建立空间直角坐标系-解立体几何题

合集下载

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。

空间直角坐标系-解析几何

空间直角坐标系-解析几何

(2)已知△ABC的三顶点 A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),则△ABC的重心G的 坐标为
x1 + x 2 + x 3 y 1 + y 2 + y 3 z 1 + z 2 + z 3 , , 3 3 3
. 返回目录
考点一 确定空间点的坐标 在四棱锥 P—ABCD中 , 底面ABCD是一直角梯形, ∠BAD=90°, AD∥BC,AB=BC=a,AD=2a,PA⊥底面
坐标系. ∵AB=BC=a,∴点A(0,0,0), B(a,0,0), C(a,a,0). ∵AD=2a,∴D(0,2a,0). ∵PA⊥底面ABCD,∴PA⊥AD. 返回目录
又∵∠PDA=30°,∴PA=ADtan30°=
2 故点P(0,0, 3 a). 3
2 3 a. 3
∵面PAD⊥面ABCD,过E作EF⊥AD于F,则F为E
3 为0,0, .) 2 3 ,所以点C的坐标 2
返回目录
高考对本学案内容的考查为:建立空间直角坐标系,写出 一些点的坐标,然后利用空间向量的有关知识求与该坐 标有关的量(如距离、夹角等).
返回目录
ABCD,∠PDA=30°,AE⊥PD于E.试建立适当的坐标 系,求出各点的坐标.
【分析】 由题意易知,AP,AB,AD两两互相垂 直,故以A为坐标原点,以AB,AD,AP所在的直线分 别为x轴、y轴、z轴建立空间直角坐标系. 返回目录
【解析】如图所示,以点A为坐标原点,以AB,
AD,AP所在直线分别为x轴、y轴、z轴建立空间直角
在底面ABD内的射影,在Rt△AED中,
a 3 1 ∵∠EDA=30°,∴AE= AD=a,故E(0, , a). 2 2 2

高中数学立体几何建系设点专题

高中数学立体几何建系设点专题

ABCD 222,,,AQ PB 22222,,,,,2x 2)2PQ nn2ABQM ADCOPxyzMABD CO PxyzE C B ==32的正三角形,的正三角形,223a2a23(0,02a32a2a3a13OCDA1 B1 C1 AOCDA1 B1 xzyA BCA1B1C1MzyxCA1B1C1Mz解法二: 13(,,2)22a AC a a =-, 平面ABB 1A 1的一个法向量(1,0,0)n =-∴AC 1与侧面ABB 1A 1所成的角q 的正弦为:1sin cos ,AC n q =<> =1112||||AC n AC n ×=∴AC 1与侧面ABB 1A 1所成的角为30°练4:请在下列图形中建立适当的坐标系,并标明图中所有点的坐标。

(1)如图,在四棱锥P ABCD -中,PA ^底面,,,A B C D A B A D A C C D A B C ^^Ð=°,P A A B B C ==E 是PC 的中点的中点.. (2)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.中点.A P E B C D ABCD1A1C1B63611222226121++621566建立如图2所示的空间直角坐标系,设AB=2AB=2,,则(13,1,0(3,1,C 平面BB 1C 1C 的一个法向量为(1,0,0)n = ,所以AC 1113648AC n AC n ×== 。

3.已知正方体ABCD-A 1B 1C 1D 1的棱长为1,求异面直线BD 与B 1C 的距离。

的距离。

解:建立空间直角坐标系(如图),则B (0,0,0),C (1,0,0),D (1,1,0) B 1(0,0,1),则1111(1,1,1,0),1(1,0,,0,1),(0,0,1(0,0,1))BD B C BB ==-= 设与1,BD B C 都垂直的向量为(,,)n x y z =,则由0BD n x y ×=+=和10,B C n x z ×=-=1,x =令得1,1y z =-=,(1,1,1)n\=- \异面直线BD 与B 1C 的距离:的距离:111||13|cos ,|33BB n d BB BB n n ×=<>===4.4.四棱椎四棱椎P —ABCD 中,底面ABCD 是矩形,PCD D 为正三角形,为正三角形,平面,ABCD PCD 平面^PB PD E AC 为,^中点中点. . (1)求证:)求证:PB PB PB∥∥ 平面AEC AEC;; (2)求二面角E —AC AC——D 的大小的大小. . 解:设AD a CD ==,,过,,H CD PH P 垂足为作^A B C DP C D 平面平面^ ^\PH 平面ABCD ,又 是矩形底面ABCD 故可以分别以OH OH、、HC HC、、HP 所在直线为x 轴、轴、y y 轴、轴、z z 轴建立空间直角坐标系H-xyz H-xyz。

立体几何难题解析附有答案详解

立体几何难题解析附有答案详解

立体几何难题解析(附有答案详解)一、解答题1.如图1,直角梯形ABCD 中,//,90AB CD ABC ∠=︒,42==AB CD ,2=BC .//AE BC 交CD 于点E ,点G ,H 分别在线段DA ,DE 上,且//GH AE .将图1中的AED ∆沿AE 翻折,使平面ADE ⊥平面ABCE (如图2所示),连结BD 、CD ,AC 、BE .HEGDCBA图1图2ABCG EHD(Ⅰ)求证:平面⊥DAC 平面DEB ;(Ⅱ)当三棱锥GHE B -的体积最大时,求直线BG 与平面BCD 所成角的正弦值.2.如图,在直三棱柱111ABC A B C -中,点D E 、分别在边11BC B C 、上,1CD B E AC ==,60ACD ∠︒=.求证:(1)BE 平面1AC D ;(2)平面1ADC ⊥平面11BCC B .3.如图,在直角梯形CD AB 中,D//C A B ,DC 90∠A = ,AE ⊥平面CD AB ,F//CD E ,1C CD F D 12B ==AE =E =A =.(1)求证:C //E 平面F AB ;(2)在直线C B 上是否存在点M ,使二面角D E -M -A 的大小为6π?若存在,求出C M 的长;若不存在,说明理由.4.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠= ,1AD DC ==,2AB =,E 、F 分别为PD 、PB 的中点.(1)求证:平面PCB ⊥平面PAC ;(2)若平面CEF 与底面ABCD 所成的锐二面角为4π,求PA 的长.5.如图,两个相同的正四棱锥底面重合组成一个八面体,可放入棱长为2的正方体中,重合的底面与正方体的某一个面平行,各顶点均在正方体的表面上,将满足上述条件的八面体称为正方体的“正子体”.(1)若正子体的六个顶点分别是正方体各面的中心,求该八面体的表面积.(2)此正子体的表面积S 是否为定值?若是,求出该定值;若不是,求出表面积的取值范围.6.如图1,已知四边形ABCD 满足//AD BC ,12BA AD DC BC a ====,E 是BC 的中点,将BAE 沿着AE 翻折成1B AE △,形成四棱锥1B AECD -,F 为1B D 的中点,M 为AE 的中点,如图2所示.(1)求证:面1B DM ⊥面1B AE ;(2)当平面1B AE 与平面1B DC 所成角的余弦值为5时,求1B D 的长度;(3)当面1B AE ⊥面AECD 时,求平面1ADB 与平面1ECB 所成角的正弦值.7.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱1BB ,11A C 分别交于点F ,G.(1)若F 为1BB 的中点,求三棱柱被截面AGEF 分成上下两部分的体积比12V V ;(2)若四棱雉1A AGEF -求截面AGEF 与底面ABC 所成二面角的正弦值;(3)设截面AFEG 的面积为0S ,AEG ∆面积为1S ,AEF 面积为2S ,当点F 在棱1BB 上变动时,求2012S S S的取值范围.8.如图,在四棱锥B ACDE -中,平面ABC ⊥平面ACDE ,ABC 是等边三角形,在直角梯形ACDE 中,//AE CD ,AE AC ⊥,1AE =,2AC CD ==,P 是棱BD 的中点.(1)求证:EP ⊥平面BCD ;(2)设点M 在线段AC 上,若平面PEM 与平面EAB求MP 的长.9.如图,ABCD是块矩形硬纸板,其中2AB AD ==E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ;(2)如果()0AH HB λλ=> ,求二面角H AD E --的余弦值.10.如图1,在边长为2的正方形ABCD 中,P 为CD 中点,分别将△PAD,△PBC 沿PA,PB 所在直线折叠,使点C 与点D 重合于点O,如图2.在三棱锥P-OAB 中,E 为PB 中点.(Ⅰ)求证:PO⊥AB;(II)求直线BP 与平面POA 所成角的正弦值;(Ⅲ)求二面角P-AO-E 的大小.11.如图,在四棱锥P −ABCD 中,PA⊥平面Q 在PB 上,且满足PQ∶QB=1∶3,求直线CQ 与平面PAC 所成角的正弦值.12.已知四棱锥中平面,点在棱上,且,底面为直角梯形,分别是的中点.(1)求证://平面;(2)求截面与底面所成二面角的大小.13.如图,已知四边形ABCD由Rt ABC∆拼接而成,其中∆和Rt BCDBAC BCD∠=∠=︒,3090∆沿着BC折起.=,BC=ABC∠=︒,AB ACDBC(1)若AD=,求异面直线AB与CD所成角的余弦值;(2)当四面体ABCD的表面积的最大时,求二面角A BC D--的余弦值.14.如图,ABCD与ADEF是两个边长为1的正方形,它们所在的平面互相垂直.(1)求异面直线AE 与BD 所成角的大小;(2)在线段BD 上取点M ,在线段AE 上取点N ,且BMx BD=,EN y EA =,试用x ,y 来表示线段MN 的长度;(3)在(2)的条件下,求MN 长度的最小值,并判断当MN 最短时,MN 是否是异面直线AE 与BD 的公垂线段?15.(本题满分14分)如图所示,正方形ABCD 所在的平面与等腰ABE ∆所在的平面互相垂直,其中顶120BAE ∠= ,4AE AB ==,F 为线段AE 的中点.(1)若H 是线段BD 上的中点,求证://FH 平面CDE ;(2)若H 是线段BD 上的一个动点,设直线FH 与平面ABCD 所成角的大小为θ,求tan θ的最大值.16.如图所示,正方体ABCD A B C D -''''的棱长为1,E F 、分别是棱AA CC ''、的中点,过直线EF 的平面分别与棱BB DD ''、交于M N 、,设[]01BM x x =∈,,,求:(1)求EF 与面A B BA ''所成的角的大小;(2)求四棱锥C MENF '-的体积()V h x =,并讨论它的单调性;(3)若点P 是正方体棱上一点,试证:满足'2PA PC +=成立的点的个数为6.17.如图,在斜三棱柱111ABC A B C -中,AC BC =,D 为AB 的中点,1D 为11A B 的中点,平面111A B C ⊥平面11ABB A ,异面直线1BC 与1AB 互相垂直.(1)求证:平面1//A DC 平面11BD C ;(2)若1CC 与平面11ABB A 的距离为x ,116AC AB ==,三棱锥1AACD -的体积为y ,试写出y 关于x 的函数关系式;(3)在(2)的条件下,当1CC 与平面11ABB A 的距离为多少时,三棱锥1A ACD -的体积取得最大值?并求出最大值.18.如图,四棱锥P ABCD -的底面为菱形且∠ABC=120°,PA ⊥底面ABCD,AB=1,PA E 为PC 的中点.(1)求直线DE 与平面PAC 所成角的大小;(2)求二面角E-AD-C 平面角的正切值;(3)在线段PC 上是否存在一点M ,使PC ⊥平面MBD 成立.如果存在,求出MC 的长;如果不存在,请说明理由参考答案1.(Ⅰ)见解析;(Ⅱ)BG 与平面BCD所成角的正弦值为6.【解析】(Ⅰ)由已知CD AB //,︒=∠90ABC ,42==AB CD 及BC AE //交CD 于点E .得到四边形ABCE 是边长为2的正方形.BE AC ⊥,AE DE ⊥.再据平面ADE ABCE ⊥平面,平面ADE ABCE AE ⋂=平面,得到DE ABCE ⊥平面,DE AC ⊥,AC DBE ⊥平面,得证.(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,EC AE ⊥,以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )由CE AB //,得到DAE AB 面⊥,从而2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ,根据1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.G 也是AD 的中点,求得)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.由⎪⎩⎪⎨⎧=-=-⋅=⋅=-=-⋅=⋅022)2,2,0(),,(02)0,0,2(),,(z y z y x DC n x z y x BC n ,令1=y ,得)1,1,0(=n ,设BG 与面BCD 所成角为θ,由||sin ||||BG n BG n θ⋅=即得.试题解析:(Ⅰ)∵CD AB //,︒=∠90ABC ,42==AB CD 又BC AE //交CD 于点E .∴四边形ABCE 是边长为2的正方形∴BE AC ⊥,AE DE ⊥.又∵平面ADE ABCE ⊥平面平面ADE ABCE AE = 平面∴DE ABCE⊥平面∵AC ABCE ⊂平面,∴DE AC ⊥又E BE DE = ∴AC DBE ⊥平面∵AC DAC ⊂平面∴平面DAC DEB⊥平面(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,ECAE ⊥以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.则)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )∵CE AB //,∴DAE AB 面⊥∴2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ∵20<<x ,∴1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.∵AE GH //,∴G 也是AD 的中点,∴)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.则(,,)(2,0,0)20(,,)(0,2,2)220n BC x y z x n DC x y z y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩ 令1=y ,得)1,1,0(=n 设BG 与面BCD 所成角为θ则||sin 6||||BG n BG n θ⋅===∴BG 与平面BCD所成角的正弦值为6.2.(1)见详解;(2)见详解.【分析】(1)通过1BE C D 来证明BE 平面1AC D ;(2)通过AD ⊥平面11BCC B 来证明平面1ADC ⊥平面11BCC B .【详解】证明:(1)由三棱柱111ABC A B C -是直三棱柱,得11BC B C .因为点D E 、分别在边11BC B C 、上,1CD B E =,所以1BD C E =,1BD C E .所以四边形1BDC E 是平行四形,所以1BE C D 因为1C D ⊂平面1AC D ,BE ⊄平面1AC D 所以BE 平面1AC D .(2)由三棱柱111ABC A B C -是直三棱柱,得1CC ⊥平面ABC ,因为AD ⊂平面ABC ,所以1AD CC ⊥,在ACD ∆中,由12CD AC =,60ACD ∠︒=,得32AD AC ==,所以222AD CD AC +=,所以90ADC ∠︒=,即:AD BC ⊥,因为BC ⊂平面11BCC B ,1CC ⊂平面11BCC B ,1BC CC C = ,所以AD ⊥平面11BCC B ,因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B .3.(1)详见解析(2)C 3M =【解析】(1)证明线面平行,一般利用线面平行判定定理进行论证,即从平几出发,寻找线线平行:根据题意先将图形补全,再利用平行四边形得线线平行(2)研究二面角,一般方法为利用空间向量:先建立坐标系,利用坐标求二面角两个平面的法向量,因为AE ⊥平面D AM ,所以AE 为平面D AM 的一个法向量,而平面D EM 的一个法向量,则需联立方程组解出,再利用向量数量积求两法向量的夹角的余弦值,最后根据二面角与法向量夹角相等或互补关系,列等量关系确定点M ,同时根据向量的模求出C M 的长.解:(1)如图,作FG//EA ,G//F A E ,连接G E 交F A 于H ,连接BH ,G B ,F//CD E 且F CD E =,∴G//CD A ,即点G 在平面CD AB 内.由AE ⊥平面CD AB ,知G AE ⊥A ,∴四边形FG AE 为正方形,四边形CD G A 为平行四边形,∴H 为G E 的中点,B 为CG 的中点,∴//C BH E .BH ⊂平面F AB ,C E ⊄平面F AB ,∴C //E 平面F AB .(4分)(2)法一:如图,以A 为原点,G A 为x 轴,D A 为y 轴,AE 为z 轴,建立空间直角坐标系xyz A -.则()0,0,0A ,()0,0,1E ,()D 0,2,0,设()01,,0y M ,∴()D 0,2,1E =- ,()0D 1,2,0y M =-,设平面D EM 的一个法向量为(),,n x y z = ,则()0D 20D 20n y z n x y y ⎧⋅E =-=⎪⎨⋅M =+-=⎪⎩,令1y =,得2z =,02x y =-,∴()02,1,2n y =-.(10分)又 AE ⊥平面D AM ,∴()0,0,1AE =为平面D AM 的一个法向量,∴cos ,cos62n πAE ==,解得023y =±,∴在直线C B 上存在点M ,且33C 2233⎛M =-±= ⎝⎭.方法二:作D S A⊥M ,则SA ,由等面积法,得D 3M =,∴C 3M =.【分析】(1)本题首先可根据题意求出AC 、BC 的长度,然后根据222AC BC AB +=得出BC AC ⊥,再然后根据PA ⊥底面ABCD 得出PA BC ⊥,即可得出BC ⊥平面PAC ,最后根据BC ⊂平面PCB 即可证得平面PCB ⊥平面PAC ;(2)本题首先可结合图像构造空间直角坐标系,然后设PA a =,写出平面ABCD的法向量1n u r 以及平面CEF 的法向量2n u u r,最后根据平面CEF 与底面ABCD 所成的锐二面角为4π即可求出PA 的长.【详解】(1)因为1AD DC ==,2AB =,90CDA BAD ∠=∠=,所以AC BC ==因为222AC BC AB +=,所以BC AC ⊥,因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥,因为AC PA A ⋂=,所以BC ⊥平面PAC ,因为BC ⊂平面PCB ,所以平面PCB ⊥平面PAC .(2)如图,以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设(0)PA a a =>,则()0,2,0B =,()1,1,0C ,()1,0,0D ,()0,0,P a ,因为E 、F 分别为PD 、PB 的中点,所以1,0,22a E ⎛⎫ ⎪⎝⎭,0,1,2a F ⎛⎫ ⎪⎝⎭,1,1,22a CE ⎛⎫=-- ⎪⎝⎭ ,1,0,2a CF ⎛⎫=- ⎪⎝⎭ ,易知平面ABCD 的一个法向量1(0,0,1)n =,设平面CEF 的法向量为2(,,)n x y z =,则220,0,CE n CF n ⎧⋅=⎪⎨⋅=⎪⎩ ,即10,220,2az x y az x ⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨取4z =,则2x a =,y a =,即2(2,,4)a a n=,因为平面CEF 与底面ABCD 所成的锐二面角为4π,所以121212cos,nnn nnn⋅=⋅解得a=,即PA【点睛】利用空间向量解决立体几何问题,关键是依托图形建立空间直角坐标系,将相关向量用坐标表示,通过向量运算判断或证明空间元素的位置关系及探究空间角、空间距离问题.建立空间直角坐标系的三种方法:(1)以几何体中共顶点且互相垂直的三条棱所在的直线作为坐标轴建系;(2)利用线面垂直关系找到三条互相垂直的直线建系;(3)利用面面垂直关系找到三条互相垂直的直线建系.5.(1).【分析】(1)根据题意,正子体的所有棱都是正方体相邻两个面中心的连线,则正子体每个面都是正三角形,进而求出表面积;(2)设平面ABCD截正方体所得截面为A B C D'''',设(01)AA x x'=≤≤,进而算出ADE的面积,从而算出正子体的表面积即可判断.【详解】(1)依题意,正子体任一棱都是正方体相邻两个面中心的连线,所以正子体所有棱的长均相等.因为AB=所以242ABES=⨯,故该八面体的表面积8=.(2)正子体的表面积S不是定值.如图1,设平面ABCD截正方体所得截面为A B C D'''',且A B C D''''的中心为O,过点O作OG A B''⊥,垂足为G.设(01)AA x x '=≤≤,则1AG x =-,222222(1)1123AE DE AO OE x x x ==+=-++=-+,()2222(2)224AD x x x x =-+=-+.设AD 的中点为H ,如图2,则()22212122AD AH x x ⎛⎫==-+ ⎪⎝⎭,()22221222EH AE AH x x =-=-+,所以()()()2222211122422442ADE S AD EH x x x x ⎡⎤⎡⎤=⋅=-+-+⎢⎥⎣⎦⎣⎦ ()()2221322242x x x x =-+-+.因为01x ≤≤,所以2120x x -≤-≤,则()()2223132222442x x x x ≤-+-+≤,ADE S ≤≤ S ≤≤,所以此正子体的表面积S 的取值范围为.6.(1)证明见解析;(2)5a ;(3)45.【分析】(1)要证面1B DM ⊥面1B AE ,只需证AE ⊥面1B DM 即可;(2)根据已知条件可知,1MB D ∠即为面1B AE 与面1B DC 所成角的平面角,进而可得1B D 的长度;(3)建立适当的空间直角坐标系进行求解即可.【详解】(1)证明:因为12BA AD DC BC a ====,E 是BC 的中点,所以AD CE a ==,又因为//AD BC ,所以四边形AECD 为菱形,所以ABE △为正三角形,又因为M 为AE 的中点,所以1B M AE ⊥,DM AE ⊥,又因为1B M DM M ⋂=,所以AE ⊥面1B DM ,又因为AE ⊆面1B AE ,所以面1B DM ⊥面1B AE ,(2)由(1)知:DM AE ⊥,1B M AE ⊥,又因为//AE CD ,所以1B M CD ⊥,CD DM ⊥,所以CD ⊥面1B DM ,所以面1B DC ⊥面1B DM ,又因为面1B DM ⊥面1B AE ,所以1MB D ∠即为面1B AE 与面1B DC所成角的平面角,即1cos 5MB D ∠=,在1MB D △中,1B M =,DM =,由余弦定理得:22211111cos 25B M B D DM MB D B M B D +-∠=⋅,解得:15B D =.(3)因为面1B AE ⊥面AECD ,1B M AE ⊥,所以1B M ⊥面AECD ,所以以M 为坐标原点,以向量ME,MD ,1MB 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,由题可得:,0,02aA ⎛⎫- ⎪⎝⎭,1B ⎛⎫⎪ ⎪⎝⎭,0,,02D ⎛⎫⎪ ⎪⎝⎭,,0,02aE ⎛⎫⎪⎝⎭,,,02C a ⎛⎫⎪ ⎪⎝⎭,则有:1,0,22a B A ⎛⎫=-- ⎪ ⎪⎝⎭,10,,22B D ⎛⎫=- ⎪ ⎪⎝⎭,1,0,22a B E ⎛⎫=- ⎪ ⎪⎝⎭ ,133,22B C a a a ⎛⎫= ⎪ ⎪⎝⎭,设平面1ADB 与平面1ECB 的法向量分别为()1111,,x n y z =,()2222,,n x y z = ,由111100n B A n B D ⎧⋅=⎪⎨⋅=⎪⎩,得11110220a x z y z ⎧--=⎪⎪=,令11z =,则1x =11y =,所以()1n =,由212100n B E n B C ⎧⋅=⎪⎨⋅=⎪⎩,得222220220ax z ax y z ⎧-=⎪⎪⎨⎪+=⎪⎩,令21z =,则1x =21y =-,所以)21,1n =-,设平面1ADB 与平面1ECB 所成角的平面角为θ,则:12123cos 5n n n n θ⋅==⋅ 所以4sin 5θ=.7.(1)121323V V =;(2)45;(3)94,2⎡⎤⎢⎣⎦.【分析】(1)连结EF ,并延长分别交1CC ,CB 于点M ,N ,连结AM 交11A C 于点G ,连结AN ,GE ,利用比例关系确定G 为11A C 靠近1C 的三等分点,然后先求出棱柱的体积,连结1A E ,1A F ,由11111A EFB G AA E F AA E V V V V ---=++和21V V V =-进行求解,即可得到答案;(2)求出点G 到平面1A AE 的距离,得到点G 为11A C 靠近1C 的四等分点,通过面面垂直的性质定理可得1AGA ∠即为截面AGEF 与底面ABC 所成的二面角,在三角形中利用边角关系求解即可;(3)设1GC m =,则[0m ∈,1],先求出12S S 的关系以及取值范围,然后将2012S S S 转化为1S ,2S 表示,求解取值范围即可.【详解】解:(1)连接EF ,并延长分别交1CC ,CB 延长线于点M ,N ,连接AM 交11A C 于点G ,连接AN ,GE .易得11113GC MC C E AC MC CN ===.故G 为11A C 靠近1C 的三等分点.11MC =,123GC =.下面求三棱柱被截面分成两部分的体积比.三棱柱111ABC A B C -的体积2224V =⨯=连接1A E ,1A F .由1//BB 平面1A AE 知,1F AA E V -为定值.11121323F AA E V -=⨯⨯=.11111A EFB G AA E F AA E V V V V ---=++1111211232323=⨯⨯⨯⨯⨯+=21V V V =-=121323V V =.(2)由111A AGEF G AA E F AA E V V V ---=+及1F AA E V -=1G AA E V -=又1113G AA E AA E V S h -=⨯⨯△,所以34h =.即点G 到1A E 的距离为34,G 为11A C 靠近1C 的四等分点.因为平面111//A B C 平面ABC ,所以截面AGEF 与平面ABC 所成角即为截面AGEF 与平面111A B C 所成角,在1GC E △中,112GC =,11C E =,故1EG GC ⊥.又因为平面11ACC A ⊥平面111A B C ,且平面11ACC A 平面11111A B C AC =,所以EG ⊥平面11ACC A .则1AGA ∠即为截面AGEF 与底面ABC 所成的二面角.在1Rt AGA △中,132A G =,12AA =,52AG =.故114sin 5AA A GA AG ∠==.因此,截面AGEF 与平面ABC 所成二面角的正弦值为45.(3)设1GC m =,则[]0,1m ∈,2MG mGA m=-.设MGE 的面积为S ,所以12S m S m=-.又因为21S S S =+,所以1222S mS -=.且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦故()21201212122212S S SS S S S S S S S +==++.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪⎝⎭,所以()94,2g t ⎡⎤∈⎢⎥⎣⎦,所以20121221924,2S S S S S S S ⎡⎤=++∈⎢⎥⎣⎦8.(1)证明见解析;(2)2M P =.【分析】(1)取BC 的中点Q ,连接PQ 、AQ ,由线面垂直判定定理可证AQ ⊥面BCD ,即可得证;(2)以Q 为原点建立坐标系,利用向量法建立关系可求出.【详解】(1)证明:如图,取BC 的中点Q ,连接PQ 、AQ ,因为ABC 是等边三角形,所以AQ BC ⊥,又平面ABC ⊥平面ACDE ,AE AC ⊥,平面ABC 平面ACDE =AC ,所以AE ⊥面ABC ,又AQ ⊂面ABC ,所以AE AQ ⊥,又//AE CD ,所以CD AQ ⊥,又CD BC C ⋂=,所以AQ ⊥面BCD ,因为2BP PD =,又P 是棱BD 的中点,所以112PQ DC ==,//PQ DC ,又//AE CD ,1AE =,所以//AE PQ ,AE PQ =,即四边形AEPQ 是一个平行四边形,所以//EP AQ ,所以EP ⊥平面BCD ;(2)由(1)得PQ ⊥平面ABC ,所以以点Q 为坐标原点,建立如图所示的空间直角坐标系,则()0,0,0Q ,)A ,()0,1,0B ,)E ,()0,0,1P ,设平面EAB 的法向量为()111,,m x y z =,由()111+00m AB y m m AE z ⎧⋅==⎪⇒=⎨⋅==⎪⎩,因为点M 在线段AC上,设其坐标为),0M t -,其中01t ≤≤,所以(),,1EM t =--,()EP = 设平面PEM 的法向量为()222,,n x y z =,由()222200,1,0n EM ty z n t n EP ⎧⋅=--=⎪⇒=-⎨⋅==⎪⎩,由题意,设平面PEM 与平面EAB 所成的锐二面角为θ,则1cos 2m n t m n θ⋅=⇒=-⋅或12t =,因为01t ≤≤,所以1,02M ⎫-⎪⎪⎝⎭,所以M P =.【点睛】向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

(完整版)立体几何解答题的建系设点问题

(完整版)立体几何解答题的建系设点问题

立体几何解答题的建系设点问题一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考: (1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。

3、与垂直相关的定理与结论: (1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC ⊥ (二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点(1) 坐标轴上的点,规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考 2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。

空间坐标系与空间坐标系在立体几何中的应用有答案

空间坐标系与空间坐标系在立体几何中的应用有答案

空间坐标系与空间坐标系在立体几何中的应用有答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一.空间直角坐标系如图1,为了确定空间点的位置,我们建立空间直角坐标系:以正方体为载体,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴:x轴、y轴、z 轴,这时我们说建立了一个空间直角坐标系,其中点O叫做坐标原点,x轴、y 轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为右手直角坐标系,即右手拇指指向x 轴的正方向,食指指向y轴的正方向,中指指向z轴的正方向.二.空间直角坐标系中的坐标空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标[例1] 在空间直角坐标系中,作出点M(6,-2,4).[例2] 长方体ABCD-A1B1C1D1中,|AB|=a,|BC|=b,|CC1|=c,将此长方体放到空间直角坐标系中的不同位置(如图3),分别写出长方体各顶点的坐标.变式1:棱长为2的正方体,将此正方体放到空间直角坐标系中的不同位置,分别写出几何体各顶点的坐标。

2.底面为边长为4的菱形,高为5的棱柱,将此几何体放到空间直角坐标系中的不同位置分别写出几何体各顶点的坐标。

3. 在棱长均为2a的正四棱锥P-ABCD中,建立恰当的空间直角坐标系,(1)写出正四棱锥P-ABCD各顶点坐标;(2)写出棱PB的中点M的坐标.解:连接AC,BD交于点O,连接PO,∵P-ABCD为正四棱锥,且棱长均为2a.∴四边形ABCD为正方形,且PO⊥平面ABCD.∴OA=2=PA2-OA2=2a2-2a2=2a.以O点为坐标原点,OA,OB,OP所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系.(1)正四棱锥P-ABCD中各顶点坐标分别为A(2a,0,0),B(0,2a,0),C(-2 a,0,0),D(0,-2a,0),P(0,0,2a).(2)∵M为棱PB的中点,∴由中点坐标公式,得M(0+02,2a+02,0+2a2),即M(0,22a,22a).[例3] 在空间直角坐标系中,点P(-2,1,4).(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平面的对称点的坐标;(3)求点P关于点M(2,-1,-4)的对称点的坐标.[解](1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(-2,-1,-4).(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(-2,1,-4).(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x =2×2-(-2)=6,y=2×(-1)-1=-3,z=2×(-4)-4=-12,所以P3(6,-3,-12).变式:1.写出点P(6,-2,-7)在xOy面,yOz面,xOz面上的投影的坐标以及点P 关于各坐标平面对称的点的坐标.解:设点P在xOy平面、yOz平面、xOz平面上的投影分别为点A,B,C,点P关于xOy平面、yOz平面、xOz平面的对称点分别为点A′,B′,C′,由PA⊥平面xOy,PB⊥平面yOz,PC⊥平面xOz及坐标平面的特征知,点A(6,-2,0),点B(0,-2,-7),点C(6,0,-7);根据点P关于各坐标平面对称点的特征知,点A′(6,-2,7),B′(-6,-2,-7),C′(6,2,-7).2.在棱长都为2的正三棱柱ABC-A1B1C1中,建立恰当的直角坐标系,并写出正三棱柱ABC-A1B1C1各顶点的坐标.[正解] 取BC ,B 1C 1的中点分别为O ,O 1,连线OA ,OO 1, 根据正三棱柱的几何性质,OA ,OB ,OO 1两两互相垂直,且 |OA |=32×2=3, 以OA ,OB ,OO 1所在的直线分别为x 轴、y 轴、z 轴建立直角坐标系,如图5所示,则正三棱柱ABC —A 1B 1C 1各顶点的坐标分别为A (3,0,0),B (0,1,0),C (0,-1,0),A 1(3,0,2),B 1(0,1,2),C 1(0,-1,2).三.空间向量在立体几何中的应用1. 直线的方向向量与平面的法向量(1) 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.(2) 如果表示非零向量n 的有向线段所在直线垂直于平面α,那么称向量n 垂直于平面α,记作n ⊥α.此时把向量n 叫做平面α的法向量.2. 线面关系的判定直线l 1的方向向量为e 1=(a 1,b 1,c 1),直线l 2的方向向量为e 2=(a 2,b 2,c 2),平面α的法向量为n 1=(x 1,y 1,z 1),平面β的法向量为n 2=(x 2,y 2,z 2).(1) 如果l 1∥l 2,那么e 1∥e 2⇔e 2=λe 1⇔a 2=λa 1,b 2=λb 1,c 2=λc 1. (2) 如果l 1⊥l 2,那么e 1⊥e 2⇔e 1·e 2=0⇔a 1a 2+b 1b 2+c 1c 2=0. (3) 若l 1∥α,则e 1⊥n 1⇔e 1·n 1=0⇔a 1x 1+b 1y 1+c 1z 1=0.(4) 若l 1⊥α,则e 1∥n 1⇔e 1=k n 1⇔a 1=kx 1,b 1=ky 1,c 1=kz 1. (5) 若α∥β,则n 1∥n 2⇔n 1=k n 2⇔x 1=kx 2,y 1=ky 2,z 1=kz 2. (6) 若α⊥β,则n 1⊥n 2⇔n 1·n 2=0⇔x 1x 2+y 1y 2+z 1z 2=0. 3. 利用空间向量求空间角 (1) 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是⎝⎛⎦⎥⎤0,π2.②向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为φ,则有cos θ=|cos φ|.(2) 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是⎣⎢⎡⎦⎥⎤0,π2. ②向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|(3) 二面角①二面角的取值范围是[0,π]. ②二面角的向量求法:(ⅰ) 若AB 、CD 分别是二面角α-l-β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图①).(ⅱ) 设n 1、n 2分别是二面角α-l-β的两个面α、β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).题型1 空间向量的基本运算[例1]已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a =AB →,b =AC →.(1) 求a 和b 的夹角θ;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值. 解:∵A (-2,0,2),B(-1,1,2),C(-3,0,4),a =AB →,b =AC →, ∴a =(1,1,0),b =(-1,0,2).(1)∵cosθ=a·b |a ||b |=-1+0+02×5=-1010,∴a 和b 的夹角为arccos ⎝ ⎛⎭⎪⎫-1010. (2)∵k a +b =k(1,1,0)+(-1,0,2)=(k -1,k ,2),k a -2b =(k +2,k ,-4),且(k a +b )⊥(k a -2b ),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0,解得k =-52或2.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直, AB =2,AF =1,M 是线段EF 的中点.求证:(1) AM∥平面BDE ;(2) AM⊥平面BDF.证明:(1) 建立如图所示的空间直角坐标系,设AC∩BD=N ,连结NE.则N ⎝ ⎛⎭⎪⎫22,22,0,E(0,0,1),A(2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1.∴ NE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=⎝ ⎛⎭⎪⎫-22,-22,1.∴ NE →=AM →且NE 与AM 不共线.∴ NE∥AM.∵ NE 平面BDE ,AM 平面BDE ,∴ AM ∥平面BDE.(2) 由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵ D(2,0,0),F(2,2,1),∴ DF→=(0,2,1),∴ AM →·DF →=0,∴ AM ⊥DF.同理AM⊥BF. 又DF∩BF=F ,∴ AM ⊥平面BDF. 题型3 空间的角的计算例3 (2013·苏锡常镇二模)如图,圆锥的高PO =4,底面半径OB =2,D 为PO 的中点,E 为母线PB 的中点,F 为底面圆周上一点,满足EF⊥DE.(1) 求异面直线EF 与BD 所成角的余弦值; (2) 求二面角F-OD-E 的正弦值.解:(1) 以O 为原点,底面上过O 点且垂直于OB 的直线为x 轴,OB 所在的线为y 轴,OP 所在的线为z 轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2).设F(x 0,y 0,0)(x 0>0,y 0>0),且x 20+y 20=4,则EF →=(x 0,y 0-1,-2),DE →=(0,1,0),∵ EF ⊥DE ,即EF →⊥DE →,则EF →·DE →=y 0-1=0,故y 0=1.∴ F(3,1,0),EF →=(3,0,-2),BD →=(0,-2,2).设异面直线EF 与BD 所成角为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪EF →·BD →|EF →||BD →|=47×22=147. (2) 设平面ODF 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1⊥OD →,n 1⊥OF →,即⎩⎨⎧z 1=0,3x 1+y 1=0.令x 1=1,得y 1=-3,平面ODF 的一个法向量为n 1=(1,-3,0).设平面DEF 的法向量为n 2=(x 2,y 2,z 2),同理可得平面DEF 的一个法向量为n 2=⎝⎛⎭⎪⎫1,0,32.设二面角F-OD-E 的平面角为β,则|cos β|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=17=77.∴ sin β=427. (翻折问题)例4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD 中,已知∠A=45°,∠C =90°,∠ADC =105°,AB =BD ,现将四边形ABCD 沿BD 折起,使平面ABD⊥平面BDC(如图乙),设点E 、F 分别为棱AC 、AD 的中点.(1) 求证: DC⊥平面ABC ; (2) 求BF 与平面ABC 所成角的正弦值; (3) 求二面角B -EF -A 的余弦值.解:(1) ∵ 平面ABD⊥平面BDC ,又∵ AB⊥BD,∴ AB ⊥平面BDC ,故AB⊥DC,又∵ ∠C=90°,∴ DC ⊥BC ,BC ABC 平面ABC ,DC 平面ABC ,故DC⊥平面ABC.(2) 如图,以B 为坐标原点,BD 所在的直线为x 轴建立空间直角坐标系如下图示,设CD =a ,则BD =AB =2a ,BC =3a ,AD =22a ,可得B(0,0,0),D(2a ,0,0),A(0,0,2a),C ⎝ ⎛⎭⎪⎫32a ,32a ,0,F(a ,0,a),∴ CD →=⎝ ⎛⎭⎪⎫12a ,-32a ,0,BF →=(a ,0,a).设BF 与平面ABC 所成的角为θ,由(1)知DC⊥平面ABC ,∴ cos ⎝ ⎛⎭⎪⎫π2-θ=CD →·BF →|CD →|·|BF →|=12a 2a ·2a =24,∴ sin θ=24.(3) 由(2)知 FE⊥平面ABC, 又∵ BE平面ABC ,AE平面ABC ,∴ FE⊥BE,FE⊥AE ,∴ ∠AEB 为二面角B -EF -A 的平面角 .在△AEB 中,AE =BE =12AC =12AB 2+BC 2=72a , ∴ cos ∠AEB =AE 2+BE 2-AB 22AE ·BE =-17,即所求二面角B -EF -A 的余弦为-17.课后巩固练习:1.(2013·江苏卷)如图所示,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1) 求异面直线A 1B 与C 1D 所成角的余弦值;(2) 求平面ADC 1与平面ABA 1所成二面角的正弦值.解:(1) 以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2) 设平面ADC 1的法向量为n 1=(x ,y ,z),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0), 设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 2. (2013·新课标全国卷Ⅱ)如图所示,直三棱柱ABCA 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AA 1=AC =CB =22AB.(1) 证明:BC 1∥平面A 1CD ;(2) 求二面角DA 1CE 的正弦值. (1) 证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则BC 1∥DF. 因为DF 平面A1CD ,BC 1平面A 1CD , 所以BC 1∥平面A 1CD.(2) 由AC =CB =22AB 得AC⊥BC. 以C 为坐标原点,CA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA =2,则D(1,1,0),E(0,2,1),A 1(2,0,2),CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD →=0,n ·CA 1→=0,即⎩⎨⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 为平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n·m |n||m|=33,故sin 〈n ,m 〉=63.即二面角D-A 1C-E 的正弦值为63. 3. (2013·重庆)如图所示,四棱锥PABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD=π3,F 为PC 的中点,AF ⊥PB.(1) 求PA 的长;(2) 求二面角B-AF-D 的正弦值.解:(1) 如图,连结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD,故AC⊥BD.以O 为坐标原点,OB →、OC →、AP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz ,则OC =CDcos π3=1,而AC =4,得AO =AC -OC =3.又OD =CDsin π3=3,故A(0,-3,0),B(3,0,0),C(0,1,0),D(-3,0,0).因为PA⊥底面ABCD ,可设P(0,-3,z),由F 为PC 边中点,得F ⎝⎛⎭⎪⎫0,-1,z 2,又AF →=⎝⎛⎭⎪⎫0,2,z 2,PB →=(3,3,-z),因AF⊥PB,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23),所以|PA→|=2 3.(2) 由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD →=0,n 1·AF →=0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB →=0,n 2·AF →=0, 得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B-AF-D 的正弦值为378.4. (2013·连云港调研)在三棱锥SABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 恰是AC 的中点,侧棱SB 和底面成45°角.(1) 若D 为侧棱SB 上一点,当SDDB为何值时,CD ⊥AB ;(2) 求二面角S-BC-A 的余弦值大小.解:以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系O-xyz.由题意知∠SBO=45°,SO =(0,0,0),C(0,3,0),A(0,-3,0),S(0,0,3),B(3,0,0).(1) 设BD →=λBS →(0≤λ≤1),则OD →=(1+λ)OB →+λOS →=(3(1+λ),0,3λ),所以CD →=(3(1-λ),-3,3λ). 因为AB →=(3,3,0),CD ⊥AB ,所以CD →·AB →=9(1-λ)-3=0,解得λ=23.故SD DB =12时, CD ⊥AB. (2) 平面ACB 的法向量为n 1=(0,0,1),设平面SBC 的法向量n 2=(x ,y ,z),则n 2·SB →=0,n 2·SC →=0,则⎩⎨⎧3x -3z =0,3y -3z =0,解得⎩⎨⎧x =z ,y =3z ,取n 2=(1,3,1),所以cos 〈n 1,n 2〉=3×0+1×0+1×112+12+(3)2·1=55. 又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为55. 5. 在直四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,底面是边长为1的正方形,E 、F 分别是棱B 1B 、DA 的中点.(1) 求二面角D 1-AE-C 的大小; (2) 求证:直线BF∥平面AD 1E.(1) 解:以D 为坐标原点,DA 、DC 、DD 1分别为x 、y 、z 轴建立空间直角坐标系如图.则相应点的坐标分别为D 1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴ED1→=(0,0,2)-(1,1,1)=(-1,-1,1),AE →=(1,1,1)-(1,0,0)=(0,1,1), AC →=(0,1,0)-(1,0,0)=(-1,1,0).设平面AED 1、平面AEC 的法向量分别为m =(a ,b ,1),n =(c ,d ,1).由⎩⎪⎨⎪⎧ED 1→·m =0,AE →·m =0⎩⎨⎧-a -b +1=0,b +1=0⎩⎨⎧a =2,b =-1,由⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0⎩⎨⎧-c +d =0,d +1=0⎩⎨⎧c =-1,d =-1,∴m =(2,-1,1),n =(-1,-1,1),∴cos m ,n =m·n |m |·|n |=-2+1+16×3=0,∴二面角D 1AEC 的大小为90°.(2) 证明:取DD 1的中点G ,连结GB 、GF.∵E 、F 分别是棱BB 1、AD 的中点,∴GF ∥AD 1,BE ∥D 1G 且BE =D 1G ,∴四边形BED 1G 为平行四边形,∴D 1E ∥BG. 又D1E 、D 1A 平面AD 1E ,BG 、GF 平面AD 1E , ∴BG ∥平面AD 1E ,GF ∥平面AD 1E.∵GF 、GB 平面BGF ,∴平面BGF∥平面AD 1E. ∵BF 平面AD 1E ,∴直线BF∥平面AD 1E.(或者:建立空间直角坐标系,用空间向量来证明直线BF∥平面AD 1E ,亦可)6. (2013·苏州调研)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,A 1A =是BC 的中点.(1) 求直线DB 1与平面A 1C 1D 所成角的正弦值; (2) 求二面角B 1-A 1D-C 1的正弦值.解:(1) 由题意,A(0,0,0),B(2,0,0),C(0,4,0),D(1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3).A 1D →=(1,2,-3),A 1C 1→=(0,4,0).设平面A 1C 1D 的一个法向量为n =(x ,y ,z).∵ n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0.∴ x =3z ,y =0.令z =1,得x ==(3,0,1).设直线DB 1与平面A 1C 1D 所成角为θ,∵ DB 1→=(1,-2,3),∴ sin θ=|cos 〈DB 1→·n 〉|=3×1+0×(-2)+1×310×14=33535. (2) 设平面A 1B 1D 的一个法向量为m =(a ,b ,c). A 1B 1→=(2,0,0),∵ m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0,∴ a =0,2b =3c.令c =2,得b ==(0,3,2).设二面角B 1A 1DC 1的大小为α,∴ |cos α|=cos|〈m ,n 〉|=|m·n||m|·|m|=|0×3+3×0+2×1|13×10=265,则sin α=3765=345565.∴ 二面角B 1A 1DC 1的正弦值为345565.7. (2013·南通二模)如图,在三棱柱ABCA 1B 1C 1中,A 1B ⊥平面ABC ,AB ⊥AC ,且AB =AC =A 1B =2.(1) 求棱AA 1与BC 所成的角的大小;(2) 在棱B 1C 1上确定一点P ,使二面角P -AB -A 1的平面角的余弦值为255.解:(1) 如图,以A 为原点建立空间直角坐标系,则C(2,0,0),B(0,2,0),A 1(0,2,2),B 1(0,4,2),AA 1→=(0,2,2),BC →=B 1C 1→=(2,-2,0).cos 〈AA 1→,BC →〉=AA 1→·BC →|AA 1→|·|BC →|=-48·8=-12,故AA 1与棱BC 所成的角是π3.(2) P 为棱B 1C 1中点,设B 1P →=λB 1C 1→=(2λ,-2λ,0),则P(2λ,4-2λ,2).设平面PAB 的法向量为n 1=(x ,y ,z),AP →=(2λ,4-2λ,2),则⎩⎪⎨⎪⎧n 1·AP →=0,n 1·AB →=0.⎩⎨⎧λx+2y -λy+z =0,2y =0.⎩⎨⎧z =-λx,y =0.故n 1=(1,0,-λ),而平面ABA1的法向量是n2=(1,0,0),则cos〈n1,n2〉=n1·n2|n1|·|n2|=11+λ2=255,解得λ=12,即P为棱B1C1中点,其坐标为P(1,3,2).近六年高考题1. 【2010高考北京理第16题】(14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB,CE=EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE;(3)求二面角A-BE-D的大小.【答案】设AC与BD交与点G。

建立空间直角坐标系解立体几何题

建立空间直角坐标系解立体几何题

建立空间直角坐标系解立体几何题在学习立体几何过程中,建立空间直角坐标系可以帮助我们更好地理解和解决相关问题。

这篇文章将探讨如何建立空间直角坐标系,并以一个例题为例来说明该方法的应用。

建立空间直角坐标系的步骤如下:1.选取坐标原点一般情况下,我们可以选择立方体的一个顶点作为坐标原点。

选取坐标原点后,我们可以通过标定其他点与坐标原点的坐标值来建立坐标系。

2.确定坐标轴在空间中,我们可以有三个互相垂直的坐标轴,分别为x轴、y轴和z轴。

我们可以根据需要确定坐标轴的正方向,比如我们可以规定x轴正方向为从左往右,y轴正方向为从下往上,z轴正方向为从内往外。

3.标定坐标值在空间中,每一个点都可以用三个实数x、y、z来表示它在坐标系中的位置。

我们可以通过直接测量或者运用勾股定理等方法来确定每个点的坐标值。

一般情况下,我们可以将领角所在的平面作为xoy平面,将底面所在的平面作为xz平面,将右侧面所在的平面作为yz平面,这样有助于我们更方便地标定坐标值。

以一个例题来说明建立空间直角坐标系的应用:已知四面体ABCD的底面ABCD为边长为2的正方形,其上面一点P距离底面ABCD的距离为1,求点P到四面体的距离。

利用空间直角坐标系来解决该题可以大大简化计算过程。

我们可以将坐标系建在ABCD正方形所在的平面上,以AB为x轴,以AD为y轴,以垂直于该平面的方向为z轴。

在该坐标系中,我们可以标定A点坐标为(0, 0, 0),将B点的坐标作为x轴正方向单位向量(1, 0, 0),C点的坐标作为y轴正方向单位向量(0, 1, 0),D 点的坐标作为z轴正方向单位向量(0, 0, 1)。

通过该坐标系,我们可以算得点P的坐标为(1, 1, 1)。

接下来,我们可以利用向量点积公式计算点P到四面体的高:|AP·N|/|N| = |(1, 1, 1)·(1, 1, 0)|/√2 ≈ 1.22因此,点P到四面体的距离约为1.22。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建立空间直角坐标系,解立体几何高考题立体几何重点、热点:求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等.常用公式: 1、求线段的长度:222z y x AB ++==()()()212212212z z y y x x -+-+-=2、求P 点到平面α的距离:PN =,(N 为垂足,M 为斜足,为平面α的法向量)3、求直线l 与平面α所成的角:|||||sin |n PM ⋅=θ,(l PM ⊂,α∈M ,为α的法向量)4、求两异面直线AB 与CD 的夹角:cos =θ5、求二面角的平面角θ:|||||cos |21n n ⋅=θ,( 1n ,2n 为二面角的两个面的法向量)6、求二面角的平面角θ:SS 射影=θcos ,(射影面积法)7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量,则由方程组⎪⎩⎪⎨⎧=⋅=⋅0n b n a ,可求得法向量.高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。

而用向量坐标运算的关键是建立一个适当的空间直角坐标系。

一﹑直接建系。

当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。

例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。

点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<<a )。

(1)求MN 的长; (2)当a 为何值时,MN 的长最小;(3)当MN 最小时,求面MNA 与面MNB 所成二面角α的大小。

解:(1)以B 为坐标原点,分别以BA ﹑BE ﹑BC 为x ﹑y ﹑z 轴建立如图所示的空间直角坐标系B-xyz ,由CM=BN=a ,M(a 22,0,a 221-),N (a 22,a 22,0) ∴ =(0,a 22,122-a ) ∴ =22)22()122(a a +- =21)22(2+-a (20<<a )(2)由(1)MN =21)22(2+-a所以,当a=22时,min=22, 即M ﹑N 分别移动到AC ﹑BF 的中点时,MN 的长最小,最小值为22。

(3)取MN 的中点P ,连结AP ﹑BP ,因为AM=AN ,BM=BN ,所以AP ⊥MN ,BP ⊥MN ,∠APB 即为二面角α的平面角。

MN 的长最小时M(21,0,21),N (21,21,0)由中点坐标公式P(21,41,41),又A (1,0,0),B (0,0,0) ∴ PA =(21,-41,-41),PB =(-21,-41,-41)∴ cos ∠APB==838316116141⋅++-=-31∴ 面MNA 与面MNB 所成二面角α的大小为π-arccos 31例2.(1991年全国高考题)如图,已知ABCD 是边长为4的正方形,E ﹑F 分别是AB ﹑AD 的中点,GC ⊥面ABCD ,且GC=2,求点B 到平面EFG 的距离。

解:建立如图所示的空间直角坐标系C-xyz , 由题意 C (0,0,0),G (0,0,2),E (2,4,0),F (4,2,0),B (0,4,0)∴ GE =(2,4,-2),GF =(4,2,-2),BE =(2,0,0) 设平面EFG 的法向量为=(x ,y ,z )得{02420224=-+=-+z y x z y x ,令z=1,得x=31,y=31,即=(31,31,1),在方向上的射影的长度为d =BE =1919132++11例3. (2000年二省一市高考题) 在直三棱柱ABC- A 1B 1C 1中CA=CB=1, ∠BCA=900,棱A A 1=2,M ﹑N 分别是A 1B 1﹑A 1 A 的中点。

(1)求的长; (2) 求cos ><11,CB BA ;(3)求证:A 1B ⊥C 1M 解:建立如图所示的空间直角坐标系C-xyz ,则C (0,0,0),B (0,1,0),N (1,0,1),A 1(1,0,2),B 1(0,1,2),C 1(0,0,2),M (21,21,2)(1)=(1,-1,1),=3;(2)1CB =(0,1,2),1BA =(1,-1,2) ∴ cos ><11,CB BA=CB BA=5641⋅+-=1030(3)A 1=(-1, 1,-2),M C 1=(21,21,0)∴ B A 1•M C 1= -1×21+1×21+(-2)×0=0 ∴ A 1B ⊥C 1M二﹑利用图形中的对称关系建系。

有些图形虽然没有互相垂直且相交于一点的三条直线,但是图形中有一定的对称关系(如:正三棱锥﹑正四棱锥﹑正六棱锥等),我们可以利用图形的对称性建立空间直角坐标系来解题。

例4. (2001年二省一市高考题)如图,以底面边长为2a 的正四棱锥V-ABCD 底面中心O 为坐标原点建立空间直角坐标系O-xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点,高OV 为h 。

(1)求cos ><,; (2)记面α-VC-β的平面角,求∠BED 。

解:(1)由题意B (a ,a ,0),D (-a ,-a ,0),E (-2a ,2a ,2h)∴=(-23a ,-2a ,2h),=(2a ,23a ,2h)cos ><,==425425443432222222ha h a h a a +⋅++-- =2222106ha h a ++- (2) ∵ V (0,0,h ),C (-a ,a ,0)∴VC =(-a ,a ,- h )又 ∠BED 是二面角α-VC-β的平面角 ∴ ⊥,⊥即 BE ·VC =232a -22a -22h = a 2-22h =0, a 2=22h 代入 cos ><,=2222106h a h a ++-=-31即∠BED=π-arccos 31三﹑利用面面垂直的性质建系。

有些图形没有互相垂直且相交于一点的三条直线,但是有两个互相垂直的平面,我们可以利用面面垂直的性质定理,作出互相垂直且相交于一点的三条直线,建立空间直角坐标系。

例5. (2000年全国高考题) 如图,正三棱柱ABC- A 1B 1C 1的底面边长为a ,侧棱长为2a 。

(1) 建立适当的坐标系,并写出A ﹑B ﹑A 1﹑C 1的坐标; (2) 求 AC 1与侧面AB B 1A 1所成的角。

解:(1)如图,以点A 为坐标原点,以AB 所在直线为y 轴,以AA 1所在直线为z 轴,以经过原点且与ABB 1A 1垂直的直线为x 轴,建立如图所示的空间直角坐标系。

由已知得:A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-a 23,2a,2a )(2)取A 1B 1的中点M ,于是有M (0,2a,2a ),连AM ﹑M C 1有 1MC =(-a 23,0,0),且AB =(0,a ,0),1AA =(0,0,2a ) 由于1MC ·=0,1MC ·1AA =0,故M C 1⊥平面AB B 1A 1 。

∴ A C 1与AM 所成的角就是AC 1与侧面AB B 1A 1所成的角。

∵ 1AC =(-a 23,2a ,2a ),=(0,2a ,2a ), ∴ 1AC ·=0+42a +2a 2=492a ,1AC =2222443a a a ++=3a ,AM =2224a a +=23a∴ cos ><AC ,1=aa a 233492⋅=23 ∴ 1AC 与AM 所成的角,即AC 1与侧面AB B 1A 1所成的角为30o 。

例6. (2002年上海高考题) 如图,三棱柱OAB- O 1A 1B 1,平面OBB 1O 1⊥平面OAB ,∠O 1O B=600, ∠AOB=900,且OB= OO 1=2,OA=3。

求:(1)二面角O 1–AB –O 的大小;(2)异面直线A 1B 与A O 1所成角的大小。

(结果用反三角函数值表示) 解:(1)如图,取OB 的中点D ,连接O 1D ,则O 1D ⊥OB∵ 平面OBB 1O 1⊥平面OAB , ∴ O 1D ⊥面OAB ,过D 作AB 的垂线,垂足为E ,连结∠DE O 1为二面角O 1–AB-O 的平面角。

由题设得O 1D=3sin ∠OBA=22OB OA OA +=721 ∴ DE=DBsin ∠OBA=721 ∵ 在Rt ΔO 1DE 中,tan ∠DE O 1=7∴ ∠DE O 1=arctan 7,即二面角O 1–AB –O 的大小为arctan 7。

(2)以O 为原点,分别以OA ﹑OB 所在直线为x ﹑y 轴,过点O 且与平面AOB 垂直的直线为z 轴,建立空间直角坐标系。

则O (0,0,0),O 1(0,1,3), A (3,0,0), A 1(3,1,3), B (0,2,0),则B A 1=(-3,1,-3),A O 1=(3,-1,-3) cos 〈A1,A O 1〉=77313+--=-71故异面直线A 1B 与A O 1所成角的大小arccos 71。

姓 名: 张传法地 址: 山东临沂市罗庄区一中 (276017) E-mail :(注:本文发表于《数学通讯》2004年第6期)。

相关文档
最新文档