N是两个共轴圆筒横截面,外筒半径为R,内筒半径比R小得多,可以忽略不计,筒的两端是封闭的,两筒之间抽成真空,两筒以相同的角速度ω绕其中心轴线(图中垂直于纸面)作匀速转动。

设从M筒内部可以通过狭缝s(与M筒的轴线平行)不断地向外射出两种不同速率v1和v2的微粒,从s处射出时的初速度的方向都是沿筒的半径方向,微粒到达N筒后就附着在N筒上.如果R、v1和v2都不变,而ω取某一合适的值,则()A. 有可能使微粒落在Ⅳ筒上的位置都在a处一条与s缝平行的窄条上B. 有可能使微粒落在N筒上的位置都在某处,如b处一条与缝s平行的窄条上C. 有可能使微粒落在N筒上的位置分别在某两处,如b处和c处与s缝平行的窄条上D. 只要时间足够长,N筒上到处都落微粒7. 关于向心加速度,下列说法正确的是()A. 它是描述角速度变化快慢的物理量B. 它是描述线速度大小变化快慢的物理量C. 它是描述线速度方向变化快慢的物理量D. 它是描述角速度方向变化快慢的物理量8. 一质点做匀速圆周运动的半径约为地球的半径,R=R 地≈6400km ,它的线速度大小是v=l00m/s ,将这个匀速圆周运动看成是匀速直线运动你认为可以吗?试论证之。

9. 如图所示为质点P 、Q 做匀速圆周运动时向心加速度随半径变化的图线.表示质点P 的图线是双曲线,表示质点Q 的图线是过原点的一条直线。

由图线可知( )A. 质点P 线速度大小不变B. 质点P 的角速度大小不变C. 质点Q 的角速度随半径变化D. 质点Q 的线速度大小不变10. 如图所示,圆轨道AB 是在竖直平面内的41圆周,在B 点轨道的切线是水平的,一质点自A 点从静止开始下滑,不计摩擦和空气阻力,则在质点刚要到达B 点时的加速度大小为 ,滑过B 点时的加速度大小为 。

11. 如图所示,一质量为m 的砂袋用长为l 的绳子拴住悬挂在O 点,被拳击运动员水平击中后,荡起的最大高度是h.求砂袋刚被击中后的瞬间,砂袋的向心加速度是多大?【试题答案】1. 解析:质点做匀速圆周运动时,相等时间内通过的圆弧长度相等,即路程相等,B 项正确,此时半径所转过的角度也相等,D 项正确。

相关文档
最新文档